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Abstract: In the past few years, the advancement and adoption of autonomous vehicles AVs have rapidly increased. 
As a result of which safety and security of Avs has become a big challenge. These vehicles are dependent on systems 
including various sensors, AI systems and connectivity systems These systems are vulnerable to security threats and 
safety risks. The autonomous driving system faces various security challenges including cyberattacks on the AV 
software, communication systems or on the cloud-based platforms. These security threats could affect control 
systems of the vehicle which could lead to catastrophic failures. In addition to this, system and sensor errors could 
also result in failure of the AI decision system, which pose risks not only to passengers but also to other road users. 
To the ensure the safety and reliability of AVs a comprehensive risk assessment framework is needed that will not 
only evaluate the impact of such incidents but also incorporate advance technologies for timely detection and 
prevention of such incidents. This paper will focus on developing a risk-based framework to assess and mitigate the 
challenges associated with AV technologies, emphasizing the safety and security dimensions. We will examine key 
safety standards and explore techniques such as real-time risk monitoring, machine learning-based threat detection, 
and resilient system design. Through a focus on risk management practices, we aim to establish guidelines for the 
secure and safe integration of autonomous vehicles, making the way for widespread adoption and public trust in this 
transformative technology. 
Keywords: Risk-Assessment, Security Challenges, Autonomous Vehicle Systems. 
 
1. Introduction 

The self-driving cars mark a new 
advancement with the enhanced possibility of 
autonomous transport, lower traffic-related 
mishaps, and improved urban designs [1]. The 
adoption of self-driving vehicles into the 
urban environment, however, has several 
safety and privacy issues. AVs are different 
from traditional cars, because they utilize 
various algorithms, sensors, and cloud 
communications. The dependence creates an 
intricate environment for cyber security 
threats and complex safety dependencies [2]. 
With the more advancement in AV, solving 
security concerns and safety risks represents a 
challenge that must be addressed timely. The 
modern paradox AV ecosystems face is that it 

offers technologies for autonomy, yet those 
technologies are often subject to different risk 
factors [3]. Some of those factors include but 
are not limited to adversarial risks that 
threaten vehicle control, software 
exploitation, and remotely commandeering 
vehicle-to-everything (V2X) channels [4]. 
Likewise, the real world poses a completely 
different set of problems and risks stemming 
from unpredictable scenarios, sensor 
malfunctions due to bad weather, and 
algorithm biasness. Many edge-case scenarios 
are not even taken into consideration during 
training phases [5]. All these problems are 
further worsened by the lack of integrated 
legislation and no specific rules for AV risk 
assessments. 
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To bridge this gap, this paper proposes a risk-
based assessment framework (as shown in 
Figure 1) designed to systematically evaluate 
and mitigate security and safety challenges in 
AV systems. The framework integrates three 
pillars: (1) threat identification through attack 
surface mapping and failure mode analysis, 
(2) risk quantification using probabilistic 
models to assess likelihood and impact, and 
(3) risk mitigation strategies via real-time 
monitoring and adaptive machine learning 
(ML) algorithms. By harmonizing safety 
standards (e.g., ISO 26262) with 
cybersecurity protocols (e.g., ISO/SAE 
21434) [6], our approach enables holistic risk 
management tailored to the dynamic AV 
environment.  

 
Figure 1 Risk Assessment Framework 

To contextualize risks, Table 1 provides a 
taxonomy of high-impact threats derived from 
empirical studies and industry incident 
reports.  

Table 1  Risk matrix highlighting key threats to 
AV systems, ranked by likelihood and impact 

Threat 
Category 

Example Risks Impact Severity 

Cyber Security GPS spoofing, 
CAN bus 
intrusion 

Critical 

Sensor Failure LiDAR 
misclassification 

in fog 

High 

AI Decision 
erros 

Edge-case 
scenario 

misjudgment 

Critical 

Cloud 
Vulnerabilities 

Data 
exfiltration, 

DDoS attacks 

High 

By advancing a unified framework that 
prioritizes proactive risk mitigation, this work 
aims to catalyze the safe and secure 
deployment of AVs. The rest of the paper is 

organized as follows: Section 2 discusses 
threat identification and risk quantification, 
Section 3 discusses risk mitigation strategies, 
Section 4 discusses Policy and Regulatory 
Implications related to the framework and 
Section 5 discusses conclusion and future 
work. 

