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Data-driven diagnostic and prognostic methods for engineering systems, especially those employing machine
learning, have gained prominence due to their reliance on data rather than physical system understanding. However,
industrial applications often face challenges like unbalanced data distributions or limited data availability, as
acquiring data is costly and time-intensive. Although some synthetic data sets and simulation models are publicly
available, they often do not represent industry-relevant scenarios. Therefore, this work introduces a simulation model
for generating representative run-to-failure data, focusing on rolling bearings. The model comprises three modules:
the first determines the bearing life and fault type; the second simulates the degradation progression up to the point
of failure; the third generates vibration signals reflecting operating conditions and bearing degradation. Each module
is designed as a random process and reproduces the inherent variation of, for example, the life under a given load.
As a novelty, the model simulates the vibration signals over the entire life of bearings. Furthermore, it is publicly
available and can be used to generate arbitrary data. An initial data set is also published and publicly available.
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1. Introduction

Data-driven diagnostic and prognostic methods in
Prognostics and Health Management (PHM), par-
ticularly those involving machine learning, have
gained prominence. These approaches focus on
using data rather than relying on an understand-
ing of the system’s physical characteristics and
degradation processes. However, due to the high
costs and time associated with data acquisition,
industrial applications are often confronted with
scenarios of insufficient data. In particular, this
relates to run-to-failure data, as data are required
throughout the life of an engineering system (ES).
This not only leads to limitations in industrial ap-
plications but also affects research and the devel-
opment of data-driven diagnostic and prognostic
methods (Fink et al., 2020).

The generation of synthetic data using simu-
lations of degradation processes represents a po-
tential solution to this problem. In the research
community of PHM, such synthetic data sets
and, in some cases, even the simulation model
itself have been published. However, these data
sets and simulation models do not represent the
various data scenarios that can occur in indus-

trial applications, for instance, highly imbalanced
data distribution or censored data sets (Hagmeyer
et al., 2021). The most frequently used synthetic
data sets in the context of PHM, which include
simulated sensor signals, are run-to-failure data
sets of aircraft engines from Saxena et al. (2008)
and Arias Chao et al. (2021), generated with
the Commercial Modular Aero-Propulsion Sys-
tem Simulation (CMAPSS) model. Both data sets
and the simulation model are highly focused on
the aircraft engines. They are not suitable for re-
producing arbitrary data scenarios. This also ap-
plies to other synthetic data sets with their under-
lying models listed in Mauthe et al. (2024).

Therefore, the objective of this work is to pro-
pose a simulation model that enables its users to
generate data sets that reflect the data scenarios
under investigation. This is achieved by a holistic
modeling approach, ranging from the life distri-
bution through the progression of degradation up
to the resulting measurement signal, which is used
for diagnosis and prognosis. The model deals with
a key machine element in the context of PHM—
the rolling bearing (Wang et al., 2020). Despite
being frequently considered at PHM, the literature
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on its simulation for data generation is scarce.
D’Elia et al. (2018) focus solely on simulating
the vibration signal for discrete degradation lev-
els. Hosseinli et al. (2024) and Ai et al. (2023)
consider the temporal degradation trend but focus
on replicating existing experimental data without
a holistic modeling approach. As a result, the pro-
posed model is a novelty in this context, with its
holistic approach and the simulation of vibration
signals over the entire life of bearings.

An executable application of the simulation
modela and an initial data setb from this model
are publicly available. The data set reflects a data
scenario in which the lives and degradation pro-
gressions vary greatly despite similar operating
conditions and the same bearing type. In the fol-
lowing, the novel simulation model is introduced
and a data set generated with it. Thereby, Sec-
tion 2 explains the structure of the model and
its functionality. Section 3 presents the life and
fault modeling. Section 4 deals with the simula-
tion of degradation progression. The generation of
vibration signals constitutes Section 5. Section 6
summarizes the results of this work.

2. Model Structure and Functionality

The main purpose of the model is to support the
development of data-driven diagnostic and prog-
nostic methods by giving its users the opportunity
to simulate a wide variety of data scenarios. A
modular design is selected in order to be able
to separately define the life load distribution, the
degradation progression, as well as the resulting
measurement signals (vibration). These three as-
pects of the failure characteristics each make up
separate modules. The structure of the model is
illustrated in Fig. 1 and the functionality is de-
scribed in the following.

