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Industry is eager to harvest the potential of predictive maintenance (PdM). At the same time, only a fraction of the 
methods proposed in the past decade is actually applied in practice. This paper will identify the most prominent 
barriers for practical application of PdM, which are mainly related to the quality, relevance and availability of 
data. After that, three solution directions will be presented. The first solution aims to properly match ambition 
level with the available data and knowledge. The second set of solutions circumvents the lack of data by using 
physical models in addition to data. The third set of solutions addresses alternative ways of collecting data, 
including experimental test benches, experiments on fielded systems, and using numerical (simulation) models to 
generate data. Finally, the required standardized registration of (failure) data will be addressed. 
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1. Introduction 
With increasing demands for availability and 
reliability of critical assets, industry has a strong 
need for advanced maintenance concepts. In the 
present era of Industry 4.0, where sensor data is 
abundant, there is a lot of potential in data-driven 
maintenance policies. The benefits can either be 
obtained in better diagnostics or in improved 
prognostics. Better diagnostics allows to quickly 
or even automatically detect or diagnose failures 
in (complex) systems (Rijsdijk et al. 2024). 
Improved prognostics potentially provides even 
larger benefits, allowing to predict future failures 
in a timely manner. The associated maintenance 
policy is called Predictive Maintenance (PdM), 
aiming to plan maintenance tasks just-in-time, 
thus effectively preventing failures as well as 
over-maintenance. It also allows efficient 
preparation of required man power and spare 
parts. Therefore, it can be stated that industry is 
eager to harvest the potential of PdM.  
 At the same time, many methods and 
models have been proposed in the past decade, 
see e.g. the reviews on AI-based methods (Khan 
and Yairi 2018), system-level prognostics 
(Tamssaouet et al. 2022), PdM application 
(Zonta et al. 2020) and maintenance optimization 
(de Jonge and Scarf 2020; Pinciroli et al. 2023). 
However, practical application of these prog-

nostic methods is still rather limited (Grubic et 
al. 2011; Tiddens et al. 2022; Akkermans et al. 
2024). Practitioners apparently encounter 
barriers that prevent them to apply the available 
methods in practice. The present paper will 
address this gap between what is theoretically 
possible and practically feasible. In this, a case 
study and lessons-learned approach is followed, 
rather than solid theory-building research design.   
 The paper is organized as follows. In 
section 2 the various ambition levels in smart 
maintenance are introduced. Section 3 then 
identifies the two prominent barriers for practical 
application of PdM. Section 4, 5, and 6 will 
discuss how these two barriers can be tackled, 
supported by case studies and examples. Finally, 
section 7 contains the conclusions of the paper.  

2. Ambition Levels in Smart Maintenance  
It should be realized that organizations can have 
very different goals and objectives with their 
maintenance policies. For inexpensive systems in 
a commercial environment, low-cost mainte-
nance will have highest priority, and  a trade-
tional scheduled maintenance policy might be 
optimal. But for highly complex critical assets, 
the focus may be on just-in-time maintenance 
that ensures both effective prevention of failures 
(availability) and efficient replacement without 
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spoiling remaining life time (cost benefits). 
These organizational objectives can be classified 
in four different ambition levels for the 
associated smart maintenance policies:  
 

(i) Detection of failures: is something wrong? 
(ii) Diagnosing failures: what is wrong?  

(iii) Health assessment: how wrong is it? 
(iv) Prognosis: when is it expected to go wrong? 