2. Risk Assessment Framework: A Multi-
Layered Approach 

The framework is designed to address the complex 
relationship between safety and security issues 
faced in autonomous vehicle (AV). The framework 
combines threat modelling, probabilistic risk 
quantification, and mitigation, aligned with ISO 
21434 (cybersecurity) and ISO 26262 (functional 
safety).  

2.1. Threat Identification and Attack Surface 
Decomposition 

Autonomous systems inherit risks from their 
interconnected hardware, software, and 
communication layers. We categorize threats into 
three domains as classified in Table 2: 

� Cybersecurity: Exploitable vulnerabilities in 
AI models, V2X networks, or over-the-air 
(OTA) updates [7].  

� Safety-Critical Failures: Sensor malfunctions 
(e.g., camera/LiDAR occlusion), algorithmic 
biases, or actuator errors [8]. 

� Operational Edge Cases: Unanticipated 
scenarios (e.g., extreme weather, ambiguous 
traffic scenarios) [9][10]. 

Table 2 Three different domains of Threats 

 Case Consequences 

 Identify 
vulnerabilities in 
sensors (LiDAR, 
radar, 
Adversarial 
attacks on 
camera inputs) 
and perception 
algorithms (e.g., 
object detection, 
classification). 

-False object 
identification 
(phantom objects)  
-Failure to detect 
critical obstacles  
-Misleading 
navigation 
decisions  
-Increased 
accident risks 

Attack Surface 
Mapping 

Map 
vulnerabilities in 
vehicle-to-

-Traffic 
disruption or 
congestion 
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(Cybersecurity) vehicle (V2V) 
and vehicle-to-
infrastructure 
(V2I) 
communication 
protocols, Man-
in-the-middle 
(MITM) attacks 
on V2X 
messages. 

- False emergency 
braking or 
acceleration  
-Incorrect Road 
hazard warnings  
-Compromised 
autonomous 
decision-making 

 Analyze 
vulnerabilities in 
the operating 
system, 
middleware, and 
application 
layers. 

-Unauthorized 
access to vehicle 
systems  
- Remote control 
of critical vehicle 
functions  
-System crashes 
and denial-of-
service (DoS)  
- Data breaches 
and privacy 
violations 

 Identify risks in 
electronic 
control units 
(ECUs), 
actuators, and 
power systems. 

- Loss of vehicle 
control 
(braking/throttle 
manipulation)  
-Malfunctioning 
of safety-critical 
functions (e.g., 
ABS, steering)  
-Unexpected 
shutdowns or 
erratic behavior  
- Potential life-
threatening 
situations 

 

 

Analyze failure 
modes under 
adverse 
conditions (e.g., 
fog, rain, snow). 

- Failure to detect 
pedestrians, 
vehicles, or road 
obstacles  
- Incorrect object 
classification 
(e.g., mistaking 
snowbanks for 
solid objects)  
- Increased risk of 
accidents due to 
delayed or 
incorrect 
responses 

Failure Mode 
Analysis 

 

Identify biases in 
decision-making 
algorithms (e.g., 
favoring certain 
objects or 
scenarios). 

