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In light of the hallucination issue frequently encountered by large language models (LLMs) in risk identification, a
domino effect-based approach is introduced for constructing knowledge graphs that represent risk events,
contributing factors, and corresponding mitigation strategies. These knowledge graphs serve as external
knowledge bases for LLMs, supported by carefully designed prompt words to enhance retrieval and reasoning
capabilities. A System-Theoretic Process Analysis (STPA) of natural gas pipeline operations was employed as a
case study to evaluate the effectiveness of this method in improving the risk identification performance of LLMs.
The findings indicate that the knowledge graph-based Retrieval-Augmented Generation (RAG) approach
significantly reduces the occurrence of hallucinations in LLM outputs, thereby increasing the precision of STPA.
This approach presents a novel avenue for utilizing LLMs in risk identification tasks for complex industrial
systems.
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1. Introduction

As safety requirements continue to grow in
various industrial domains, large-scale,
distributed, and highly automated system failures
often lead to severe economic losses and
environmental damage. (Gnoni et al., 2022;
Viana et al, 2022). Although distribution
pipeline networks are typically engineered with
multiple safety safeguards to mitigate fault
propagation, under certain specific conditions—
such as equipment aging, inadequate
maintenance, or design flaws—a fault may
trigger a domino effect, resulting in a cascade of
failures. (Gholamizadeh, Zarei, Yazdi,
Ramezanifar, & Aliabadi, 2024; Khakzad, 2023;
Xiao, Zayed, Meguid, & Sushama, 2024). With

the widespread adoption of LLMs, some studies
have attempted to apply these models for risk
identification. However, the hallucination
problem inherent in LLMs can render their risk
identification outputs unusable. (Lavrinovics,
Biswas, Bjerva, & Hose, 2024). Therefore, a
critical challenge is how to minimize or even
eliminate the interference and misjudgment
caused by such hallucinations when using LLMs
for risk identification. Complex industrial
systems like natural gas pipelines involve
numerous risk factors, and their fault modes and
propagation paths are highly coupled. Relying
solely on the linguistic reasoning capabilities of
LLMs may fail to accurately capture potential
risks. (Hong et al., 2023; X. Li, Wang, Abbassi,
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& Chen, 2022; Mahmood, Chen, Yodo, &
Huang, 2024). Moreover, LLMs often
experience “hallucinations,” in which the model
fabricates information or overlooks key factors
in its responses, leading to deviations and even
invalidation of risk identification results. (Metze,
Morandin-Reis, Lorand-Metze, & Florindo,
2024). Hence, this paper proposes a method that
combines LLMs with a structured knowledge
base (such as a knowledge graph), leveraging the
model’s language understanding and reasoning
capabilities while restricting its output through
structured data. This approach implements
Retrieval-Augmented Generation (RAG) to
reduce hallucinations and enhance the reliability
of risk identification. (Arslan, Ghanem,
Munawar, & Cruz, 2024; Arslan, Mahdjoubi, &
Munawar, 2024).