Each of these ambition levels requires different 
types and amounts of data when developing or 
training the associated models. In practice, data 
availability might be limited, implying that 
certain ambition levels are infeasible. 
 The lowest level focuses on the automatic 
detection of failures (e.g. from sensor readings), 
and is typically based on an anomaly detection 
algorithm. This level has the lowest data require-
ments, as it only needs unlabelled data, i.e. 
without any information on whether the data 
represents a healthy or a failed system. The 
algorithm will detect any deviation from the 
common behaviour of the system. In practice, 
this merely requires a limited amount of sensor 
data (e.g. temperature, vibration level) to learn 
the normal behaviour, after which the algorithm 
will detect any deviation as an anomaly.  
 At the next ambition level of diagnosis, the 
aim is to not only detect failures, but also 
identify which of several potential failure modes 
has actually happened. This is achieved by appli-
cation of a classification algorithm. Training of 
such an algorithm is denoted supervised 
learning, as it requires labelled data as input: it 
must be specified to which failure mode (i.e. 
class) a subset of the (training) data belongs. In 
practice this means that just collecting sensor 
data is not enough: from only healthy system 
data the algorithm will not learn how any of the 
failure modes is represented in the data. 
Therefore, sufficient traces of data representative 
for each failure mode must be collected. This 
firstly requires these failures to occur in practice, 
and secondly requires proper registration and 
reporting of the observed failures. 
 The next higher ambition level is the health 
assessment, focusing on determining the severity 
of the occurring degradation. This allows the 
comparison of the current health to a predeter-
mined threshold value, leading to a condition-
based maintenance policy. The data requirements 

are again more demanding than for the previous 
ambition levels. Now there is a need for mea-
surements of the health (or condition) of the 
system. As explained in Keizers et al. (2024), 
these can be either direct measures of the system 
degradation, like crack length or corrosion depth, 
or indirect measures like vibration level or 
temperature rise. Direct measures allow 
immediate maintenance decisions, but indirect 
measures, common for many condition moni-
toring techniques, also need a relation between 
these measures and the actual degradation to 
quantify the threshold (at which maintenance is 
required). In practical situations this kind of 
health data can only be retrieved when dedicated 
sensors for condition monitoring are deployed. 
 The highest ambition level is the prognosis, 
which aims to predict when a future failure is 
expected. This is denoted as calculating the 
remaining useful life (RUL) of the system. Such 
predictions are either based on revealing the 
trajectories in time series of (sensor) data 
preceding the system failures, or on finding the 
quantitative relation between some input 
parameter (e.g. rpm, environment) and the 
resulting degradation rate, e.g. by regression. 
Note that the reliability engineering approach, 
based on deriving mean time to failure and 
failure rates for large populations of parts, is not 
considered a prognostic approach here, as it is 
unable to accurately predict the time to failure 
for an individual part under specific conditions. 
 Prognostic models must be trained from a 
large number of time series of sensor data. On 
top of that, these time series should represent 
run-to-failure trajectories, i.e. the data set must 
include the actual failure of the system. 
Especially the latter requirement makes 
derivation of prognostic algorithms in a practical 
setting very challenging: maintenance of critical 
systems is intended to prevent failures, so the 
presence of run-to-failure data is by definition 
always (very) limited. 
  Based on this overview of smart 
maintenance ambition levels, the main barriers 
will be discussed in the next section.  

3. Barriers for the Application of PdM  
Based on lessons-learned from research projects 
with industrial partners, the author has identified 
the main barriers for practical implementation of 
PdM. These barriers are all associated to the 
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amount and quality of data that are available in 
the considered situation, and therefore also to the 
mentioned ambition levels. 
 The first barrier, as identified by Tiddens et 
al. (2022), appeared to be a (unknown) mismatch 
between the ambition level of an organization 
and the available (amount and quality of) data 
and knowledge. It was discovered that organi-
zations are often not aware of the ambition level 
they have, but especially lack insight in what that 
ambition level implies for their data and 
knowledge requirements. Without this insight, 
companies start developing PdM methods for 
their systems, but often get stuck due to a lack of 
(relevant) data. Section 4 therefore proposes a 
decision support tool assisting in matching the 
ambition level with data availability. This allows 
selecting the right approach from the beginning, 
which significantly increases the success rate. 
 The second barrier that was identified is the 
actual lack of useful and relevant data in 
industrial practice. With the strong focus on 
data-driven approaches in PdM, the requirements 
for the amount and quality of data are rather 
demanding. Time series of sensor data are 
nowadays readily available, but, as discussed in 
section 2, without additional information these 
are only suitable for the lowest ambition level, 
i.e. anomaly detection. When aiming for a higher 
ambition level, i.e. diagnosis, health assessment 
or prognosis, the following limitations in data 
availability are encountered:  
 No labelling: although many companies do 
register faults and failures in their Computerized 
Maintenance Management Systems (CMMS), a 
precise and consistent description of the type of 
failure is often missing. This is typically the 
responsibility of the person operating the system, 
who is lacking the knowledge to pinpoint 
specific failures. The consequence is that the 
proper labels for the associated sensor data of the 
machine are missing, and training of 
classification algorithms becomes very hard;  
 No condition measurements: health 
assessment and prognostic algorithms can only 
be derived when a considerable set of 
degradation monitoring data is available. 
However, this requires the presence of dedicated 
sensors for condition monitoring, which is still 
not very common in industrial practice. The 
majority of sensors present in systems serve the 
purpose of monitoring (for safety reasons) and 

