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Rolling bearings are key components of numerous engineering systems and are subject to wear due to the mechanical
contacts. Consequently, bearing fault diagnosis is imperative for the reliability and efficiency of these systems, such
as rotating machinery. This paper explores the utilization of simulation data for training data-driven fault diagnosis
methods. To this end, a self-developed bearing simulation and self-collected measurement data from test rigs are
employed, considering varied operating conditions and bearing types. The study evaluates the effectiveness of
simulation data in improving the diagnosis performance of real bearing faults. In particular, transfer learning methods
are examined, encompassing both inductive and transductive transfer learning approaches, implemented with three
types of neural networks. The findings demonstrate the effectiveness of the developed simulation model in generating
data that is conducive to fault diagnosis. Already the training with simulation data alone indicates the potential
benefits of incorporating simulation data. The study further demonstrates that inductive transfer learning exhibits
superior performance in comparison to training with real measurement data alone. However, no improvements are
achieved through transductive transfer learning.
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1. Introduction

Data-driven methods are among the most com-
monly utilized and empirically validated methods
to diagnose the condition of engineering systems.
However, training these methods requires a sub-
stantial amount of degradation data (Zio, 2022).
Collecting data from all types of faults and levels
of damage severity is a time-consuming and often
intractable task. Furthermore, the problem is exac-
erbated when engineering systems operate under
many different operating conditions or when there
are a large number of similar systems that share
technical characteristics but differ significantly in
some aspects (Braig and Zeiler, 2023). In numer-
ous industrial applications, it is not economically
feasible to generate data from such a wide range
of different conditions by damaging systems.

An approach to increasing the amount of data
without damaging real systems is to generate syn-
thetic data using simulations. Based on the phys-
ical equations and models that underpin the sim-
ulation, it is possible to generate degradation data
from various similar systems with different faults

and under different operating conditions. How-
ever, these simulations are typically based on sim-
plifications and assumptions that are only applica-
ble to a limited extent in practice. Consequently,
a discrepancy exists between the simulation data
and the actual measured data. This discrepancy
can be addressed using transfer learning (TL).

Therefore, the objective of this work is to
study whether information from simulation data
can be used to improve the fault diagnosis of
rolling bearings. The study is based on mea-
sured condition data from rolling bearings of dif-
ferent types and sizes, recorded under different
operating conditions on two different test rigs.
A self-developed simulation model for rolling
bearing condition data is used to generate the
corresponding simulation data. Two concepts of
TL are investigated: parameter transfer with fine-
tuning and feature alignment by adversarial train-
ing. Different neural network types are evaluated,
including the multilayer perceptron (MLP), the
1D convolutional neural network (CNN), and the
temporal convolutional network (TCN).
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In the following, Section 2 introduces related
work. Section 3 describes the two TL methods ap-
plied and the data sets used. The study conducted
is presented in Section 4, and Section 5 concludes
the results of this work.

2. Related Work

The aim of TL is to transfer information be-
tween so-called domains. According to Braig and
Zeiler (2023), a domain is defined by the set
D = {X , P (X)}, where X represents the fea-
ture space and P (X) denotes the marginal dis-
tribution. The sample X = {x1, ...,xm} ∈ X

consists of m elements, each represented by a
feature vector xi. Within a domain, a learning
task is typically characterized by the set T =

{Y , P (Y |X)}, which includes the label space Y

and the prediction function P (Y |X), interpreted
as a conditional distribution. The set of labels Y =

{y1, ..., ym} ∈ Y corresponds to the m feature
vectors in the sample X . P (Y |X) is learned in a
supervised manner using the pairs {xi, yi}. TL is
applied when there is a discrepancy between the
source domain Ds and the target domain Dt, or if
the source learning task Ts and the target learning
task Tt differ. (Braig and Zeiler, 2023)

Rolling bearings are one of the most important
machine elements in the literature on fault diag-
nosis of engineering systems (Lei et al., 2020; Raj
et al., 2024). This also applies to TL applications
for fault diagnosis (Braig and Zeiler, 2023). For
example, Chen and Xiao (2024) and Wang et al.
(2023) deal with the fault diagnosis of rolling
bearings using TL. Among other things, the focus
is on bearings under different operating conditions
and a diagnosis using small sample sizes. A cur-
rent overview of further TL approaches with the
aim of fault diagnosis of rolling bearings can be
found in (Hakim et al., 2023) and (Chen et al.,
2023).