User: The user’s input information serves as a
foundation. It includes bearing parameters (BP),
operating conditions (OC), and simulation details
(SD). BP involve all the necessary characteristics

aSimulation model: https://github.com/PHM-Hochschule-Ess
lingen/Bearing Simulation Model
bData set Bearings with Varying Degradation Behaviors:
https://www.kaggle.com/datasets/prognosticshse/bearings-
with-varying-degradation-behaviors

and parameters of the rolling bearings to be simu-
lated. The OC contain the parameters under which
the bearings are operated. These are parameters
that would also have to be defined when generat-
ing experimental data. The SD are parameters that
are specifically required for the simulation. The
input information and the respective parameters
are aggregated in tabular form as shown in Fig. 1.
There, the i-th row corresponds to the simulation
of the i-th bearing.

Module 1: It comprises the life and fault mod-
eling. Here, to generate the run-to-failure data of
the bearings, first the load level is drawn from a
load distribution function. Based on the load that
the bearings experience, a life is determined from
a probabilistic life-load model. In addition, the
resulting fault type is selected, whereby the load
influences the preference of the individual fault
type.

Module 2: The determined life is an input for
the second module. This simulates how the degra-
dation progresses from the initial state of the bear-
ing up to the specified failure time. The user has
various functions at his disposal, each modeling
different types of degradation progressions. These
functions can include random processes so that,
despite the identical life of two bearings, different
degradation progressions result.

Module 3: The third module generates vibra-
tion measurements for the simulated bearings.
They depend on the results of the first two mod-
ules with the fault type occurring in the bear-
ing and the degradation progression. Vibration
measurement series are calculated equally spaced
throughout the life. In this module there are also
random effects, such as simulated measurement
noise.

The modular structure results in a fanning out
of the data volume for each bearing across the
modules. While one life is determined in the first
module, a progression of degradation values up
to this life is determined in the second, and a
vibration measurement series for each degradation
value is determined in the third. Each module con-
tains random processes that reflect the resulting
aleatory uncertainty occurring in realistic applica-
tions. The ability to generate any amount of data
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User Input Information

Bearing Parameters ( )
• Geometry
• Load specifications
• Load-life
Operating Conditions ( )
• Load (mean, variance)
• Rotational speed
• Environmental conditions
• Data acquisition
Simulation Details ( )
• Degradation progression
• Data quality
• Meta information

Loop for 

Module 2: Degradation Progression

Module 1: Life and Fault Modeling

Inner race

Outer race

Ball elementRandomly
drawn load

Randomly 
drawn

Module 3: Vibration Signal Vibration 
measurements series

Fig. 1. Visualization of the structure and functionality of the simulation model, exemplarily for one bearing.

with the model allows epistemic uncertainty to be
mapped. Hence, the model and its resulting data
can also be used for uncertainty considerations.
The simulation model is publicly available, where
a detailed description of the utilization of the sim-
ulation model is providedc.

3. Life and Fault Modeling

The first module deals with life and fault mod-
eling. For this, Section 3.1 covers the load and
Section 3.2 the life determination. Subsequently,
Section 3.3 describes the assignment of a fault
type. Section 3.4 presents the data generated with
the first module for the initial data set.

3.1. Load

Often the load experienced in testing or in the
field varies. To take this variation and resulting
uncertainty into account, the load is modeled as
a random variable L with a log-normal distribu-
tion. One load level for each bearing is randomly

cSimulation model: https://github.com/PHM-Hochschule-Ess
lingen/Bearing Simulation Model

selected based on the corresponding log-normal
distribution.

A log-normal distribution is specified by μ and
σ2, resulting in E[L] = eμ+

σ2

2 and Var[L] =

e2μ+σ2
(
eσ

2 − 1
)

. The values of E[L] and Var[L]

serve as input information for the simulation
model and must be defined by the user. Thereby,
a user can select a purely deterministic load level
by setting Var[L] = 0.

3.2. Life

The next step is to determine the life, which de-
pends on the selected load level. The life of rolling
bearings can be modeled with a three-parameter
Weibull distribution (Bertsche, 2008). The respec-
tive probability density function is

f(t) =
b

η − t0
·
(
t− t0
η − t0

)b−1

· e−
(

t−t0
η−t0

)b

. (1)

The shape parameter b depends on the design of
the rolling element. For ball bearings, bball = 1.1

applies, and for roller bearings, broller = 1.35. As
these values are based on extensive tests compared
to other machine elements, the result is a high
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statistical confidence (Bertsche, 2008). For this
reason, the shape parameters are used as determin-
istic values. In order to determine the failure-free
time t0 and the characteristic life η, the B10 life is
calculated first. For this, the modified rating lifed

