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This paper introduces a new inverse Gaussian process-based degradation model with covariate dependent random
effects. The proposed model is suitable for fitting degradation data which cannot be satisfactorily described by
treating separately the effect of the covariate and other forms of unit-to-unit variability. The model is applied to
degradation data of some integrated circuit devices. Model parameters are estimated by using the maximum
likelihood method. To mitigate numerical issues posed by the direct maximization of the likelihood function, the
maximum likelihood estimates of the parameters of the model are retrieved by using the expectation-maximization
(EM) algorithm. The probability distribution function of the remaining useful life is formulated by using a failure
threshold model. Results obtained by applying the model to the considered integrated circuit devices data
demonstrate the utility of the proposed model and the affordability of the adopted estimation approach.

Keywords: Covariate, Random Effects, Maximum Likelihood Estimation, Expectation Maximization Algorithm,
Remaining Useful Life.

1. Introduction data, a homogeneous Wiener process and a

In this paper we propose a degradation model for ~ homogeneous gamma process, respectively, with
the Device B, firstly introduced by Meeker and a single random effect which depends
Escobar (1998). functionally on the junction temperature.

These data consist of degradation measurements Inspired by these papers, to model the Device B
of 34 integrated circuit devices operating at three ~ data, we propose a process, with two
different levels of an accelerating variable (i.e., a  stochastically dependent random effects, which in
covariate), represented by the junction  turn functionally depend on the junction
temperature. temperature that is treated as a covariate.

In order to model these data, Meeker et al. (1998) ~ Under this new model, the temporal variability is
used a path model with two independent random described by using an IG process. The random
effects and a covariate. Alternatively, Peng  effects are modeled by assuming that one of the
(2015) proposed an inverse Gaussian (IG) process ~ parameters follows a gamma distribution, while

with two stochastically dependent random effects
and a covariate. Under both these models, the
random effects are modeled by using probability
density functions (pdfs) that do not depend on the
covariate. More recently, Wang et al. (2020) and
Wang et al. (2021) proposed, for the Device B

the other is a deterministic function of the first
one. The dependence on the junction temperature
is described by using an appropriate link function.
This new model is capable of describing
degradation  phenomena  where modeling
covariates and random effects separately proves

163



164

to be inadequate.

Model parameters are estimated by using the
maximum likelihood method. The likelihood is
not available in closed form and is indexed by
many (i.e., 6) parameters. Hence, an
expectation-maximization (EM) algorithm is
suggested, which allows mitigating the numerical
issues posed by its direct maximization.

The rest of the paper is structured as follows.
Section 2 presents the proposed degradation
process. Section 3 deals with the formulation of
cumulative distribution function (Cdf) of the
remaining useful life. Section 4 addresses the
maximum likelihood (ML) estimation of the
parameters of the proposed model. Section 5
illustrates the EM algorithm. Section 6 reports the
results of the application of the proposed model to
the Device B data. Finally, Section 7 provides
some concluding remarks.

2. The Inverse Gaussian Process with
Covariate-Dependent Random Effects

The non-homogeneous IG process {Y (t),t = 0},
in its basic form (e.g., see Ye and Chen 2014), is
a continuous stochastic process with the
following properties: i) Y (0) = 0 with probability
one; ii) Y (t) has independent increments; iii) for
any t, T = 0, the increment AY (¢, t+7) = Y(t +
7)- Y (t) has an IG pdf:

2
/,1 (An(t, t +1))
fAY(t,t+‘r) 6) = T omed x

A(5-Antt +1)°

xe 28 ,6=201>0 (1
where An(t, t4+1) = n(t+1)-n(t) and n(t) is an
increasing positive function with n(0) = 0.

The mean E{Y(t)} and the variance V{Y(t)} of

the IG process can be expressed as:

E{Y(©)} = n(0), (2)

VYD) = n(0)/A. 3)
Following Meeker et al. (1998), the age function
n(t) is modeled by using the bounded function
n(t) = a[1-exp(- bt)]. 4)
Hence, the mean in (2) and the variance in (3) are
bounded, yet the process itself remains
unbounded.
To account for the presence of heterogeneity
among the units we have incorporated into the
basic IG process two dependent random effects
and a covariate. The random effects are modeled
by assuming that the parameters A and b vary

and
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randomly from unit-to-unit. This device allows
modelling forms of heterogeneity caused by
covariates that are not explicitly included in the
model.

