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Recent advancements in Automated Driving Systems (ADS), driven by substantial investments, have significantly
enhanced ADS technologies. However, traditional methods for the design, development, verification, and validation
of safety-critical automotive systems are inadequate for managing the increased complexity and operational
uncertainties of ADS, making the assurance of their operational safety in dynamic environments an unresolved
challenge. Current operational safety approaches use various approaches to incrementally challenge the validity of
assurance cases but lack the integration of field data. The increasing availability of real-time vehicle data presents an
opportunity to identify potential runtime uncertainties affecting safety assurance cases. By continuously refining and
expanding assurance cases with field data, additional evidence or counter-evidence, and other relevant information
through a DevSafeOps process, the safe operation of ADS can be assured.
A crucial aspect of operational safety assurance is Safety Performance Monitoring (SPM) using Safety Performance
Indicators (SPIs), which are essential for both operational safety and compliance with standards such as UL 4600
and BSI PAS 1881 for the deployment of ADS. SPIs quantify safety performance and can be used to monitor the
validity of safety arguments during operation. SPIs at sufficiently detailed sub-claim levels can proactively identify
potential violations of safety case claims in a ’leading’ manner, before safety-critical events occur. Additionally, they
can provide supplementary evidence to address residual uncertainties after deployment.
This paper primarily addresses SPM for operational safety, presenting a novel systematic approach that spans from
uncertainty representation in assurance cases using Dempster-Shafer theory to employing dialectics and argument
defeaters, ultimately defining useful SPIs related to various claims in an assurance case. This approach aids in
concretely identifying and defining SPIs based on an assurance case and facilitates the runtime field data-based
validation of assurance cases, additionally aiding in standards conformance. The approach is demonstrated through
a construction zone assist case study for ADS.

Keywords: Operational Safety Assurance, Safety Performance Monitoring, Autonomous Driving Systems, De-
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1. Introduction

Automated Driving Systems (ADS) represent a
promising solution to key challenges in modern
mobility, such as reduced emission, effective time
management, and enhanced comfort for drivers.
ADS are envisioned to operate in unpredictable

and open environments; therefore it is essential
for them to have robust and intelligent system
architectures that can manage runtime uncertain-
ties, adapt to changing conditions, and ensure safe
operation in the inherently uncertain and complex
nature of realworld driving. The emergence of
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ADS is linked to substantial research in areas
such as sensing, on-board processing, AI and ma-
chine learning, and object recognition and local-
ization. The complexities associated with these
fields, which are characterized by inherent uncer-
tainties, complicate the realization of the benefits
offered by ADS and ensuring the notion of public
acceptance.

Safety assurance is paramount for ADS and it
is essential to demonstrate safety by providing
compelling evidence that supports the system’s
safety claims. The use of Safety Assurance Cases
(SACs) has become a standard practice to show
various stakeholders that these systems are safe
[Ayoub et al. (2013)]. SACs present ”structured
argument, supported by evidence, intended to jus-
tify that a system and activity is acceptably safe
for a specific application in a specific operating
environment and reflects recognized good prac-
tices” [The British Standards Institution (2022)].
SACs and structured arguments are intended to be
”living documents” but are treated closer to static
ones in conventional systems. They are generally
valid for a specific system under consideration at
the time of submission to a certification authority,
based on the evidence available during its devel-
opment. For ADS, it can be the case that after de-
ployment, new or contradictory information could
emerge, potentially undermining the validity of
SAC due to unexpected system properties, envi-
ronmental uncertainties, or insufficiency in sys-
tem performance. Even a well-defined SAC can-
not fully address the uncertainties inherent in the
subjective nature of safety argumentation, raising
questions about its final conclusions. Furthermore,
the evaluation done by experts is also subjective,
as the evidence presented in SACs is manually
analyzed and therefore the result could be prone
to biases and prejudices [Gyllenhammar et al.
(2023)].

Operational safety assurance methods are help-
ful to maintain confidence in the validity of SACs
post-deployment, especially when ADS are in op-
eration and the increasing availability of real-time
vehicle data offers a valuable opportunity to detect
potential runtime uncertainties that could affect
this validity [Laxman et al. (2024)]. Research in

this direction is slowly gaining traction, especially
for runtime model-based assurance cases. R. Wei
et al. in [Wei et al. (2024)] emphasizes the need
to transition from conventional design-time pro-
cesses to runtime processes using SACM [OMG
(OMG)]. E. Asaadi et al. in [Asaadi et al. (2020)]
introduce dynamic assurance cases specifically in
the context of AI and machine learning systems.
C.Carlan et al. in [Cârlan et al. (2024)] pro-
pose a Dynamic Safety Case Management System
(DSCMS) to address the challenges of frontier AI
systems.