L10m = aISO ·
(
C

P

)p

, (2)

defined in standard ISO 281:2007 (International
Organization for Standardization, 2007), is em-
ployed. C is the dynamic load rating (provided
by the bearing manufacturer), P is the equivalent
dynamic load (here the drawn load level) and the
exponent p depends on the type of rolling element
(pball = 3, proller = 10/3). The modification
factor aISO incorporates effects on the bearing
life, like lubrication, environmental factors, con-
taminant particles, and mounting. When a bearing
is operated in accordance with established guide-
lines, aISO = 1 can be applied. The user of the
model has the option to specify this factor. Based
on Eq. (2) the characteristic life η is calculated as

η =
B10 − t0
b
√− ln 0.9

+ t0, (3)

with B10 = L10m and t0 = ftB/B10. In this work,
ftB is 0.2 in accordance with Bertsche (2008).
Based on the distribution specified, the life of each
bearing is randomly selected.

3.3. Fault location

Rolling bearing faults commonly arise from lo-
calized material degradation, such as pitting,
spalling, or corrosion of the main bearing compo-
nents (inner race, outer race, and rolling elements)
(Antoni, 2007). Generally, simultaneous damage
to multiple components can occur. However, one
component typically predominates in causing fail-
ure, as observed in real data (Wang et al., 2020).
Therefore, in the context of rolling bearings, a
distinction is usually made between these three
fault types or damage positions.

The load that an ES experiences not only in-
fluences its life but also the probability of one
type of failure predominating. In the case of ball

dL10m in 106 revolutions, here is converted into minutes

bearings, for example, the contact geometry of
the three components is different and therefore
also the stresses resulting from the load. Thus,
depending on the load level, the chances of a
certain fault type vary. This also applies to the
model described here, where the occurrence of a
fault type is also subject to a random process. The
influence of the selected load level is done via a
weighted random selection. In this case, at low
loads, faults on the inner and outer races are more
likely, whilst the probability of a rolling element
fault increases with the load.

3.4. Load and lives in the data set

The data set Bearings with Varying Degrada-
tion Behaviors generated using the simulation
model comprises a total of 40 simulated bearings.
Thereby, bearing type NU204-E-XL-TVP2 is con-
sidered, with aISO = 1, C = 32, 000 N, and
p = 10/3. For all bearings, E[L] = 4, 500 N

and
√
Var[L] = 100 N are used. The resulting

random load levels are shown in Fig. 2a). Bearing
lives are sampled based on the load levels drawn
and shown in Fig. 2b). This results in a scattering
of the life typical for rolling bearings, with a small
variance in the load. The respective fault types are
not included in this data set in order to hinder the
prediction task for this data set.

Fig. 2. Load and life samples of the data set. a) ran-
domly drawn load samples using a log-normal distribu-
tion. b) random lives of the 40 bearings.

4. Degradation Progression

The aim of the second module is to calculate how
degradation progresses from the bearing’s new
condition to its end of life (EoL). For this purpose,



957Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

the degradation is defined as a time-dependent
function d(t) with the degradation level d ∈ [0, 1]

and time t ∈ [0, tEoL]. Thereby, d = 0 represents a
bearing in its new state and d = 1 the threshold for
the EoL. To model varying production quality, an
initial degradation is also defined in the model so
that the simulated bearings start with d(t = 0) =

d0 ≥ 0. Thereby, d0 is randomly drawn, equally
distributed from [0, 0.05]. The model provides dif-
ferent types of degradation functions, which can
be used for simulating the degradation progres-
sion between start and end. As ESs usually lack
a form of self-healing, as in the case of rolling
bearings, their degradation increases monotoni-
cally (Hagmeyer et al., 2022). For this reason, all
implemented degradation functions feature such
monotonicity.

The following Section 4.1 explains the prede-
fined functions the user can choose for simulating
the degradation progression. Thereafter the sim-
ulated degradation curves within the data set are
presented in Section 4.2.

4.1. Predefined progression functions

The degradation progression of an ES often shows
a characteristic behavior (Meeker et al., 2022).
The model allows the user to choose from sev-
eral frequently occurring progression functions,
whereby the complexity for the resulting diagnos-
tic and prognostic functions differs.