Henceforth, to remark that these are random
variables, we will denote A and b by A and B and
their realizations by A and b.

The random effects are modeled by assuming that
B varies randomly from unit-to-unit according to
the gamma pdf:

b) = M —crb g b>0 5
gs(b) = ra@ ¢ der (5)

and A is a deterministic function of B, given by
A=1, B, Ao >0 (6)

where d and ¢; are the shape and scale
parameters, respectively, I'(:) is the complete
gamma function and g, € (-0, +). Notably,
when g, = 0, A reduces to the constant value 4.
The covariate T (i.e., the junction temperature) is
introduced in the model by assuming that the
scale parameter c; of the pdf of B depends on T
via the (Arrhenius type) link function (7):
cr=¢ eql/(T+273.15)’ (7)
with ¢y > 0 and g; € (-0, +). It is worth to
remark that, unless g, = 0, the random variable A
depends on the covariate T through B.
The link function (7) was already used in Meeker
and Escobar (1998) to model the same data.
However, in their case, the parameter linked to T
was a fixed parameter.
The resulting IG process with random effects and
covariates {W (t), t = 0} is not Markovian.
Moreover, given these modeling assumptions, the
following identities hold:
{W(),t=0|B=b,A=2}
={W(t),t = 0|B =b}

={Y(),t = 0}. (€))
where the first equalities easily follow from Eq.
(6).
From (8), the conditional pdf and Cdf of the
increment AW (¢, t + 7)=W (t + ©)- W (t), given
B =b, can be expressed, for any § >0,
respectively as:

fAW(t,t+T)|B(6|b)

2 2
A(b) (An(t,t A(b) (8-An(t,t+1))
_ |2®) (an(t, £ +1)) LI L
2163

and
FAW(t.t+r)|3 (5|b):ez A(D) An (et +17) 5
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XO|( - A(a—b)[8+AT)(t,t+T)]
’A(b)
+od T [6—A7](t,t +T)] )

where ®(+) is the standard normal Cdf.
From (2) and (3), the conditional mean and the
variance of W (t) given B=b are:

E{W (©)|B=b} = n(t), )

VW (®)|B=b} = n(t)/A(b). (12)
From (6) and (9), the (marginal) pdf and Cdf of
W (t) can be formulated as:

T ’/1 b) (n(®)*
fwie W) =f %X

0

2
< exp (_A(b) (8-n(®)

(10)

and

2w

)ga(b) db (13)

and

FueW) = [ fwe () dy (14)
respectively, where gg (b) is the pdf (5) and n(t)
is a function of b (see Eq. (4)).

Moreover, from (5), (6), (11), and (12), the
marginal mean and variance of W (t) can be
expressed as:

d
E(W(©)} = a [1 - (CTCi t) ] (15)
and
V{w ()}
_a T(d+4qy) 1 ( Cr )‘“‘h
- 10622 F(d) Cr +t

cr?

4 1

[(CT +26)4  (cr+ t)Zd]' (16)
The variance V{W (t)} exists when d > —q,.
It should be emphasized that under this setting,
both the mean and the variance are bounded. In
fact, it is:

2
+a“ cp

tl_i)r+noo E{W ()} =a, 17)
and
. Lld+qz)
Jim VIW(©) = =g (19)

This implies that, as t goes to infinity, the
degradation mean tends the value a, which does
not depend on T, and the variance tends to value
on the right side of the (18), where ¢, depends on
T as per Eq. (7).

Let W) ={W(t;);j=1t <t} and w()
denote the measurements gathered up to (and
included) the time t and their realizations,
respectively; the conditional pdf of B given
W(t) = w(t) can be expressed as

Isw (blw(®)
L
L t .t bd—glh—l e—A(b)
[H1_177( j—1s J)]

Mo (0 ) b2 -4
where [ is the number of observations collected
up to (and included) ¢, §; = W(tj) - W(tj_l), and
A(Db) is given by

A(b)

= 2o g
2pq2 “Jj=1

(19

((Sj—AT](tj_l,t}'))z
5j

+crb. (20)

3. The Remaining Useful Life

The considered degrading units are assumed to
fail when their degradation level passes an
assigned failure threshold, say wy,. Accordingly,
their useful life X is defined as the first passage
time of the degradation process to wy,:

X =inf{x : W(x) > wy} 21D
and their remaining useful life (RUL), at the
operating time t, say X;, is defined as