Safety Performance Indicators (SPIs) are de-
signed to provide predictive safety insights, as-
sess the effectiveness of safety measures, enable
continuous improvement, support risk manage-
ment decision-making, and advocate Safety Per-
formance Monitoring (SPM), to achieve opera-
tional safety. Through continuous monitoring and
analysis of SPIs, SACs can be validated, thereby
reinforcing safety arguments or identifying and
mitigating runtime uncertainties before they lead
to accidents [Koopman (2022)]. Currently, there is
no standard/systematic approach widely used for
specifying SPIs, to the best of our knowledge.

This paper presents a novel systematic ap-
proach implemented during the development
phase to tackle the challenges posed by uncertain-
ties related to SACs. It delineates a method for
resolving the claims through Eliminative Argu-
mentation (EA) and effectively identifies specific
claims within SACs where valuable SPIs can be
defined to validate certain claims using field data.
This process not only facilitates safety perfor-
mance monitoring but also enhances operational
safety. The presented approach will also assist in
compliance for standards like UL 4600 [Under-
writer Laboratories (2022)] and BSI PAS 1881
[The British Standards Institution (2022)].

The rest of the paper is organized as follows;
Background and related work are presented in
Chapter 2. The systematic approach is presented
in Chapter 3 and exemplarily illustrated with an
use case from ADS domain in Chapter 4. Chapter
5 presents our conclusions and future planned
work.
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2. Background and Related Work

2.1. Dempster-Shafer Theory (DST)

Dempster-Shafer Theory (DST) differs from prob-
ability theory by representing belief, disbelief, and
uncertainty regarding an event through beliefs.
It accommodates ambiguity and encompasses all
aspects of assumptions. DST is particularly valu-
able when multiple evidence sources are involved,
ensuring that all conflicts and uncertainties are
addressed [Shafer (1992)]. In DST, Frame of dis-
cernment refers to the set of all possible outcomes
of an event, while the Power set describes all
the possible subsets derived from the frame of
discernment. Mass function assigns probabilities
to the elements within the power set. To further
elaborate, consider an event A: its Belief is de-
fined as the sum of all masses that support the
assertion that A is true, whereas its Disbelief
represents the sum of masses that contradict or
negate the occurrence of A. Plausibility is the
sum of all masses that may support the truth
of A, indicating that some uncertainty remains,
with belief lying within the range of plausibility.
Conflict, or conflict measure (K), quantifies the
degree of contradiction among the sources of ev-
idence, calculated as the sum of the products of
mass functions where the subsets have no overlap.
Lastly, Normalizing factor, represented as ”1-K”
describes the non-contradicting portion of the ev-
idence [Yager (1987)].

2.2. Operational Safety Assurance

Eliminative argumentation (EA) is a framework
for constructing and assessing confidence in assur-
ance cases, which explain why a system possesses
desired properties, such as safety. The approach
emphasizes the iterative nature of argumentation,
where confidence in claims of a SAC can be
incrementally increased as doubts or ”defeaters”
are systematically identified and eliminated. De-
featers are the reasons for doubting a particular
claim. Confidence is quantified using a Baconian
probability notation, where the proportion of elim-
inated doubts to total doubts reflects one’s confi-
dence in a claim [Goodenough et al. (2015)].

EA considers three types of defeaters: Rebut-

ting, Undermining, and Undercutting. A Rebutting
defeater counters a claim. An Undermining de-
feater questions the validity of evidence provided.
An Undercutting defeater identifies specific con-
ditions under which the validity of a conclusion is
uncertain, when the premises of an Inference Rule
are true. The interplay of arguments, defeaters,
inference rules, and evidence creates a confidence
map, which visually represents reasons to doubt
a claim. Rebutting and Undercutting defeaters are
introduced with ”unless,” while Undermining de-
featers start with ”but,” aiding clarity and read-
ability. As more defeaters are identified and re-
solved with appropriate evidence, the assurance
level (confidence level) increases incrementally
[Goodenough et al. (2013)].