Linear Increasing Degradation: This degrada-
tion function connects the random initial degrada-
tion d(0) and the determined life d(tEoL) = 1 by
a straight line. With this function, the degradation
progression of different bearings only varies due
to the random-based corner points of the line.

d(t) =
1− d0
tEoL

t+ d0 (4)

Progressively Increasing Degradation: In order
to simulate a progressively increasing degrada-
tion, there exists a variety of mathematical func-
tions. In this case, a power function, as specified
by Zhu et al. (2017), is used,

d(t) = d0+(1−d0) ·
(

t

tEoL

)a

with a > 1. (5)

The parameter that determines the shape is the
exponent a. The higher its value, the more pro-
nounced is the convex course of the degradation.
For a typical progressive increase in degradation,
a is drawn equally distributed from [3, 6] for each
simulated bearing. This additionally increases the
variation of the degradation curves and enhances
the resemblance to real bearing applications.

Step-like Increasing Degradation: The litera-
ture on bearing damage describes that often degra-
dation hardly increases for a long time but in-
creases sharply before failure (Wang et al., 2018).
Such a progression can also be simulated by the
power function in Eq. (5). For this, however, the
value of a is drawn equally distributed from the
interval [15, 35].

Randomly Increasing Degradation: The degra-
dation functions described above show a progres-
sion that is deterministic for one parameterization.
However, the degradation of ESs often shows a
stochastic course that includes abrupt rises. To
reflect this, the model provides the option to simu-
late the degradation progression by a gamma pro-
cess. The gamma process is characterized by inde-
pendent, non-negative increments. For this reason,
it has been used several times for degradation
simulation (van Noortwijk, 2009).

The gamma process is sampled through a
bridge-sampling. With this sampling method, the
final value of the gamma process is sampled first
or, in this case, predetermined. The random degra-
dation progression between t = 0 and tEoL is then
sampled based on conditional probabilities. The
essential element here is the beta distribution. For
the user, αγ and βγ are available as parameters.
They scale the inputs for the beta distribution, thus
determining the shape of the resulting degradation
curve. If both parameters have the same value,
the gamma process is stationary with a linear
increase in the expected value of the degradation.
A convex course of the degradation is achieved by
αγ > βγ and a concave course by αγ < βγ . The
variance of the gamma process is controlled for
a fixed ratio of αγ and βγ by their magnitude,
whereby small values result in a high variance
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and thus pronounced stages of degradation. For
further information on the gamma process, refer to
Avramidis et al. (2003) and van Noortwijk (2009).

4.2. Degradation curves in the data set

The published data set serves as an example to
illustrate the capabilities of the model. Therefore,
each of the four degradation functions described
above is used to define the degradation progres-
sion of ten bearings. Some of these degradation
curves generated are shown in Fig. 3.

Fig. 3. Examples of degradation curves within the
published data set created using the four predefined
degradation functions.

5. Vibration Signal

The third module is employed for generating the
vibration signal corresponding to the degradation
level d(t). The vibrations are primarily caused
by the bearing fault. Their modeling is presented
in Section 5.1. This is followed by examples of
simulated vibration measurements in Section 5.2.

5.1. Rolling bearing fault model

When mechanical contact occurs in the bearing
that affects the fault location (see Section 3.3), a
short impulse, exciting structural resonance within
the bearing and its housing, is generated. As the
bearing rotates, a series of impulses occurs, with
the time between pulses depending on the fault
type and the geometry of the bearing. For this, Mc-
Fadden and Smith (1984) provide a rolling bearing
model. The model is extended by Antoni (2007),
introducing a ball sliding theory and integrating
a random sliding effect, which leads to a rota-
tional model that matches the pulse times of actual
bearings more closely. In order to compute the

induced impulses, the entire bearing and its sup-
porting structure are compared to a single-degree-
of-freedom (SDOF) oscillating system (Hosseinli
et al., 2024; Ai et al., 2023). By combining the ro-
tational and impulse models, the vibration signal
can be characterized as

x(t) =

+∞∑
i=−∞

h(t− iT − τi)q(iT )Ai+n(t). (6)

Here h(·) is the impulse response to a single im-
pact, i the index of the i-th impact due to the fault,
T the time between two consecutive impacts, and
q(iT ) the amplitude modulation function of the
impulse response due to the load distribution.
τi accounts for random fluctuations in the inter-
val between two consecutive impacts (i.e., slid-
ing effects). Ai represents random fluctuations in
the impulse amplitude. The superimposed signal
noise is denoted by n(t). The numerical imple-
mentation of D’Elia et al. (2018) is used as a
foundation to solve equation Eq. (6). In this work,
changes are made to take into account the current
level of degradation in order to generate holistic
run-to-failure data.