Currently, preliminary attempts have been made
to apply LLMs for risk identification across
various fields. (Liu, Li, Ng, Han, & Feng, 2025).
In industries like finance, education, healthcare,
and transportation, numerous researchers have
utilized LLMs as auxiliary tools to identify
potential risks. (Al Faraby, Romadhony, &
Adiwijaya, 2024; Pu, Yang, Li, & Guo, 2024;
Shekhar et al., 2025; Zou et al, 2025).
Meanwhile, knowledge graphs also exhibit
significant value in the industrial safety domain.
Research has shown that by constructing
knowledge graphs for multi-source
heterogeneous data in sectors such as power,
construction, or manufacturing, it is possible to
achieve more transparent fault tracing and causal
analysis. (Bai, Wu, Ren, Jiang, & Cai, 2023; Z.
Li et al., 2023; Zhang, Ruan, Si, & Wang, 2025).
However, in the field of risk identification,
studies combining knowledge graphs with LLMs
remain at a relatively superficial stage of
retrieval enhancement; there is still a lack of
research on how to deeply support systematic
safety analysis methods like System-Theoretic
Process Analysis (STPA). (Wong, Zheng, Su, &
Tang, 2024). As a result, the “hallucination”
outputs generated by LLMs in analytical
processes lead to inconsistent and lower-quality
results. Currently, several approaches have been
proposed to enhance the accuracy of LLMs and
mitigate hallucination phenomena, including
prompt engineering, fine-tuning with domain-
specific datasets, and post-hoc verification
techniques. Although each method offers unique
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advantages, they are often accompanied by
challenges such as limited generalizability to
new domains, high computational requirements,
and a dependence on extensive, high-quality
labeled data. To address this, this paper proposes
a domino-effect-driven method for constructing
the schema layer of a knowledge graph and
realizes automatic generation of knowledge
graphs based on an LLM. Subsequently, this
knowledge graph is integrated into the LLM’s
generative process as an external knowledge
base. By leveraging a retrieval-augmented
generation mechanism, it provides contextual
support for STPA, thereby mitigating the
shortcomings of traditional knowledge graphs in
representing risk causality and propagation
patterns, and enhancing the LLM’s capacity for
understanding and reasoning about risk
identification in industrial settings. A case study
further validates the feasibility of this approach
in the context of natural gas pipelines.

The structure of this paper is organized as
follows: Chapter 2 provides a comprehensive
introduction to the schema construction and
generation methods for the domino-effect-driven
knowledge graph. Chapter 3 focuses on a case
study involving the development of a knowledge
graph in the natural gas pipeline domain and
explains how retrieval-augmented generation,
based on the knowledge graph, is applied to
support STPA during the operational phase of
natural gas pipelines. Finally, Chapter 4 presents
the conclusions and discusses potential
directions for future research.

2. Method

2.1. Domino Effect-Driven Knowledge Graph
Schema Layer Construction

To use the knowledge graph as an external
knowledge base for LLMs and to enhance the
STPA capabilities of LLMs, the schema layer of
the knowledge graph must be designed to capture
the causal relationships behind risk propagation,
analysis, and mitigation. This involves clarifying
the types and meanings of nodes as well as the
types and logical relationships of edges in order to
accurately depict the risk relationships between
nodes. As a theory that describes the causal chain
of events, the domino effect can reflect the entire
progression of risk from its trigger through
propagation  to its  eventual  outcome.
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(Gholamizadeh, Zarei, Yazdi, Ramezanifar, &
Aliabadi, 2024).
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Fig. 1. Schema Layer of the Knowledge Graph.

Therefore, this paper integrates the concept of the
domino effect into the construction of the
knowledge graph schema layer so that it aligns
with the requirements of STPA. The structure is
shown in Figure 1.

In constructing the schema layer of the knowledge
graph, different shapes are used to represent the
types and hierarchical relationships of core
elements. (Hogan et al. 2021). Ovals signify the
node types in the knowledge graph;
parallelograms denote the edge types; and
rectangles represent the layers to which nodes and
edges belong. To systematically illustrate the key
elements of the domino effect and their mutual
relationships, the knowledge graph is divided into
three layers: the event layer, the risk factor layer,
and the countermeasure layer. The event layer
mainly describes the causal chain of risk events
(e.g., equipment failure or pipeline leaks) and uses
causal relationships and temporal constraints to
depict the evolution of the domino effect. The risk
factor layer analyzes the major drivers of events,
including environmental, operational, and design
factors, revealing the causes and characteristics of
risks through influence and classification
relationships. The countermeasure layer uses
applicability and effectiveness relationships to
represent the emergency and preventive measures
aimed at events and risk factors.