-Unequal 
detection 
accuracy (e.g., 
prioritizing larger 
vehicles over 
pedestrians)  
- Unsafe driving 
decisions in 
underrepresented 
scenarios  
- Ethical concerns 

in risk 
prioritization 
(e.g., biases in 
collision 
avoidance) 

Edge Cases  Identify 
scenarios not 
covered during 
training (e.g., 
rare road 
conditions or 
unexpected 
obstacles 

- Increased 
accident risk due 
to failure to 
recognize or react 
to uncommon 
obstacles (e.g., 
fallen trees, 
animals, or 
sinkholes)  
- 
Misinterpretation 
of rare traffic 
situations (e.g., 
police hand 
signals, 
temporary road 
signs) leading to 
unsafe driving 
decisions  
- Poor 
generalization of 
perception 
models causing 
delays in obstacle 
avoidance  
- Unintended 
vehicle behavior 
(e.g., unnecessary 
stops or failure to 
yield) in edge 
cases not seen in 
training data  
- Ethical and legal 
concerns if the AI 
system cannot 
handle rare but 
critical scenarios 
(e.g., emergency 
vehicle 
interactions) 

2.2. Risk Quantification and Prioritization 

Risks are evaluated using a probability-impact 
matrix, combining likelihood estimates (derived 
from historical incident data and simulations) and 
severity scores (based on harm to humans, 
property, or trust). Machine learning models 
further refine these estimates by analysing real-
world driving datasets. Table 3 gives a risk matrix 
for the threats identified in the previous section, for 
each threat case, its risk factor, Likelihood (L) of 
the risk, Impact of the risk (I) and its probability is 
given. 
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Table 3 Risk matrix for Threat cases 

Cases  Risk Factor L I Probability 

 Adversarial 
attacks on 
camera inputs 

H C Immediate 
Action 

 Man-in-the-
middle (MITM) 
attacks on V2X 
messages 

M C Immediate 
Action 

 Spoofing of V2X 
messages (e.g., 
fake traffic 
signals) 

M H High 
Priority 

Attack 
Surface 
Mapping 

Denial-of-
service (DoS) 
attacks on V2X 
communication 
channels  

L M Medium 
Priority  

 Physical 
tampering with 
ECUs  

L H High 
priority  

 Exploitation of 
unpatched 
software 
vulnerabilities in 
the AV's control 
system 

H C Immediate 
Action 

 Malware 
injection into the 
AV's operating 
system  

M H High 
priority 

 

 

Power supply 
failures leading 
to system 
shutdown  

L M Medium 
Priority  

Failure 
Mode 
Analysis 

Camera failure 
in low-light 
condition 

M H High 
Priority 

 LiDAR failure 
due to dirt or 
obstruction 

M H High 
Priority 

 Radar failure due 
to interference
  

L M Medium 
Priority 

 Bugs in 
decision-making 
algorithms 
causing erratic 
behavior  

L H High 
priority 

 LiDAR 
performance 
degradation in 
heavy rain 

M H High 
priority 

 Biases in object 
classification 
(e.g., 
misclassifying 
vehicles)  

L M Medium 
priority 

 Radar 
interference 
from 
environmental 
noise 

L M  Medium 
priority 

 Failure to detect 
pedestrians in 
low-light 
conditions 

M H High 
Priority 

Edge Cases Unhandled 
scenarios (e.g., 
fallen tree on 
highway)  

L C Immediate 
Action 

 Rare weather 
conditions (e.g., 
black ice)  

L H High 
Priority 

The likelihood of each risk case given in Table 3 
are based on evidence such as incidents from the 
real-world and evidence from theoretical as well as 
experimental data. Adversarial attacks on the 
camera input as well as exploiting the software 
vulnerabilities that have not been patched yet in the 
AV control system have high likelihoods from 
Cybersecurity research and cases that were 
reported in the past. These factors indicate the 
critical risks in autonomous systems. However, 
other factors such as Denial-of-service (DoS) 
attacks on V2X communication channels or V2X 
noise jamming radar from the background 
environmental noise are determined as low 
likelihoods because those are supported by 
evidence of lower quality in these contexts. The 
physical tampering with ECUs is possible but 
subjectively high concern and low complexity 
leads to a lower likelihood. Risks such as camera 
not functioning in low light scenarios and LiDAR 
sensor failure due to dirt or obstruction is moderate 
because there is significant supporting literature for 
the problems in automotive safety engineering 
research, but advances in technology have lowered 
the probability of their occurrence. Some biases 
within the algorithms while making decisions and 
failures within the system to detect pedestrians 
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during low light scenarios are known risks which 
are adequately managed and mitigated through 
comprehensive testing and refinement which 
results in the algorithm’s low probabilities of 
failure considering these risks. In extreme and edge 
case scenarios like automobile break down 
alongside the highways, dense fog with virtually no 
visibility or rare weather conditions including 
black ice, the possibility of these events occurring 
is still low mainly due to less occurrence of these 
events however, the risk associated with these 
events occurring is extremely high. The basis of 
evidence for these extreme edge scenarios is 
gathered from accident reports and meteorological 
phenomena which are outlined and underscore the 
gaps that still exist within autonomous vehicle 
systems. These judgments depict a multitude of 
risks along with clearly stating where there is lack 
of data which requires more validation and 
research along with different methods to neutralize 
these risks. 