control, e.g. SCADA systems. These sensors 
could be used in some cases for smart 
maintenance purposes, but most of the time 
provide irrelevant data, especially if labels are 
lacking (see previous point).  
 No threshold value: when degradation 
monitoring data is available, taking maintenance 
decisions also requires to have a threshold value 
for the monitored quantity. In case of direct 
condition measurements (e.g. corrosion depth), 
this threshold can typically be derived from 
functional or structural integrity criteria. 
However, most of the commonly used condition 
monitoring techniques, like vibration analysis 
and oil analysis, are based on indirect 
measurements. In those cases either an 
experience-based (trial-and-error) threshold 
value must be used, or a quantitative diagnostic 
relation must be derived (Keizers et al. 2025b). 
 No run to failure data: for the prediction of 
failures, the availability of training data 
containing actual failures is essential. The 
patterns in sensor data associated to (or 
preceding) failures can only be discovered when 
sufficient examples are available. However, as 
was mentioned before, the strong focus of 
maintenance on preventing failures yields by 
definition a very limited amount of failure data. 
Especially for critical assets, like aircraft, 
industrial plants and military systems, current 
maintenance policies are conservative, ensuring 
to effectively reduce the number of actual 
failures to a minimum. This is very challenging 
for the development of prognostic methods, and 
also the main reason that ~ 95% of all methods 
proposed in academic literature have been 
developed and tested with artificial benchmark  
datasets, e.g. (de Pater et al. 2022). An example 
is the NASA CMAPSS dataset generated by a 
simulation code of an aircraft engine (Saxena et 
al. 2008). As was mentioned before, failure rates, 
that can be found in reliability handbooks or 
databases like NPRD/EPRD or OREDA 
(Anonym. 2025), do not solve this problem 
either, as they cover complete populations of 
systems rather than individual parts. 
 No operating history: after the development 
of a prognostic algorithm, it should be tested and 
validated to check its accuracy. This again 
requires a number of actual failures to be present 
(see previous point), but in addition also requires 
knowledge on the operational history of the 
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considered system. As the time to failure of a 
system typically depends on the operating 
conditions (e.g. environment, speed, power 
setting), these factors will also be included in the 
algorithm. Validation of the method then 
requires that the conditions associated to a 
specific failure are fully known. The latter is 
very challenging in an industrial environment. 
While the proper registration of failures (see 
previous issues on run-to-failure and labelling) is 
already challenging, getting access to the full 
operational history of a system (which may 
cover a period of several years) is almost 
impossible in most organizations. 
 After identifying these barriers for practical 
application of PdM, the next three sections will 
discuss some directions to tackle these barriers: 

(i) Finding the most suitable approach given 
the (limited) data;  

(ii) Circumventing the limited amount of data 
by including physical models;  

(iii) Extending the amount of (relevant) data;   

4. Solution 1 - Matching Ambition and Data  
The first solution tackles the first barrier, and aims 
to support practitioners in finding a proper match 
between ambition level and available data and 
knowledge. Whereas many companies directly 
aim for Predictive Maintenance, section 2 
revealed that this is the highest and most 
challenging level in smart maintenance. It is 
therefore advisable to first consider the lower 
levels of detection and diagnosis, as these are 
much easier to attain. When after this check PdM 
is (still) the required ambition, then several 
maintenance techniques are available in literature, 
each with their benefits and (data) requirements. 
 