X, = max{0,X — t}. (22)
Thus, from (22), X, is equal to X — t if the unit at
the time t is still unfailed, and it is equal to O
otherwise.
Considered that the process {W(t),t = 0} is
monotonically increasing and that the conditional
process {(W(t),t 20|B =b,A=21} has
independent increments, the conditional Cdf of
the RUL given W(t) = w(t) can be formulated
as:
Frwio (xIw(D))

=1~ Fy(erowo(Wulw®))

+00
=1- f [FAW(tl,tl+x)|B (Wy-w,|b)
0

X ggwo(b|w(®)] db (23)
where w; = w(t)), Faw(tt+r)8(Win—w,|b) is the
Cdfin Eq. (10) and ggw s (b|w(£)) is the pdfin
Egs. (19).

4. The Likelihood Function

Let us assume that the degradation level of m
units randomly selected from the heterogeneous
population described by the proposed model is
measured at selected epochs by mean of ad hoc

165



166

inspections. Let n; denote the number of
inspections performed on unit i, and let
tijo -, tin; Tepresent  the  corresponding

inspection times. Moreover, let T; denote the
(known) value that the covariate takes in the case
of the i—th unit.

Then, the likelihood function related to the i-th
unit can be formulated as:

n

) 2 cf
Li(§&wy) = (271) W
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In this work, we treat as missing data the
unobservable unit-specific values the random
parameter B for the considered devices,
specifically, the value b ={by,..,b,} of
B={By, ..., B,}.

While, obviously, the observed data consist in the
realization w = {w, ..., w,,} of the set of the
measurements W = {W,, ..., W,,}, where W; =
Wi, o, Wt and w; = {w; 1, o, wim ).

Under this setting, the complete likelihood
function of rmssmg and observed data is:

f l—ln(t” nn b7 lema)gp (24) Lc(Ew,b)= 1_[wa|3 (wilb) - gg,(b) (27)

where f = {a, €0, 1,4, 9,95} is the vector of
model parameters, &; ; = w; ; — w; j_q, Wy ; is the
degradation level of i-th unit observed at the time
t;j, w; is the setw; = {Wl-ll, ) W,-,nl.}, An; j(b) =
n(ti;) = n(tij1). n(ti;) = a[1-exp(-b1t;)],
and A;(b) is defined as

A;(b)

‘ 2
2 i(Si,j_An(tU_l'ti'j))

T 2b42 ¢ 8

Jj=1

From (24), the log-likelihood function relative to
all m units is given by:
m

eEw) = ) In(LEw)) . (26)

The maximum likelihood estimate (MLE) of & of
& is the set & that maximize the likelihood
function over the parameter space.

The direct maximization of the log-likelihood
function in Eq. (26) has a complex structure and
is indexed by a large number of parameters (i.e.,
6). Hence, in order to mitigate the issues posed by
its direct maximization, in this paper to retrieve
the maximum likelihood estimates we use the EM
algorithm, described in Section 5.

+cpb. (25)

5. The EM Algorithm

The EM (Dempster et al. 1977) is an iterative
algorithm used for computing the MLEs in the
presence of missing and/or incomplete data. It
consists of two steps, the expectation (E) step and
the maximization (M) step, which are repeated
until a convergence criterion is met.

To use the EM is necessary to establish what it is
meant by missing and observed data.

where:

and
cgd pd-1 .
gBi(bi) li(d) e Ti l:

where An; ;(b) =n(t;;) —n(tij-1) and n()
(that depends on b;) is the function in Eq. (4).
Accordingly, the complete log-likelihood
function (i.e., .(-; ) = ln(LC(- ; -))) results in:

tc(§w,b) = tp(a, g, qz;w, b)

+5(co,d, qi; W, b) (28)
where
tp(a, 40, q2; W, b) =
42 ZZI: /10 Anu(b))
bq227r 83
i=1 j=
2
iilo i,j Ani,j(bi)) 29)
b122 6, ; ’
i=1 j= -

is indexed only by the parameters a, A, and q,,
and
€5 (co,d,q1;w,b) = dm-In(co)
m

m
1
+d "12—273.15 ACE 1)Zln(b,-)
L= =

m
q1
—mIn(r(d)) - ¢ Z TR, b (30)

i=1
is indexed only by the parameters ¢y, d and g .
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After h iterations, the (h + 1)-th E-step consists
in computing the conditional expectation
Q(&18™) of £.(& w, b) in Eq. (23) with respect
B, thus
Q(§18™) = E{tc(§w, B)|Z = 2,§}
= Qp (a! AO' qZ |W:W! f(h))