The generation of bearing degradation data is
time-consuming. In the literature, damage to the
bearings is either artificially added or the bearings
wear out over time—often at an accelerated rate.
Another possibility, also used in the literature,
is the artificial generation of bearing fault data
using simulations. For example, Peng et al. (2022)

provide an overview of the types of simulation and
prognostics and health management techniques
currently in use.

Simulations are usually based on assumptions
and simplifications, resulting in deviations from
the real measurement data. This difference must
be overcome, and TL is often used for this pur-
pose. Nguyen et al. (2024) use simulation data in
conjunction with unlabeled measurement data to
diagnose real bearing faults using TL. Wang et al.
(2024), Liu et al. (2023), and Liu and Gryllias
(2022) in addition use labeled measurement data.
In (Xie et al., 2024), (Hou et al., 2023), and (Liu
et al., 2023) training is carried out with simulation
data and, in addition, with measurement data from
the healthy bearing state. Xu et al. (2024), Ai
et al. (2023), and Zhu et al. (2022) limit the train-
ing exclusively to simulation data. The main TL
methods used include domain adaptation, either
using maximum mean discrepancy or adversarial
training, and parameter transfer. However, many
publications are limited to a single TL method or a
single network type. Furthermore, frequently only
one operating condition or only one bearing type
is considered.

3. Transfer Learning Methods and Data

In this section, a description of the two TL meth-
ods employed is given in Section 3.1, and the data
sets used are presented in Section 3.2 and 3.3.

3.1. Employed transfer learning

This paper examines two types of TL: induc-
tive and transductive TL. In inductive TL, la-
beled source data {X,Y}S and labeled target data
{X,Y}T are available for training. In transductive
TL, the training is based only on labeled source
data {X,Y}S and unlabeled target data {X}T . For
inductive TL, parameter transfer with fine-tuning
is implemented, and domain-adversarial training
is used for transductive TL.

The used parameter transfer with fine-tuning

consists of three steps. First, a pre-training of the
network parameters with the labeled source data
is conducted. During this training, source data
are also used as validation data. Next, the deeper
layers of the network are fine-tuned with labeled
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target data while the remaining layers are frozen.
Finally, the whole network is retrained with the
same labeled target data (Li et al., 2022). During
both steps, target data are used as validation data.

Domain-adversarial training is used to find a
feature representation minimizing the difference
in the data distribution between the source and
target domains. In this work, a domain-adversarial
neural network (DANN) architecture is imple-
mented (Ajakan et al., 2015; Ganin and Lempit-
sky, 2015). It consists of a feature extractor, a label
predictor, and a domain discriminator. The feature
representation generated by the feature extractor
is used by both the label predictor and the domain
discriminator. It is chosen in such a way that the
task of label classification is simplified, but at the
same time the distributions of the instances of the
domains are as identical as possible.

3.2. Measurement data

The measurement data serve as target data in the
TL methods. These data are collected on two
rolling bearing test rigs and under different op-
erating conditions—speed and radial load. Bear-
ings of different types with different defects are
mounted in the test rigs, and the resulting vibra-
tion signal and speed are measured. The signals
are sampled for one second at 15.625 kHz, which
also applies to the simulation data. In the follow-
ing, the term “recording” refers to such a one-
second logging. The two test rigs differ in bearing
support; otherwise, they are identical. Figure 1
shows the test rigs and the bearing types used.
The configurations used to record the data can be
found in Table 1. Ten recordings are made for each
of the possible combinations. The data include
four distinct classes: healthy bearing, inner race
fault, outer race fault, and rolling element fault.