3. Mitigation Strategies: A Defence-in-Depth 
Architecture 

A defense-in-depth architecture employs multiple 
layers of security controls to mitigate risks across 
the autonomous vehicle (AV) system. Below are 
tailored mitigation strategies for the risks identified 
in the Threat Identification phase. 

3.1. Mitigation Strategies for Attack Surface 
Mapping in Autonomous Vehicles 

Attack surface mapping involves identifying and 
analyzing potential vulnerabilities in a system that 
could be exploited by attackers. In the context of 
autonomous vehicles (AVs), these vulnerabilities 
exist across various components, including 
vehicle-to-everything (V2X) communication, 
software architecture, and electronic control units 
(ECUs). To mitigate risks, a multi-layered security 
approach is essential. The following strategies help 
minimize the attack surface and enhance the 
resilience of AV systems.  

3.1.1. Securing V2X Communication 

V2X communication (Vehicle-to-Vehicle and 
Vehicle-to-Infrastructure) allows instantaneous 

data transfer between AVs and surrounding 
infrastructure. Unfortunately, its security features 
are prone to interception, spoofing, and MITM 
attacks, which can interfere with crucial vehicle 
functions or even in worse case can manipulate 
them. 

1. Encryption and Authentication: Implement 
end-to-end encryption (e.g., TLS, AES) and 
digital signatures to protect message integrity 
and prevent unauthorized interception. 

2. Message Validation: Use cryptographic 
authentication mechanisms such as Message 
Authentication Codes (MACs) to verify the 
legitimacy of received data. 

3. Intrusion Detection Systems (IDS): Deploy 
network-based IDS to detect anomalies in 
V2X communications, such as unauthorized 
data injection or unexpected message patterns. 

3.1.2. Hardening Software and System 
Architecture 

The operating system (OS), middleware, and 
application layers of AV software stack create a 
critical vulnerability zone for attackers. Attackers 
exploiting software weaknesses can take control of 
vehicle functions, block specific operations, or 
inject faulty code. 

1. Regular Software Updates: Provide an over-
the-air (OTA) update feature that ensures swift 
implementation of identified patches and 
security bugs to proactively minimize 
weaknesses. 

2. Access Control and Sandboxing: Level for 
malware cross-contamination by limiting user 
permissions, controlling routine critical 
vehicle functions, or sandboxing malicious 
processes underneath user software layers. 

3. Runtime Security Monitoring: Implement 
measures that enable real-time spotting of 
unusual actions within certain system 
processes and applications focusing on 
suspicious changes in the monitored software 
environment. 
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3.1.3. Protecting Electronic Control Units 
(ECUs) and Actuators 

ECUs control fundamental vehicle operations such 
as acceleration, braking, and steering. Attacks on 
these components can be executed by physically 
manipulating ECUs as well as executing intrusion 
commands into the system. 

1. Tamper-Resistant Hardware: Protect physical 
access of users to ECUs by means of secure 
hardware boxes and anti-tampering tools. 

2. Anomaly Detection in Control Systems: Use 
intrusion detection systems that monitor and 
analyze ECU command patterns that is 
different from the known format. 