Dialectic argumentation (DA) is a system-
atic approach for conducting dialectic analysis
of safety cases. It is employed prior to the de-
ployment of a system to identify potential run-
time challenges to safety arguments or evidence,
thereby validating the safety case. This method
emphasizes the explicit representation of argu-
ments and evidence that challenge or undermine
safety claims. By identifying challenges to various
elements of a SAC, dialectic arguments can be
formed. These challenges may manifest as claims
that, if true, would dispute existing assertions or as
counter-evidence that undermines the argument.
The authors suggest that explicit runtime monitor-
ing of the system and its environment for occur-
rences of counter-evidence to maintain the validity
of the safety case [Hawkins and Ryan Conmy
(2023)].

Both EA and DA employ iterative approaches;
however, our view is that EA provides greater
flexibility for developing and resolving doubts.

2.3. Safety Monitoring and Safety
Performance Monitoring

Safety monitoring and safety performance mon-
itoring are two distinct yet related concepts of
safety management. Safety monitoring focuses
on continuous observation of risk-related fea-
tures in the driving environment, enabling dy-
namic adaptations to driving functions based on
residual risk levels or dynamic runtime risk as-
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sessments [Haupt and Liggesmeyer (2019)]. In
contrast, safety performance monitoring evaluates
the long-term effectiveness of Safety Management
Systems (SMS) by analyzing safety outcome data,
such as incident rates and the success of safety
mechanisms. While safety monitoring addresses
immediate concerns in a reactive manner, safety
performance monitoring adopts a proactive ap-
proach over a longer time, aiming to strengthen
the overall safety framework of ADS and assure
operational safety [Thieme and Utne (2017)].

Safety performance monitoring is facilitated by
SPIs, which have long been integral to SMS in the
aviation industry. They can be either qualitative or
quantitative, and using a mix of both approaches
can effectively address various challenges that
may arise from relying on a single methodology
[Kešel’ová et al. (2021)].

3. Methodology - The Systematic

Approach

Our systematic approach involves a 4 step
methodology to realize operational safety assur-
ance. It combines different approaches presented
in Chapter 2 to facilitate safety performance mon-
itoring, a crucial aspect of operational safety.

STEP 1: Uncertainty elicitation
The first step involves collecting opinions from
safety experts (or reviewers) and describing them
in terms of decision and confidence values.

Decision and Confidence are both represented
as qualitative scales with values ranging from 0
to 1. The Decision scale indicates the extent to
which an expert leans towards a particular con-
clusion regarding a claim, with values ranging
from acceptance to rejection. A value of 1 signifies
complete acceptance of the claim, a value of 0
indicates outright rejection, and a value of 0.5
reflects the expert’s indecision.

The Confidence scale quantifies the degree of
information available to the expert that supports
the decision made. A value of 1 denotes that the
expert possesses sufficient information to justify
the decision, whereas a value of 0 indicates a lack
of adequate information necessary for justification
[Idmessaoud et al. (2022)].

After collecting information from experts, the
next step is to plot it on an evaluation matrix
shown in Figure 1. The Decision and Confidence
values are then converted into Belief (Bel), Dis-
belief (Disb), and Uncertainty (Unc) values using
the formulae:

Bel(x) =
Conf(x)− 1

2
+ Dec(x)

Disb(x) =
Conf(x) + 1

2
−Dec(x)

Unc(x) = 1− Bel(x)−Disb(x)

(1)

Fig. 1.: Evaluation matrix [Idmessaoud et al.
(2022)].

A constraint called “Josang constraint” in the
evaluation matrix must be considered while deter-
mining the values. The values outside the trian-
gle in the evaluation matrix gives negative belief
(black dots) or disbelief (grey dots) which might
be invalid. This leads to another set of formulae to
adjust the values so that the ”Josang constraint” is
adhered to [Jøsang (2016)].

When Dec(x) > 1+Conf(x)
2 , the Decision val-

ues must be set to the following:

Dec(x) =
1 + Conf(x)

2
(2)

When Dec(x) < 1−Conf(x)
2 , the Decision val-

ues must be set to the following:

Dec(x) =
1− Conf(x)

2
(3)

Bel, Disb, and Unc values are elicited for all the
leaf goals in a SAC.
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STEP 2: Uncertainty propagation
The second step involves propagating the Bel,
Disb, and Unc values upward along the SAC until
the top goal. For this process, the type of argument
relationship plays a crucial role. The argument
relationship types are Conjunctive argument (C-
arg), Disjunctive argument (D-arg), and Hybrid
argument (H-arg).

In a C-arg, for a conclusion C having two (or
more) premises P1 and P2, both premises are
together needed to support the conclusion, like a
Boolean logic AND gate. In a D-arg, either one of
them is required to reach the conclusion C, like a
Bollean logic OR gate [Idmessaoud et al. (2022)].