3.3. Simulation data

The simulation data serve as source data in the
TL methods. These data are generated by a devel-
oped simulation model presented in more detail
in (Mauthe et al., 2025)a. When a mechanical
contact occurs within a bearing that impacts the

aA uniform damage severity level is used for all fault classes,
whereby it should be noted that the model could also be used
to simulate an increasing severity of damage over time.
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Fig. 1. The setup used to generate the measurement
data, including two rolling bearing test rigs (a) and
(b), and different types of rolling bearings used (c).
The shaft position and vibration acceleration signals are
recorded, along with the measuring time. The speed is
calculated from the position and time values.

fault location, an impulse is generated that excites
structural resonances in the bearing and its support
(McFadden and Smith, 1984). This impulse re-
peats as the bearing rotates, and the time intervals
between them are determined by the speed, fault
type, and bearing geometry. These impulses are
modeled in the simulation, combined with incor-
porating ball sliding theory and a random sliding
effect, resulting in signals more representative of
real bearing faults (Antoni, 2007). To emulate the
impulses, the entire bearing and its support are
modeled as a single-degree-of-freedom (SDOF)
oscillating system (D’Elia et al., 2018; Ai et al.,
2023). The time-domain impulse response can be
described as (Mauthe et al., 2025):

xSDOF(t) =
J

mωd
e−ζωnt sin(ωdt). (1)

ζ = c
2
√
mk

is the damping ratio, ωn =
√

k/m the

natural frequency, ωd = ωn

√
1− ζ2 the damped

natural frequency, and J the impulse. Here, m is
the mass, k the stiffness, and c the damping coef-
ficient of the modeled SDOF oscillating system.
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Table 1. Configurations used to record the measurement rolling bearing data set. For each combination of bearing
types, faults, speeds, and loads, ten recordings over one second are logged.

Bearing type(1) Fault(2) Speed / min(3) Load(4)

NU204-E (a, plastic, 12, cylinder, 7.5, 20, 47) OK / OR / IR / RE 500 / 1000 1 / 2

NU204-E (b, plastic, 12, cylinder, 7.5, 20, 47) OK / OR / IR / RE 500 / 1000 1 / 2

NU204-E (b, metal, 9, cylinder, 7.5, 20, 47) OK / IR / RE 500 / 1000 1 / 2

STO20 (b, metal, 14, needle, 3.5, 20, 47) OK / OR / IR / RE 500 / 1000 1 / 2

(1)(test rig in Fig. 1, cage material, number of rolling elements, rolling element type, diameter of rolling
elements / mm, inner diameter / mm, outer diameter / mm); (2) OK=healthy, OR=outer race fault,
IR=inner race fault, RE=rolling element fault; (3) Controlled set speed; (4) Specified in the virtual unit
“load level”. The load is set using a micrometer screw and a rubber spring element.

To adapt the model to the test rigs, the param-
eters in Eq. (1) must be selected accordingly. To
this end, the equation is differentiated twice with
respect to time in order to obtain the acceleration
signal. This is followed by an approximation to the
real measured acceleration signal based on the im-
pulse response when the outer race fault is rolled
over. In this work, during data preprocessing, the
amplitudes of the simulation recordings are scaled
per load level with the maximum amplitude over
all measurement recordings. Therefore, J/mωd is
replaced by a parameter A during numerical opti-
mization, representing the initial amplitude of the
impulse response. In order to enable a temporal
alignment, the phase shift φ is added to the sine
argument. The parameters m, k, and c, as well as
A and φ, are chosen based on a nonlinear least
squares algorithm so that the equation reflects the
measured acceleration signal as closely as possi-
ble. As with the measurement data, ten recordings
are simulated for each of the configuration combi-
nations in Table 1. In addition, outer race faults are
also simulated for the third bearing type. In order
to obtain variations between the simulation data of
the same combination, stochastic effects such as
speed fluctuations around the set speed, slippage
on the bearing, and noise are simulated.