3. Restricted Access to Diagnostic Ports: Access 
to any OBD-II and other diagnostic ports is 
secured with authentication checks to avoid 
unauthorized reprogramming or data 
manipulation. 

3.2. Mitigation Strategies for Failure Mode 
Analysis 

Failure mode analysis helps reveal and highlight 
potential weaknesses present in autonomous 
vehicles (AV) systems so that they can operate 
under a wide range of stress conditions in a 
dependable manner. It includes everything from 
sensor failures in harsh environments to 
algorithmic discrimination in coping with different 
scenarios. The following strategies outline 
effective mitigation approaches.  

3.2.1. Sensor Failures 

Cameras, radar, and LiDAR systems are used in 
autonomous vehicles to observe their environment. 
These technologies can face issues like poor 
visibility from fog, rain, or snow that can result in 
incorrect interpretations of hazards and objects 
present on the road. 

1. Multi-Sensor Fusion: LiDAR, radar, and 
camera data can be integrated to increase 
perception accuracy during bad weather. 

2. Weather-Adaptive Sensor Calibration: 
Calibrate environmental parameters in real 
time through noise adjustments, like rain 
LiDAR adjusting for heavy precipitation. 

3. Self-Cleaning Mechanisms: Use automated 
wipers, air blowers, or hydrophobic coatings 
to prevent sensor obstructions caused by 
water, snow, or dirt. 

4. AI-Based Signal Enhancement: Utilize 
machine learning algorithms to filter noise and 
enhance signal clarity in low-visibility 
conditions. 

3.2.2. Addressing Algorithmic Biases 

Decision-making algorithms in autonomous cars 
can develop biases that may result in dangerous 
activities such as identifying pedestrians as 
something else in dark environments or picking 
and choosing certain objects. These biases can 
contribute towards AV risks, and stem from 
inadequate training data and model overfitting. 

1. Diverse and Representative Training Data: 
Train AI models on varied datasets that 
include different lighting conditions, weather 
scenarios, and pedestrian demographics to 
improve generalization. 

2. Bias Detection and Correction: Employ 
fairness-checking to cut down biases in 
models used for detection and classification of 
objects. 

3. Real-Time Performance Monitoring: Monitor 
decisions made from the algorithm in the field. 
Change the threshold of the decisions made 
from AI based on parameterised measured 
data. 

4. Human-in-the-Loop Systems: Implement 
human controllers for algorithms which have 
the potential of causing safety issues. 

5. Adaptive AI Learning: Employ reinforcement 
learning techniques where the AV models 
modify themselves in real time based on 
changing situations within the real world. 

3.3. Mitigation Strategies for Edge Cases  
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Edge cases consist of obstacles an AV might face 
during its operation but hasn’t been conditioned or 
trained for. Some edge cases would entail a tree 
blocking a freeway, or an erratic pedestrian 
activity. Such edge conditions can challenge the 
AV system’s competence in decision making. To 
enhance the safety and reliability of AVs, these 
measures can be preferred: 

3.3.1. Expanding and Enhancing Training Data 

1. Diverse and Synthetic Datasets: Download 
ample real-world datasets and create training 
scenarios like AVs existing in the real world at 
set conditions to improve their performance 
for edge case handling. 

2. Adversarial Training: Introduce challenging 
conditions (e.g., obstacles in unexpected 
locations) during model training to improve 
robustness. 

3. Continual Learning: Implement machine 
learning models that can adapt, and update 
based on new data collected from real-world 
driving experiences. 

3.3.2. Advanced Sensor Fusion and Perception 

1. Multi-Modal Sensor Integration: Combine 
data from LiDAR, radar, and cameras to detect 
and classify unknown obstacles with higher 
accuracy. 

2. AI-Based Anomaly Detection: Develop AI 
models capable of identifying unusual objects 
(e.g., a fallen tree) by comparing current 
sensor inputs with expected patterns. 

3. Environmental Awareness Sensors: Integrate 
additional sensors (e.g., infrared, ultrasonic) to 
enhance AV perception in low-visibility 
conditions. 