  
 

Fig. 1. Relating Maintenance Techniques to ambition 
level and data requirements (Tiddens et al. 2023). 

To support the process of selecting the right 
technique, Tiddens et al. (2023) proposed a 
framework (Fig. 1) classifying these maintenance 
techniques (MT) in five categories, and linking 
them to both an ambition level (AL) and a set of 
data – knowledge requirements. The ambition 
levels deviate slightly from those in section 2, as 
they only focus on prognostics. The benefit of this 
framework is that a company can determine its 
ambition level, and find the associated MT with is 
data requirements. If there is a mismatch between 
AL and data, then either the AL should be 
lowered, or collection of the required (but still 
missing) data must be organized. Being aware of 
such a mismatch beforehand prevents a lot of 
useless efforts. 
 

 

Fig. 2. Calculation of the Suitability and Feasibility 
scores of various MTs (Alves da Silveira et al. 2023). 
 
Recently, this framework has been extended to a 
more quantitative tool (Alves da Silveira et al. 
2023). The tool (Fig. 2) quantifies the suitability 
and feasibility of a certain MT, based on answers 
(and predefined scores) provided by the user. The 
result is a total score for each MT, with the 
highest scoring method being the advised MT. 
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The included MTs are Experience-based (EB), 
Reliability statistics (RS), Condition extrapolation 
(CE), Stressor-based (SB), Data analytics (DA) 
and Physics-based (PB). 

5. Solution 2 - Physics of Failure and Hybrid 

The second set of solutions addresses the barrier 
of limited failure data and lack of labelling. Fully 
data-driven methods, like machine learning, 
require a lot of data to learn the patterns and 
relations that are present in the data. This is often 
not possible in industrial practice. However, more 
detailed knowledge of the considered system and 
its behavior can assist in deriving these relations 
with much less data. Physical models, based on 
the laws of nature, already contain the 
fundamental relations, e.g. between applied load 
and resulting degradation rate or time to failure. 
The only remaining challenge is then to find the 
values of the (material) parameters in these 
models, which might be slightly different for 
specific systems. 

 

Fig. 3. Hybrid prognostic method combining a 
physical model with a particle filter (Keizers et al. 
2025a). 
 
This approach is followed in (Keizers et al. 
2025a), where a hybrid method is developed for 
the prediction of corrosion damage (weight loss), 
combining a physical model with collected data. 
The adopted process is shown in Fig. 3. A 
physics-of-failure (PoF) is used to predict the 
RUL, based on the future loads (in this case the 
ambient temperature and humidity). However, the 
parameters in this PoF model are not precisely 
known for the specific system considered, so a 
Particle Filter (PF) is used to tune and update the 
model (parameters) with periodic measurements 
on the system condition (=condition indicator: 

CI). The limited amount of condition data would 
in itself not be sufficient to properly train a 
prognostic algorithm, especially under varying 
operating conditions. But combined with a 
physical model in a hybrid method called the 
Load-controlled Particle Filter (LCPF), it 
performs well.  

   
Fig. 4. Corrosion depth predictions for varying 
operating conditions with the LCPF compared to 
regression and ARIMA models (Keizers et al. 2025a). 

Fig. 4 shows the predictions of the LCPF method 
starting from t = 100 (after tuning the model with 
measurements up till that moment). The results 
are compared to traditional regression and 
ARIMA (moving average) methods, revealing the 
much better performance of the hybrid LCPF 
method for this varying loads situation.  
  

 
Fig. 5. Representation of Transfer Learning frame-
work (Mavroudis and Tinga 2025). 