+Qg(co, d, q, IW=w, §™) (31)
where the set &M = {a(h) C(h) q(h), d("),lf)h),
qéh)} indicates the estimate of § performing the
h-th M-step, and
Qp(al AOP q> |W=W' %’(h))

T3

+ y ZE {in(an,,8)) |[w=w, g}

i=1 j=1

E(h)}

m N
6” An”(Bl) "
o T
i=1j=1
m M
1 3
_EZ In(27 63)) , (32)

[y
,_.

i=

Qs(co d, 1|w w, M) = —mIn(T(d))

m

d E— dml
T, 1273.15+Ti+ min(co)
i=
m

+d-1) ) E{In(B,) [W=w,§®)
i=1
UL q1

—co Z e273154T; E{Bi|W=W, f(h)}- (33)
The presence of ™ on the right side of the
conditional bar indicates that the parameters of
the conditional distribution of B given W =w
used to perform the expectations, are set to &M,
Conditional expectations in Egs. (32) and (33) can
be evaluated by using the following formula:
E{p(B)IW=w, "}

= Jy" 9 ) gy (blwi, §) db; (34)

where ¢(B;) is any function of B; and
9w, (b|wi, €M) is the function in Eq. (19) with
parameters & set to &M,
The M-step consists in maximizing the functions
in Eq. (31) with respect to §. The output of this
step is denoted by M+,
In this paper, the iterative procedure is stopped
when the absolute relative difference

LMD wy) — (8™ wi)
2™ wy) '
drops below a pre-assigned value, where £(-;-) is
the log-likelihood function in (26).

6. Example of application

This section reports and discusses the results
obtained by applying the proposed model to the
Device B data depicted in Fig. 1. These data were
firstly given in Meeker and Escobar (1998).
The complete dataset is available at
github.com/Auburngrads/SMRD.data. Here we
consider the data multiplied by —1, because the
original ones are negative and decreasing over
time. The dataset consists of measurements of the
power drop in the output of m = 34 integrated
circuit devices, operating at three different values
of the junction temperature. The power drop is
expressed in dB. The temperature T is expressed
in degrees Celsius (°C).
The dataset includes:
e 7 devices tested at T; = 150,i = 1,..,7;
e 12 devices tested at T; = 195,i = 8,..,19;
e 15 devices tested at T; = 237,i = 20,..,34.
All devices are inspected at regular time intervals
of 150 hours, specifically there are n;=32
inspections for units operating at T = 150,
=16 inspections at T =195, and n;=8

inspections at T = 237. Accordingly, the final
observation times for the devices are 4000, 2000,
and 1000 hours, respectively.

). . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
Operating Time (Hours)

Fig. 1 The degradation paths of 34 Device B and the
relative junction temperature.

The MLEs of the parameters are 4=1.432,
¢,=2.491-1073, §,=7.667-1073, d=16.54,
1o = 0.2738, and §, = 0.8212. These MLEs
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have been retrieved by using the EM algorithm
described in Section 5.

The estimated value £ of the log-likelihood is
1.589-103. The corresponding value of the
Akaike information criterion index (see Akaike
1974) is AIC = —3.166-103. Thus, in particular,
this means that, according to the Akaike
information criterion, the proposed model fits the
device B data better than all the alternative
options suggested in Peng (2015), where the best
model has an AIC equal to - 2.937-103.

Figure 2 shows the empirical estimates of
E{W(t)}, at the three distinct values of the
junction temperature, together with the
corresponding MLEs of E{IW (t)}, obtained by
computing the Eq. (15) at the MLEs of the model
parameters with T equal to 150, 195, and 237,
respectively.

15

T T
b ML Estimate J
e Empirical Estimate
13F — — ML Estimate ]
T =237 S
12k , «  Empirical Estimate |{
oL A —-—-ML Estimate |
- K +  Empirical Estimate
1 V'
7 .
=or 4 e
= o8 - =7
=08 Vi =,7 T=19
= o7 I S
—~ o I' LI
M os "

. . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
Operating Time (Hours)

Fig. 2 ML and empirical estimates of the degradation
mean E{W (t)} for T = 150,195 and 237.

The figure shows that the MLE of the mean
function fits adequately the corresponding
empirical estimates of the mean at each
considered junction temperature.