4. Study

In this section, an overview of the procedure
within the study is given in Section 4.1, and in the
subsequent Section 4.2, the evaluation results are
presented and discussed.

4.1. Procedure

The following provides an overview of the net-
work structures, hyperparameter optimization,
features, and evaluation process.

Network structures: Three network types are
used for the evaluations: MLP, CNN, and TCN
with activated skip connection. In the context of
parameter transfer, these network types form the
initial layers, with dense layers added at the end.
For DANN, the MLP, CNN, and TCN serve as
feature extractors, while the rest of the network is
implemented as MLP. A dropout layer is imple-
mented for each dense layer and a max pooling
layer after each CNN layer and TCN block. The
stride of the CNN and TCN layers is set to one,
and for the max pooling, it is set as the pooling
size. The output activation function for the label
prediction is softmax, and for the DANN, the
sigmoid function is selected for the domain pre-
diction. Remaining activation functions are ReLU,
and cross-entropy is used as loss function. As a
benchmark, alongside the TL methods, the three
fundamental network types are trained using only
source data and only target data. The implementa-
tions are based on TensorFlow.

Hyperparameter optimization: For hyperpa-
rameter optimization, the tree-structured Parzen
estimator is used with up to 150 steps and early
stopping after 20 attempts without improvement.
The present study focuses on a comparison of the
utilization of TL with that of non-use, rather than
on a comparison of the individual network types.
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Consequently, the specific settings and constraints
for hyperparameter optimization are of less impor-
tance, provided they are consistent in both cases.

Features: The mean absolute value, the stan-
dard deviation, the peak-to-peak value, and the
impulse factor are used as features. With MLP,
these features are calculated over the entire vi-
bration signal, whereas a moving window is used
for the CNN and TCN, resulting in time series
of length 30. The corresponding time value is
assigned to each entry in the time series. Load
and speed are included as additional features for
all network types. The features are z-score nor-
malized, where the normalization parameters are
derived from the training data (both source and
target). It is important to note that the genera-
tion of frequency features, as well as the targeted
examination of fault frequencies, is explicitly ex-
cluded to avoid physics-based feature generation.

Evaluation process: The aim of the evaluation
considered in this work is to classify the types of
bearing faults. The information transfer from the
simulation data to the real measurements is evalu-
ated for each bearing type. In addition, each case
is repeated ten times with a random distribution in
training (50 %), validation (20 %), and test data
(30 %). Within these data, operating conditions
and fault types are evenly distributed. The number
of training epochs is set to 200 for pre-training and
training of the DANN, 100 for fine-tuning, and
50 for retraining. Premature termination occurs
after ten epochs without improvements. Adam is
used as optimizer. For the DANN, the adversar-
ial training is conducted exclusively between in-
stances where the source domain shares the same
operating conditions as the target domain. Vari-
ous classification metrics (Grandini et al., 2020)
listed in Table 2 are used for the evaluation, and
the mean value and standard deviation across all
bearing types and repetitions are specified.

The performance ratio achieved between meth-
ods that use source data and those that do not use
source data is expected to increase as the amount
of target data decreases. In order to obtain as
unbiased an evaluation as possible, the identical
amount of data was used in the source and target
domains, as described in Section 3.2 and 3.3.

4.2. Results
The results of the study are shown in Table 2. The
mean values and standard deviations of the eval-
uation metrics across all bearing types and repe-
titions are given for all network types examined.
Performance on the target test data, i.e., measure-
ment data, is shown. The results of the parameter
transfer with fine-tuning are marked with (ST ),
and the results of the domain-adversarial training
are marked with DANN. (S) and (T ) indicate the
networks that are exclusively trained with source
data and target data, respectively.