The Bel, Disb, and Unc values are propagated
along the SAC using Dempster’s rule of combi-
nation. Depending on the type of argument in the
SAC, their calculation varies. Different formulae
used are:

For a D-arg,

bel = 1−
n∏

i=1

(1− beli) (4)

disb =

n∏

i=1

(disbi) (5)

For a C-arg,
bel =

n∏

i=1

(beli) (6)

disb = 1−
n∏

i=1

(1− disbi) (7)

While DST provides a clear mathematical basis
for handling uncertainties, this gives the clarity
of the uncertainty for the top goals [Wang et al.
(2019)].

STEP 3: Claims Resolution
The third step involves resolving each claim based
on the uncertainty values determined in the previ-
ous steps. First, a certain threshold for uncertainty
is defined by a domain expert, which varies and
is dependent on various factors, based on the do-
main, SIL levels, safety criticality of the functions
being developed, and corresponding risk scores.
The claims, which have uncertainty higher than

the defined threshold, have to be resolved. For this
purpose, EA is used.

The claims are subjected to EA by questioning
its existence with the help of doubts or defeaters.
The different types of defeaters are explained in
Chapter 2. The EA pattern remains unchanged re-
gardless of whether the defeater is Rebutting, Un-
dermining, or Undercutting. New claims or new
evidence can be introduced to counter a defeater.
Inference rules combine the purpose of claims
with the supporting evidence to address the de-
feater and describe and update the confidence lev-
els immediately after the defeaters are resolved.
This requires efficient combination of claims and
evidence. Different combinations of claims and
evidence may also give rise to multiple inference
rules. When certain evidences or inference rules
cannot be further developed, it remains as residual
doubt, which is usually left unaddressed or unde-
veloped. Those that need to be further developed
or the ones that have been challenged again, have
to be resolved by giving new evidence. Certain
claims, whether from the initial SAC or added to
counter defeaters, cannot be resolved due to insuf-
ficient runtime operational data. For such claims,
SPIs are defined accordingly.

STEP 4: SPI Definition
The identified SPIs must be realistic, relevant,
and directly linked to safety objectives, regard-
less of their simplicity or complexity. Generally,
a combination of SPIs is needed to clearly reflect
safety performance. An SPI is defined as a metric,
substantiated by evidence, that utilizes threshold
comparisons to validate claims within a SAC. It
comprises of a metric-threshold pair that assesses
a specific facet of safety. These metrics may per-
tain to various aspects, including product perfor-
mance, design quality, process quality, or com-
pliance with operational procedures. A threshold
establishes an acceptable target value. A metric
alone does not qualify as an SPI, as context is
crucial within a SAC [Koopman (2022)].

4. Use Case Analysis

Construction zone assist (CZA) is a feature in
ADS designed to enhance vehicle safety and nav-
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igation in active construction zones, along the
highway and in urban areas. It uses sensors and
data analysis to detect construction zones, adjust-
ing vehicle behavior accordingly based on model
predictive control (MPC) to ensure safe pas-
sage through these environments [Motelay et al.
(2023)].

An initial SAC for CZA is created, considering
a top goal (G1) as “ADS safely navigates along
the construction zones without any collisions or
run offs”. Two sub-goals G2 and G3 are defined
and further broken down into G4 through G9,
which are addressed by the solutions (evidence)
S1 through S5, as illustrated in Figure 2.

A: ODD 6- layer�
taxonomy used for�

identification of�
hazards in each layer

G2
All safety goals pertaining to�

identified hazards are�
addressed

ST1
Argument over�

the safety�
considerations

G1
ADS safely navigates along�

the construction zones�
without any collisions or�

run offs

C: Hazard log

G5
MPC generates�

references optimized�
for motion planning�

for collision�
avoidance

G6
MPC minimizes�
variables that�

induce errors and�
generates optimal�

solution

G4
Construction zones�

and other�
environmental�

objects are detected�
accurately

G7
Longitudinal,�
lateral control�
variables are�
well- defined

G3
All safety goals mitigating the�
identified hazards are verified

G8
The system�
behavior is�
analysed in�

varying road�
conditions

S2
Experiment�

results

G9
First detection is�
early enough to�
avoid collision�
with the object

S4
Control�

model test�
results

S3
Results�

from math��
solution

S5
Simulation�

results

S1
Validated in�
Simulations

Fig. 2.: Initial Safety Assurance Case for CZA

As described in Chapter 3, uncertainty elicita-
tion is first carried out by safety experts, where
they give their opinion about the leaf goals (G9,
G5, G6, G7, G8) in the form of Decision and
Confidence (Dec, Conf). This process is carried
out using an evaluation matrix where the experts
decide on their decision on the leaf goals and the
confidence which they support their decision with.
This gives a quantified data of the expert opinion
in (Dec, Conf) scale, as shown in Table 1.