2.2. Knowledge Graph Generation Method

The generation of the knowledge graph proceeds
in three steps. First, text information is input into
the LLM, and the model is instructed to output the
relevant information in a standardized format such
as triples. Second, a tool is chosen to build the
knowledge graph. This paper uses Neo4j, where
the query language is known as Cypher. Third,

tools like Python automatically convert the
standardized output into Cypher statements,
which are then fed into Neo4j to ultimately
generate the knowledge graph. (Elapolu et al.
2024).

(1) Prompt Template Construction
In order to guide the LLM to generate content in
the desired standardized format, a prompt
template must be designed so that, based on the
input text, the model outputs the formatted
information—such as triples—that cover the
specific domain. To ensure output quality, the
prompt must explicitly require that all necessary
information be included in the generated triples
and prohibit omitting any details, as incomplete
output would undermine its reliability.
Additionally, any generated triple must be
reviewed to avoid information errors. The core
function of the prompt template is to specify the
types and logical structure of the triples while
ensuring the completeness and accuracy of
information extraction. Prompt Template: Given
the text below, construct knowledge graph triples
relevant to the domain of natural gas pipelines.
The triples should be categorized as either
Entity-Attribute-Value or Entity-Relationship-
Entity. Adhere strictly to these categories when
generating the triples, ensuring completeness,
logical consistency, and factual accuracy. Refer
to Table 1 for examples of inputs and outputs
based on this prompt template.

Table 1. Input and Output Examples for LLMs

Example Input Example Output

(Natural gas pipeline,
high-temperature
conditions, material
fatigue); (Material
fatigue, leads to, pipeline
leakage);

Under high-temperature
conditions, natural gas
pipelines are prone to
material fatigue, which
may lead to pipeline
leakage.

(i1) Prompt Content

The prompt content primarily comes from
previously conducted risk analysis reports, which
may include but are not limited to results from
safety risk analyses employing Hazard and
Operability  Analysis (HAZOP), Hazard
Identification (HAZID), and other methods.
Ultimately, the prompt content and the prompt
template are combined to form a complete
prompt and input into the LLM, which outputs
the information in the form of triples or other
standardized structures.
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(ii1) Knowledge Graph Generation

Using Python, the formatted text (e.g., triples)
generated by the LLM is processed and
converted into Cypher statements, which are
then input into Neo4j. Two types of Cypher
statements are employed in this process: one for
creating nodes and another for adding

relationships. (Elapolu et al. 2024).
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Fig. 2. The Generated Knowledge Graph.
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6) Matching Queries with Nodes
To enable RAG based on the knowledge graph,
user queries posed to the LLM must be matched
with corresponding nodes in the knowledge
graph. A common approach for this process is
vector-based matching. Specifically, a pre-
trained language model (e.g., BERT) is used to
encode the user query into a semantic vector,
while the same encoding process is applied to the
nodes of the knowledge graph, including entity
names or descriptive text, to generate semantic
vectors for the nodes. (Devlin et al. 2019). A
mapping function is then defined to project both
the query vectors and node vectors into the same
semantic space, thereby enabling semantic
matching. The primary objective of this mapping
function is to optimize the semantic distance or
similarity between query vectors and node
vectors, ensuring high alignment within the
semantic space. Due to the complex logic and
semantic relationships involved in STPA, the
mapping between query vectors and node vectors
is often intricate. Simple linear mapping methods
are insufficient to capture these deeper semantic
relationships. To address this, a two-layer linear
transformation with a ReLU activation function
is employed, enabling nonlinear mapping to
better model the complex semantic relationships
between query vectors and node vectors. The

formulation of this mapping function is provided
in Equation (1).
J,)=ReLUW, -(ReLUW, v, +b))+b,) (1)

The semantic vector of the question is denoted
asv,, where Wy and > represent weight

matrices, and b1 and b» represent bias vectors.
The mapped question vector is denoted as f'(v, ) .