Another hybrid approach (Fig. 5.), focusing on 
predicting the hull resistance of a ship operating in 
various sea conditions, is proposed in (Mavroudis 
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and Tinga 2025), This allows to detect deviations 
that could indicate hull fouling, which can be used 
to trigger maintenance tasks. As the amount of 
data collected is insufficient to train a fully data-
driven method, a physical model is constructed to 
calculate the resistance from first principles. Then 
Transfer Learning is used to tune the model, using 
the small amount of real data, to a specific ship.  

6. Solution 3 – Generation of Failure Data  
The third set of solutions addresses alternative 
ways of collecting data when field data is too 
limited or too low quality. Two solution 
directions exist (Fig. 6): 1) disclosing the failure 
path that remains covered when parts are 
replaced preventively; 2) assess the condition of 
the replaced part. Four approaches to achieve 
this are explored: executing lab-scale experi-
ments on test benches, executing real-life experi-
ments in fielded systems, improve labeling of 
field data by experts and using numerical simu-
lations. The first two follow option 1 in Fig. 6, 
the final two option 2, as will be explained 
below. The required standardized registration of 
(failure) data will be addressed in 6.5.  

 
Fig. 6. Two solution directions for data improvement. 

6.1. Experimental test benches 
As was discussed before, the number of failures 
encountered in normal operation is typically very 
limited due to the executed PM tasks. An 
additional complication is that the types of 
failures and associated operational history cannot 
be controlled for fielded systems. The occur-
rence of failures fully depends on how the 
operator uses the system. This implies that a 
representative sample of failure types that covers 
the full operational range of the system will 
hardly ever be obtained from field data within 
reasonable time. To tackle this issue, fully 
controlled lab-scale experiments with  real 

(sub)systems can be executed to generate the 
required data (option 1 in Fig. 6). The big 
advantage of such experiments is the full control 
over failure types and operating conditions. 
Additionally, the lab environment guarantees 
rather noise-free data, as no other systems are 
operating close-by. 

 

Fig. 7. Experimental set-up of e-motor driven 
centrifugal pumps equipped with multiple sensors.  

Bruinsma et al. (2024) used the centrifugal pump 
set-up shown in Fig. 7 to generate data for a 
large range of faults. Vibration sensors were 
used to collect data for both a healthy pump, and 
for various bearing faults, misalignment, unba-
lance, cavitation, etc. In contrast to field data, 
this data is perfectly labelled, as faults and 
operating conditions could be accurately control-
led. This NLN-EMP dataset has been published 
(Bruinsma et al. 2024) to assist others in 
developing detection and diagnostic algorithms. 
The dataset is currently used to develop an 
automated failure identification method, that wil 
be applied in future naval ships.  
 
6.2. Real-life experiments on fielded systems 

An alternative way of generating failure 
data is to use fielded systems as experimental 
set-ups. Normally this would yield limited 
failure data, as the PM tasks typically prevent 
failures. However, in some situations it is 
possible to postpone or even skip PM tasks. As a 
result, the components will be used for their full 
service life (until failure) and the actual failure 
behaviour, is disclosed (solution 1 in Fig. 6). 
This will accelerate the data failure data 
collection, sup-porting decisions on extending 
PM intervals (which now may appear to be too 
conservative). Secondly, if sensors are deployed, 
the patterns in the sensor data associated to the 
actual failures can be obtained. Based on this 
insight, future failures can be timely detected or 
even predicted. Such an experiment cannot be 
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applied to any system, as for critical systems the 
consequences of failure might be too severe. 
However, for non-critical or redundant sub-
systems, this approach might well be feasible. 
Measures should then be taken to minimize the 
failure effects, e.g. by storing spare parts nearby. 
In addition, executing this experiment with a 
fraction of a larger fleet of parts would be a good 
option. If the systems with the highest age (or 
operating hours) are selected, denoted the ‘front 
runners’, insights are obtained before the rest of 
the fleet reaches that age, which can be utilized 
(for interval extension) for the rest of the fleet. 
 In the Dutch MoD this experiment is now 
executed with the fuel injectors on a fleet of 
diesel engines. Each engine contains multiple 
injectors, whose failure therefore does not lead to 
a non-functioning engine. Moreover, injectors 
can easily be replaced and spare injectors are 
stored nearby, thus minimizing the down time. 
Also additional sensors have been installed on 
these engines to fully utilize the experiment for 
collecting failure-related data and gaining 
insights in relevant indicators.  
 