The Dec and Conf values for leaf goals are then
converted into Bel, Disb, Unc using formula (1).
These values are then propagated up towards the
top goal. G4 has the same set of values as G9

Table 1.: Decision and Confidence values from
uncertainty elicitation

Goal Decision Confidence
G9 0.5 0.6
G5 0.75 0.8
G6 1 0.8
G7 0.5 0.4
G8 0.75 0.6

Table 2.: Belief, Disbelief and Uncertainty values
from DST

Goal Belief Disbelief Uncertainty
G9 0.3 0.3 0.4
G4 0.3 0.3 0.4
G5 0.65 0.15 0.2
G6 0.8 0 0.2
G7 0.2 0.2 0.6
G8 0.55 0.05 0.4
G2 0.156 0.405 0.439
G3 0.11 0.24 0.65
G1 0.01716 0.5478 0.43504

as they are connected as a simple argument. The
relationship of G4, G5, and G6 to G2 is that of
a conjunctive argument, the values are calculated
as per the formulae (6) and (7). The same applies
for G7, G8 towards G3. These values propagate
towards the top goal as a conjunctive argument
using the same formulae. Bel, Disb, Unc values
of each goal in SAC is listed in Table 2.

The uncertainty values are individually re-
solved and based on a tolerance threshold of 0.2.
Leaf goals G7, G8, and G9, which have higher
uncertainty, are identified for further resolution.
Goal G7, which is defined as “Longitudinal, and
lateral control variables are well- defined”, is re-
solved by two rebuttal defeaters R7.1 and R7.2.
R7.1 is supported by the evidence provided by
S4, which is further defeated by an undermining
defeater UM7 and is left as a residual undeveloped
doubt there. A new goal is added to address R7.2,
which requires data from the field. This particular
goal requires 2 SPIs, one pertaining to maximum
saturation limit and another to minimum satura-
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Fig. 3.: Final Safety Assurance Case for CZA

tion limit of PID controller. An ”inference rule”
IR7, which is associated to G7, is countered by an
undercutting defeater UC7, it is then considered
to be acceptable. Similarly, G8 is also addressed
using IR8 and UC8 by defining a new goal G11,
which an SPI will have to be defined for. A new
evidence S6 is added to UM8 to categorize it as
acceptable. Goal G9 cannot be addressed with
defeaters or counter-arguments but directly with
an SPI. The final resulting SAC for CZA is shown
in Figure 3.

Lastly, leading SPIs 1, 2, 3 and 4 are defined as
follows:
SPI 1: Rate of first detection below TTC MIN is
< than SPI1 THRESH
SPI 2: Rate of PID output saturation >

PID SAT MAX is < SPI2 THRESH

SPI 3: Rate of PID output saturation <

PID SAT MIN is < SPI3 THRESH
SPI 4: Rate of EBM INITIATION without sce-
nario identification is < SPI4 THRESH

These SPIs have to be monitored at runtime for
violations to aid Safety performance monitoring.

5. Conclusion and Future Work

This paper presents a novel systematic approach
to enhance operational safety assurance for ADS
through effective SPM. By integrating DST with
EA, we have proposed a systematic methodol-
ogy for resolving the uncertainties associated with
SAC and also identifying SPIs. SPIs utilize real-
time field data to continuously refine and val-
idate SACs, ensuring that they remain relevant
and effective in addressing the dynamic runtime
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uncertainties inherent in ADS operations. The ap-
proach helps identify claims that need SPIs in an
effective manner and to the best of our knowledge
there is no similar approach to holistically address
operational safety assurance.

The case study on CZA, exemplifies how this
approach can be applied in practice, revealing a
structured path to resolving claims and enhancing
confidence in safety arguments. In future work,
we will focus on representing SPIs and gathering
field data for SPI violations and SAC validation.
In the event of an SPI violation, a Change Impact
Analysis will be performed, supported by Digital
Dependability Identities (DDI) technology [Zeller
et al. (2023)], to facilitate the update cycle using
DevSafeOps.
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