After designing the mapping function, it must be
trained. Hence, a high-quality training set is
manually constructed, containing “question—
node” pairings. The “question” refers to a
specific user need stated in natural language, and
the “node” is a knowledge graph entity related to
the question’s semantics. For instance, for the
question “Which loss-of-control scenarios might
pipeline corrosion lead to?”, relevant graph
nodes might include “failure of circumferential
welds” or “pipeline cracking under stress
corrosion.” Expert knowledge and manual
vetting are required to ensure semantic
consistency and reasonable matching. The
format of the training data is shown in Equation
2).

{0 ), 07 ), 0" M)y ()
The semantic vector of the question is denoted as
v(i ), and the semantic vector of the knowledge

graph node is denoted as v(’)

The cosine similarity formula is utilized to train
the model using paired data consisting of
question vectors and their corresponding node
vectors, with the objective of maximizing their
similarity. This approach facilitates the accurate
retrieval of relevant nodes for a given query.
During the training process of the mapping
function, it is crucial to select an appropriate loss
function as the evaluation metric to assess the
quality of the mapping results. Depending on the
specific task objectives, the choice of loss
function can be categorized as follows: when the
goal is to maintain directional consistency in the
semantic space, cosine similarity loss is
preferable as it directly optimizes the directional
similarity between vectors; (Gao et al. 2021)
when focusing on numerical matching or directly
minimizing distance, Euclidean distance loss can
be chosen to minimize numerical errors between
vectors; when further distinction between
positive and negative samples is required,
contrastive loss or triplet loss can be employed to
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enhance the model's discriminative ability and
generalization performance. (Reimers and
Gurevych 2019). In retrieval-augmented
generation tasks, the degree of vector direction
matching directly impacts the precision and
efficiency of semantic retrieval. (Lewis et al.
2020). Therefore, ensuring semantic directional
consistency between question vectors and node
vectors is critical for efficient retrieval.
Additionally, whether the retrieved knowledge
nodes can provide high-quality contextual
support for the generative model depends on the
accuracy of semantic matching and the
contextual quality generated by the model. As a
result, cosine similarity loss is selected as the
core evaluation metric. Given a question vector

v, and a node vector v, , the mapped question
vectoris f(v,) . The cosine similarity is defined
as Equation (3), and the loss function is given as
Equation (4).

COS(f(vq )y, )= f(vq).vn

[AC I IA

The loss function L is defined as follows:
N
L= Cose) @
i=1

Training is performed using paired data
(question vectors and their corresponding node
vectors) based on the cosine similarity
calculation formula, aiming to maximize the
similarity between the two. This ensures precise
retrieval of questions and their related nodes.

(i1) Searching for Related Nodes
After the most relevant node is matched, the
triples connecting this node to its neighboring
nodes are extracted. These triples encapsulate
semantic associations and logical relationships
between nodes, offering extensive contextual
support for subsequent generation tasks.
To improve the interpretability of these triples, a
prompt template must be designed. The LLM
then gives an initial explanation, generating a
text description suited to the scenario. The output
is combined with the user’s original question to
form a complete prompt, which is then input into
the LLM.

3)

3. Case Analysis

3.1. Knowledge Graph Construction Driven by
the Domino Effect in the Natural Gas Pipeline
Domain

In this case study, the data are sourced from
documents such as natural gas pipeline design
reports, risk assessment reports, and construction
specifications. Python 3.9 is used for data
processing. Based on these documents, a
preliminary  analysis of the risk-related
relationships present during natural gas pipeline
operations was conducted.  Subsequently,
relationships among nodes were determined
according to the knowledge graph schema
described in Section 2.1, as illustrated in Figure
3. The first, second, and third columns in the
figure represent the source node, relationship,
and target node, respectively.

Risk Event

Intermedinte Event § Causal Relationship
Design Factor Temporal Constraint \ Final Event
Environmental Factor § Impaet Relationship 3; Intermediate Event
Operational Faclor < ¢y, gification Relationship »_| Rk Pt
Preventive Measure 7 Applicability Relationship }]f/ Risk Factor Category

Emergency Measure 7 Effectiveness Relationship
Control Device

Fig. 3. Relationships Between Nodes in the
Knowledge Graph.