Figure 3 shows the empirical estimates and the
MLEs of the variance V{W(t)} at each
considered temperature. The MLEs are obtained
by computing the Eq. (16) at the MLEs of the
model parameters. Again, T is set to 150, 195,
and 237, according to the considered set of
devices.

It can be observed that the proposed model fits
very well the empirical variance at T = 150 and
provides acceptable results also at T = 195 and
T = 237. Notably, we note that the MLE and the
empirical estimate of the variance at T = 237
have very similar shapes, both exhibiting a
non-monotonic temporal evolution.

Figure 4 reports the 90% probability bands of the
degradation process at the three different
temperatures (i.e., the MLEs of the 5" and 95"
quantiles of W (t)). These bands are obtained by
using the MLE of the Cdf in (14). We have
shaded the area inside the bands for facilitating
the interpretation of the figure.

004 T T
Pl ~. ML Estimate
0085 / o Empirical Estimate
' S T=237 - — ML Estimate
4 R - Empirical Estimate
003 I aa —-—- ML Estimate
i A 4+ Empirical Estimate
A Anwa,
0025 =
. ’.' == T=19
= I = -~
= ool ! " -7
= Af 0 -
= ! -
S H . L’
I
0015 | va
! ’
! ’
0011 ’ T =150 1
Y
") _‘/
0005 | £ Tiad eee]
005w, 2 ad
i
e e a k]
0 0-9-0-0"0"" I L L L L
0 500 1000 1500 2000 2500 3000 3500 4000

Operating Time (Hours)
Fig. 3 ML and empirical estimates of the variance
Viw ()}

The solid blue, orange, and red lines correspond
to the probability bands for T = 150, 195, and
237, respectively. The dashed lines represent the
MLEs of E{W(t)} at the corresponding
temperatures. The figure shows that the bands
include a percentage of observed data close to
their nominal value: 95.98% at T = 150,
7812% at T = 195, and 90.83% at T = 237.

1500 2000 2500 3000 3500 4000

Operating Time (Hours)

Fig. 4 MLEs of the means and the 90% probability
bands at the three different junction temperatures.

0 500 1000

By following Meeker and Escobar (1998), we
have assumed that the Devices B fail when their
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degradation level exceeds the threshold value
wy,=0.5.

Figure 5 shows the Cdf of the RUL of the devices
that operate at T=150, calculated at the last
inspection time (t = 4000 hours). The paths of
the considered units are represented in Figure 6,
where the labels are the same of the ones adopted
in Figure 5.

Cdf of RUL

0 500 1000 1500 2000 2500 3000 3500 4000 4500

7 (Hours)

Fig. 5 Cdf of the RUL given all the observed path for
Device B units tested at T=150.

Absolute Power Drop (dB)

P
4
0 500 1000 1500 2000 2500 3000 3500 4000
Operating Time (Hours)

Fig. 6 Degradation paths (in absolute power drop) of
Device B at junction temperature T=150.

Cdfs of the RUL are obtained by computing the
Eq. (23) at the MLEs of the model parameters. It
is noteworthy that the Cdf of the RUL of the units
#5 and #6, as well as the Cdfs of the units #2 and
#3 are almost overlapped. In fact, given that the
degradation process is non-Markovian, this result
is obtained because the entire degradation path of
the device #5 is very similar to the path of the
device #6 and the entire degradation path of the
device #2 is very similar to the path of the device
#3.

We do not report the corresponding MLEs of the
Cdf of the RUL of the devices that operate at
T=195 and T=237 because all these devices
failed before their last inspection time.

7. Conclusion

In this paper, we have proposed a new inverse
Gaussian process-based degradation model that
incorporates two  stochastically dependent
random effects and a covariate. A distinctive
characteristic of this model is that the distribution
of the random effects depends functionally on the
covariate. The main features of the model have
been illustrated. The maximum likelihood
estimations of the parameters of the model have
been addressed. In particular, an
expectation-maximization algorithm has been
proposed, which allows to easily retrieve the
maximum likelihood estimates circumventing the
issues posed by the direct maximization of the
likelihood function.

The probability distribution function of the
remaining useful life has been formulated by
using a failure threshold model.

The application of the model to the Device B data
demonstrates the utility and the affordability of
the proposed approach. Obtained results
demonstrated the superiority of the proposed
model with respect to other models suggested in
the literature for the same degradation data.
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