The approaches (T ) and (ST ), which use la-
beled target data, perform significantly better for
all network types and all evaluation metrics than
approaches that do not use labeled target data.
This is reasonable since labeled target data for
training are very valuable for performance in the
target domain. Metric values of over 85 % up
to 93 % are achieved with the (T ) and (ST )

approaches. The additional use of source data
in approach (ST ) leads to an improvement for
all network types and all evaluation metrics de-
spite the high performance already achieved in
approach (T ). The strong performance across all
metrics and network types indicates that the re-
sulting models are balanced and do not favor one
class over another, ensuring reliable predictions
independent of the respective network type. Pre-
training with labeled source data seems to help
find a better local optimum in the target domain.
This is remarkable as all fault types and operat-
ing conditions are already present in the target
training data. One reason for this could be that
the “ideal” behavior of the respective bearing fault
type is mapped in the simulation data, only su-
perimposed by some additional stochastic effects.
The algorithms therefore learn these ideal, physi-
cally meaningful relations between vibration and
fault type during pre-training. It is also worth not-
ing that the (ST ) approach demonstrates superior
performance in terms of accuracy when evaluated
using source test data, as shown in Table 3. This
observation holds true for all network types. This
indicates that despite fine-tuning and retraining,
part of the information from the source domain is
still present in the networks.
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Table 2. Values of the metrics when evaluating on target test data.

Approach
Accuracy f1-score Precision

Mean Std Mean Std Mean Std

MLP(T ) 0.914 0.081 0.908 0.094 0.916 0.093
MLP(S) 0.492 0.151 0.445 0.135 0.492 0.150
MLP(ST ) 0.923 0.073 0.920 0.076 0.928 0.070

MLP-DANN 0.494 0.141 0.445 0.147 0.471 0.160

CNN(T ) 0.920 0.139 0.909 0.169 0.912 0.175
CNN(S) 0.597 0.185 0.550 0.182 0.610 0.195
CNN(ST ) 0.928 0.130 0.921 0.153 0.935 0.149

CNN-DANN 0.567 0.210 0.530 0.225 0.571 0.231

TCN(T ) 0.864 0.189 0.844 0.230 0.855 0.237
TCN(S) 0.554 0.204 0.503 0.214 0.552 0.248
TCN(ST ) 0.884 0.167 0.869 0.203 0.879 0.212

TCN-DANN 0.525 0.224 0.482 0.237 0.502 0.250

(T )=trained with labeled target data, (S)=trained with labeled source data, (ST )=pre-training with labeled
source data and fine-tuning with labeled target data, best results per network type are shown in bold

Looking at the approach (S) and the DANN-
based approach in Table 2, both of which do not
use labeled target training data, metric values in
the order of 50 % are achieved. Since the bearing
fault diagnosis under consideration is a four-class
classification problem, an accuracy of 25 % can be
expected with random guessing. The performance
values achieved are significantly higher. This in-
dicates that information from the source domain
can be successfully applied in the target domain
to a certain extent.

However, the results do not show any notice-
able advantage in using unlabeled target data in
a DANN to achieve domain alignment. In fact,
pure training with labeled source data tends to
perform slightly better. It therefore seems to be
difficult to find a feature representation in which
the distribution difference between source and tar-
get data is minimal and which at the same time
still allows a good classification of fault types.
In order to check the latter, Table 3 can be ana-
lyzed, which shows the accuracies of the evalua-
tion based on the source test data. In the case of the
convolution-based networks, it can be seen that
the (S) approach performs better than the DANN-
based networks. This indicates that the choice of
feature space towards domain invariance worsens
the classification performance. An exception is the
MLP, which is consistent with the fact that in this

network type the DANN has better accuracy on
the target data than the (S) approach.

Table 3. Mean values of the accuracy when evaluating
on source test data.