3.3.3. Continuous Real-World Testing and 
Validation 

1. Edge Case Simulation Environments: Use 
high-fidelity simulation platforms to test AV 
behavior under rare and unpredictable 
conditions. 

2. On-Road Data Collection and Feedback 
Loops: Deploy AVs in real-world conditions 
and use their experiences to refine perception 
models. 

3. Crowdsourced Data Sharing: Utilize a shared 
AV network where vehicles contribute rare 
case scenarios to improve collective learning. 

4. Safety Standards and Regulations for 
Autonomous Vehicles  
The actual deployment of AVs is not only a matter 
of technology, but also one of creating appropriate 
AV regulation that will guarantee safety and security 
as well as trust from the public. In this part, we 
analyze how the proposed framework is integrated 
with the current standards, suggest modifications to 
existing ones, and provide steps that would enable 
the industry to accept these changes. 
4.1. Alignment with Existing Standards 
Developing an effective risk-based assessment 
system will give additional value to technologies 
and processes that are relevant to the current 
automotive standards without compromising them 
and at the same time focus on the AV systems 
singularity. Our approach allows for compliance 
with ISO 21434 and its lifecycle cybersecurity 
principles, consisting of threat and risk-based 
analysis and assessment, as well as mitigation of AV 
system threats. The framework’s adaptive security 
policies and real-time monitoring mechanisms 
provide actionable measures to address evolving 
cybersecurity threats, as mandated by ISO 
21434[11]. The framework integrates functional 
safety considerations by mapping safety-critical 
failures (e.g., sensor malfunctions, AI decision 
errors) to Automotive Safety Integrity Levels 
(ASIL). Our defence in-depth architecture ensures 
fail-operational capabilities, aligning with ISO 
26262’s requirements for redundancy and fault 
tolerance [12]. The use of digital twin simulations 
for scenario testing supports the standard’s emphasis 
on rigorous validation and verification. Our 
framework’s emphasis on dynamic risk assessment 
and continuous monitoring aligns with UNECE 
R155’s requirements for cybersecurity management 
systems (CSMS). The inclusion of adversarial 
testing and forensic readiness mechanisms ensures 
compliance with the regulation’s focus on proactive 
threat detection and incident response. 
 4.2. Recommendations for Regulatory Updates 
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While existing standards are useful to build upon, 
the development of AV technologies is 
unprecedented and require new approaches to be 
created to govern them. The makers of AV along 
with suppliers and regulators working together can 
strengthen the system of AV in sharing intelligence 
regarding threats. The certification procedures 
mostly make use of static risk evaluations that 
assume AV environments do not change. It is 
suggested to include the AV certification that 
includes continuous risk assessment and real-time 
threat response mitigation, so that the cars reevaluate 
the threat landscape while in motion. Another risk 
that remains largely unaddressed is adversarial 
attacks on AV perception systems such as LiDAR 
spoofing, adversarial patches etc. Authorities should 
demand some form of adversarial testing for AV 
manufacturers, so the vehicles can be validated safe 
against known and anticipated threats. 

5. Conclusion and Future Work  

The rapid development of autonomous vehicles 
(AVs) calls for efficient policies that highlights the 
exceptional challenges to safety and security. In 
this paper, a framework was presented for risk-
based assessment with the components of threat 
modelling, probabilistic risk quantification and 
mitigation strategies for the secure and safe 
operation of AV systems. The swift acquiring rate 
of autonomous vehicles (AVs) calls for efficient 
policies that highlight the exceptional challenges 
regarding safety and security.  
In the future, several directions for studying this 
topic can be pursued. First, AV systems may be 
extended with quantum resistant cryptography for 
further security against the emerging advanced 
threats. Second, federated learning poses a new 
dimension in collaborative threat detection across 
AV fleets while ensuring data privacy. Finally, 
combining the AV systems with digital twin 
technologies for real time risk monitoring and 
predictive maintenance would make AV 
ecosystems more resilient.  
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