The first step of the vibration simulation is
calculating the times at which the fault location
is hit based on its angular position. The resulting
vector serves as the foundation for the second step,
simulating the vibration signal using the SDOF
system. In the simulation model, the operating
scenario of a rotating inner race and a fixed outer
race is considered. Thus, θ corresponds to the
current rotational angle of the shaft and inner race.
In the model the rotational frequency of the inner

Table 1. Overruns per revolution nθfault
for dif-

ferent fault types, where nr is the number of
rolling elements, d the roller diameter, D the
pitch circle diameter, and α the contact angle.

Fault nθfault

Outer race 1
2nr

(
1− d

D cos(α)
)

Inner race 1
2nr

(
1 + d

D cos(α)
)

Rolling element D
d

(
1−

(
d
D cos(α)

)2
)
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race fr(θ) is implemented to be angle-dependent.
Here, the following speed profile is defined to
include deviations in the rotational frequency

fr(θ) = fset + fd · sin(fm · θ). (7)

fset is the set rotational frequency of the inner
race. The deviation is implemented as an angle-
dependent frequency shift characterized by fd and
fm. In addition to the rotational frequency, the
angular difference Δθi between the overruns of
the fault location needs to be calculated. The for-
mulas for the systematic occurrence of overruns
per revolution of the shaft nθfault

are given in
Table 1 for the three fault types. To include a ran-
dom deviation between two consecutive impacts,
Δθτi is added (corresponding to τi in Eq. 6) with
Δθτi ∼ N(μθτi

, σθτi
), resulting in

Δθi =
2π

nθfault

+Δθτi . (8)

Using the speed profile defined in the angular
domain and the angular distances, the inter-arrival
time between two consecutive impacts can be de-
termined with

ΔTi =
Δθi

2πfr(θi)
. (9)

The SDOF system is excited by an impulse with
each impact. Thereby the magnitude of the im-
pulses varies as shown in Eq. (6). For all fault
types, variation stems from the random variable
Ai. For the inner race and rolling element fault,
the variation also results from the function q(iT ),
which depends on the current angular position and
load zone. The impulse response is modeled as

h(t) =
J(d(t))

mωd
e−ζωnt sin(ωdt). (10)

Here, the level of the respective pulse amplitude
depends on the current degradation level d(t).
ζ = c/2

√
mk is the damping ratio, ωn =

√
k/m

is the natural frequency, and ωd = ωn

√
1− ζ2

is the natural damped frequency. In these three
equations, m is the mass, k the stiffness, and c the
damping coefficient of the SDOF system; all are
input parameters by the user. The intended vibra-
tion measurement corresponds to the acceleration
and therefore the second derivative of Eq. (10).

5.2. Vibration signals in the data set

Figure 4 shows examples of simulated vibration
measurement series from the published data set
for different levels of degradation and the three
fault typese. It can be seen that an increase in
degradation is connected to an increase in the
vibration signal magnitude. Moreover, the random
amplitude influences are visible, particularly for
the outer race fault. Beyond this, the typical am-
plitude modulation in the signals for the inner race
and rolling element fault is also recognizable.

Fig. 4. Vibration signals for an outer race, inner race,
and rolling element fault from top to bottom, each with
a medium and severe degradation level.

6. Conclusions

Research on data-driven diagnostic and prognostic
methods requires convenient access to data that
reflect the problem or data scenario being investi-
gated. However, there is a lack of suitable simula-
tion models for flexibly reproducing arbitrary data
scenarios. Therefore, this work introduces such a
simulation model for the machine element of a
rolling bearing. Because the simulation model is
intended to be versatile, it is divided into three
modules, which allows independent parametriza-
tion. These modules consist of the life and fault,

eSDOF system with m = 15, 000 kg, k = 3.5 · 1012 N/m,
and c = 107 Ns/m.
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the degradation, and the vibration signal mod-
eling. The independent parametrization of these
modules provides the user a variety of data scenar-
ios that can be simulated. In addition to this user
parametrization, each module is subject to random
processes. This allows for controlling epistemic
and aleatory uncertainty in diagnosis and prog-
nosis based on the synthetic data of the model.
The model presented is being used to generate and
publish an initial data set on the run-to-failure of
rolling bearings. The model is publicly available
and can be used to generate data sets to support
research on diagnostic and prognostic methods.
In the future, the authors intend to continuously
revise the simulation model to incorporate exten-
sions and improvements.
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