6.3. Improved labelling of field data by experts 
Although failures are typically rare due to PM, it 
is crucial to properly label the few failures that 
do occur in practice. Expert judgement of a 
skilled person can be used to execute a root 
cause analysis, specifying what failure 
mechanism occurred, and to register accumu-
lated operating hours and conditions at failure.  
 Additionally, for preventively replaced 
parts, careful inspection by an expert could 
provide very useful labels and insights: 
quantification of the actual condition of the 
replaced component (option 2 in Fig. 6) offers 
crucial feedback on whether that replacement 
was just-in-time or way-to-early. These insights 
can assist in adjusting PM intervals or threshold 
values for condition monitoring.  
 
6.4. Numerical simulations 
If real data cannot easily be collected, simulation 
models can sometimes be used as alternative. 
Any simulation code that is based on the 
underlying physics (e.g. CMAPSS for aero-
engines),  can be used for that purpose. Defects 
or degradation can be incorporated in the 
models, and the associated data can quickly be 
generated. The obvious drawback is that 

simplifications or incorrect representations in the 
model lead to deviating data. However, as long 
as the dominant effects are included, detailed 
tuning to a real system can be achieved by 
updating the model with real data (see section 5). 
 Rijsdijk et al. (2024) demonstrate how 
numerical models can enhance diagnostics when 
only a limited number of sensors is present. 
Current work extends these relatively simple 
models to a simulation model of a chilled water 
system, simulating several realistic faults. As the 
simulation quantifies variables (temperature, 
pressure) at any location, an infinite number of 
virtual sensors is present. This allows to analyse 
how many (and which) sensors are minimally 
required to properly diagnose the system.  
 

 
Fig. 8. Model of a bearing with outer race defect as 
represented by a bond graph (Keizers et al. 2025b). 

Finally, Keizers et al. (2024) propose to use a 
bond graph model for a bearing containing an 
outer race defect, see Fig. 8. This model allows 
to derive a direct condition measurement (defect 
size) from the associated indirect vibration 
measurement, which is required for accurate 
prognostics (option 2 in Fig. 6).  
 
6.5. Standardized registration of (failure) data  
From the previous subsections it is clear that the 
generation and collection of data, both from the 
lab and the field, is a significant facilitator for 
smart maintenance algorithms. Around the 
world, several benchmark datasets (CWRU, 
FEMTO-ST, NLN-EMP) and many experiment-
tal set-ups are available. However, these all use 
their own data format and especially the 
reporting of the meta-data (details of faults, 
operating conditions) is very inconsistent and 
incomplete. This makes it very hard for algo-
rithm developers to use the data. To overcome 
this challenge, the Dutch Prognostics Lab (Tinga 
2024) was initiated by the author, aiming to de-
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fine a standard way of reporting failure data and 
associated meta-data and stimulating the sharing 
of datasets amongst algorithm developers.  
 Currently, a first version of a standardized 
template is nearing completion, based on the ISA 
metadata framework from the field of biology, 
and adapted to store diagnostic and prognostic 
test data and descriptors. Software code is now 
developed to translate inputs to the ISA standard, 
and store this in a database.  

7. Conclusion  
This paper has identified some of the major 
barriers for the application of PdM in industrial 
practice, which are predominantly related to the 
lack of relevant data. Three solution directions 
have been presented: accepting the data position 
and finding the best fitting method, 
circumventing the lack of data by using physical 
models and generating additional data. 
Following these directions is expected to yield a 
wider application of PdM in industrial practice. 
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