The next step involves inputting the existing
textual data into the LLM using the designed
prompt template. The model extracts information
such as events, risk factors, and mitigation
measures described in the text. It is important to
note that, in this case, the content output by the
LLM includes only source nodes and target
nodes. The relationship types between the nodes
are pre-defined within the knowledge graph
generation model. A total of 879 relationships
are generated. The content output by the LLM is
shown in Table 2.

Table 2. Structured Text Output by the LLM.

Index  Structured Text

1 {"risk_event": ["Unit 1 Fault Shutdown"],
"intermediate_event": ["Inverter Output
Grounding Fault"]}

879 {"risk_event": ["Unit 3 Oil Pump Motor
Bearing Damage"], "intermediate_event":
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["Abnormal Oil Pump Noise"]}

After the output is proofread, Python's py2neo
library is utilized to input the structured text into
Neo4j, resulting in the generation of the
knowledge graph. The graph comprises 1,205
nodes and 879 edges, with the distribution of
node types and edges aligning with the actual
characteristics of risk propagation during the
operational phase of natural gas pipelines.

3.2. STPA Based on Knowledge Graph

Retrieval-Augmented Generation

STPA is a systematic safety analysis method that
requires a clear definition of analysis objectives
and a structured approach to guide the analysis
process. This paper illustrates how to generate
STPA analysis text using a retrieval-enhanced
mechanism based on a knowledge graph through
a case study involving a natural gas pipeline
compressor component. To guide the analysis, a
prompt template is designed as follows: "I am
conducting a systematic STPA safety analysis.
Below is the system description: [System
Description]. Please help me complete the STPA
analysis by following these steps: 1. Identify
potential hazardous events in the system and
briefly explain their possible impacts. 2. Based
on the system description, draw the control
structure or list the key control components and
their interactions in text form. 3. Identify
potential unsafe control actions (UCAs) in the
system. 4. For each unsafe control action,
analyze the potential causal factors and propose
improvement suggestions or safety constraints.
Please provide detailed step-by-step answers."
The "System Description" section is adaptable to
meet specific requirements.To achieve alignment
between the prompts and knowledge graph nodes,
keywords must first be extracted from the
prompts. This involves tokenizing the input text
and vectorizing all tokenized words as well as
the nodes in the knowledge graph using BERT
model. After vectorization, a mapping function is
employed to align the keywords from the
prompts with nodes in the knowledge graph,
thereby achieving prompt-to-node matching. To
facilitate this, a domain-specific training dataset
for natural gas pipelines was designed to train
the mapping function. Once trained, the mapping
function accurately aligns input information with
knowledge graph nodes. Following the
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alignment, neighboring nodes are retrieved to
form triples.

The system description used in this case is as
follows: "The compressor monitors operating
pressure, temperature, and flow rate through
sensors. The system includes an automatic
overload protection mechanism that shuts down
the compressor in cases of abnormal pressure or
overheating. If a sensor fails or the overload
protection  mechanism  malfunctions,  the
compressor may operate under overload
conditions or exhibit abnormal temperatures."
The node matching results are presented in Table
3.

Table 3. Node Matching Results.

Matched Nodes Triples

Risk Events: (Compressor Operating Pressure
Compressor Abnormally High, Causal
Operating Relationship, Overload

Pressure Protection Device Not Triggered)
Abnormally (Sensor Failure, Causal

High, Sensor Relationship, Abnormal

Failure. Temperature Data Not Uploaded)

Subsequently, these triples and the prompt
template are fed into the LLM, which provides
an interpretation of the triples. Finally, the
generated explanation is embedded into the
system description section of the initial prompt
template and input back into the LLM. Based on
this new input, the model produces a more
complete and contextually relevant STPA.