Approach
Mean accuracy

MLP CNN TCN

(T ) 0.360 0.433 0.428

(S) 0.851 0.973 0.929

(ST ) 0.429 0.553 0.569

DANN 0.863 0.912 0.836

(.) as for Table 2

Another reason for the poorer performance of
the DANN-based networks could be that the do-
main alignment is unsupervised, i.e., without con-
sidering the fault labels of the data. This would
only be possible if labeled target data were avail-
able for training of the DANN, which was inten-
tionally omitted in this work in order to check
whether unlabeled target data are already use-
ful for TL. However, a possible future extension
could be the use of so-called pseudo-labels. The
target training data are assigned the labels that
the label predictor outputs in the current training
status. Subsequently, only an alignment between
the conditional distributions of the source and
target data with the same labels is performed. The
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efficacy of this procedure, therefore, also depends
on how well the label predictor trained with the
labeled source data classifies the target data. How-
ever, since the performance of the approach (S) on
the target test data is better than pure guessing, it
makes sense to work with pseudo-labels.

An analysis of the standard deviations in Ta-
ble 2 reveals analogous trends in the performance
of the approaches. The larger the mean value of
the metrics, the smaller the standard deviation
usually is. Small standard deviations indicate high
robustness and generalizability. Here too, the best
results across all network types and metrics are
achieved with the (ST ) approach.

Additional evaluation driven by the results:

With regard to the comparison of approaches (T )
and (ST ), the results of the above evaluation
raised the question of how the results change if not
all operating conditions occur in the target training
data. This is briefly examined in the following.
The number of target data is reduced from ten per
configuration combination, as described in Sec-
tion 3.2, to now only two. A random, operating-
condition-independent division into training, val-
idation, and test data no longer ensures that all
operating conditions occur in the target training
data. Consequently, a decreasing performance is
to be expected for both the approach (T ) and
(ST ). However, an even more significant im-
provement in the (ST ) approach compared to the
(T ) approach could also be expected. As shown
in Table 4, both apply to the MLP as well as to
the CNN. The accuracies are in the range of about
70 % for the MLP and about 70 to 80 % for the
CNN, compared to over 90 % in Table 2. The
improvement of the (ST ) approach over the (T )

approach is now 3.4 % for the MLP, compared
to 0.9 % in Table 2, and now even 7.7 % for the
CNN. As expected, the accuracies for the TCN
have also deteriorated, which are in the range of
65 %, compared to over 85 % in Table 2. However,
the smaller number of target data also appears to
have a strong negative effect on fine-tuning and
retraining, as the improvement in the accuracy of
TCN(ST ) in relation to TCN(S) could not be
improved compared to the results in Table 2.

Table 4. Mean values of the accuracy when evaluating
on target test data with reduced target training data.

Approach
Mean accuracy

MLP CNN TCN

(T ) 0.684 0.729 0.653

(ST ) 0.718 0.806 0.655

(.) as for Table 2

5. Conclusion and Outlook

This work has investigated the use of artificially
generated data from a self-developed rolling bear-
ing simulation to improve the data-driven fault
diagnosis of rolling bearings. Using only simula-
tion data, i.e., without real measurement data, an
accuracy of up to almost 60 % can be achieved. It
has also been shown that using inductive TL can
increase the accuracy to almost 93 %. Given that
simulation data can be generated in seconds with
the simulation model used, while the actual intro-
duction of faults is much more time-consuming,
the enormous potential becomes evident. How-
ever, transductive TL does not show any improve-
ment compared to training with only simulation
data. As described, the use of pseudo-labels is
therefore recommended for future studies.

In this work, the ideal behavior in the simula-
tion data was distorted by stochastic effects (noise,
slip, speed fluctuations). More research should be
carried out in the future to investigate how the ex-
tent of these distortions affects the training results.
It may even turn out that it is best to dispense
with distortions, as the ideal physical behavior
is then modeled. The number of simulation and
measurement data, as well as the coverage of
operating conditions and fault types, can also be
further varied for future investigations.
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