3.3. Results Analysis

A comparison was conducted between the
original STPA results and the enhanced STPA
analysis results generated using knowledge
graph-based retrieval, as shown in Table 4. The
STPA results under the two sets of prompts
exhibit distinct emphases and characteristics. The
first set of prompts is more general, addressing
overarching system safety requirements such as
"compressor overload operation or abnormal
temperature." This set is suitable for
comprehensive, system-level preliminary safety
assessments. It identifies events like overload,
overheating, sensor failures, and protection
device malfunctions, providing a broad analysis
that is relatively thorough but lacks specific
examples. The analysis of unsafe control actions
(UCAs) focuses on a macro-level perspective,
such as "the control system failing to shut down
in time" or "sensor failures going unnoticed."
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Correspondingly, the improvement suggestions
are also high-level measures, such as increasing
redundancy, enhancing  maintenance, or
optimizing algorithms. In contrast, the second set
of prompts is more targeted and scenario-specific,
focusing on concrete situations such as "failure
to relieve abnormal pressure increases in time"
or "temperature sensor failure causing data loss."
This specificity makes the description of
hazardous events more precise and enables UCA
analysis to be more actionable. For instance, it
identifies issues such as "the overload protection
device failing to respond during abnormal
pressure increases" or "temperature sensor
failure leading to an inability to monitor
overheating." The improvement suggestions are
also more detailed and practical, such as
automatically entering a safe mode upon
detecting temperature data loss or executing
protective actions during abnormal pressure
increases.

Table 4. Comparison of Original STPA Results and
Knowledge Graph Retrieval-Augmented STPA
Results.

Original STPA Results

Step 1: Identify Potential Hazardous Events and Their Impacts

1. Compressor Overloading
Potential Impact: Overloading may lead to mechanical fatigue, part failure,
and damage to critical components, disrupting operations and posing safety

risks.

~n

. Compressor Overheating
Potential Impact: Overheating can degrade lubricants, cause seal damage,
and risk fire or explosion, leading to catastrophic failures.

w

. Excessive Pressure Without Relief
Potential Impact: Uncontrolled pressure buildup may rupture pipes or

storage tanks, resulting in severe equipment damage and safety hazards.

rS

. Sensor Failure
Potential Impact: Failure in pressure, temperature, or flow sensors can lead
to inaccurate monitoring, delaying protection measures and increasing
accident risk.

wn

. Overload Protection Malfunction
Potential Impact: If the protection mechanism fails, the system cannot shut
down or release pressure during abnormal conditions, escalating risks to

equipment and personnel.

Knowledge Graph Retrieval-Augmented STPA
Results

Step 1: Identify Hazardous Events
1. Pressure Rise Without Shutdown
Potential Impact: Sustained high pressure may lead to component

overloading, ruptures, or catastrophic failure.

]

. Sensor Failure Preventing Temperature Monitoring
Potential Impact: Lack of real-time monitoring leads to undetected
overheating, equipment wear, or fire risks.

w

. General Risk Escalation from Combined Failures
Impact: Overloading and overheating amplify operational and safety risks,
potentially affecting nearby personnel and environment.

4. Conclusion

4.1. Summary

This paper proposes a knowledge graph
construction method based on the domino effect,
integrating the knowledge graph into a retrieval-
augmented generation framework as an external
knowledge base. This approach provides contextual
enhancement for STPA and facilitates the
generation of more precise and detailed safety
analyses. Additionally, the feasibility and
effectiveness of utilizing a domino-effect-driven
knowledge graph as an external knowledge base for

LLMs are validated in the areas of risk
identification, causal analysis, and safety strategy
development.
4.2. Outlook

Although the proposed method has yielded
promising results in practical applications, there is
still room for improvement. Future work could
further enrich the structure and content of the
knowledge graph by integrating additional domain-
specific risk analysis data, thereby enhancing its
adaptability to complex system safety scenarios.
Moreover, more advanced nonlinear mapping and
semantic reasoning algorithms could be employed
in retrieval and generation processes to further
improve retrieval accuracy and the overall quality
of the generated results.
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