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Managing maintenance activities for large-scale fleets, such as wind farms with numerous wind turbines, presents
a significant challenge in condition-based maintenance. In addition to the curse of dimensionality inherent to
optimizing dynamic decisions for large systems, prior research has primarily concentrated on individual modeling
challenges, such as limited maintenance resources or overall system performance requirements, without fully
addressing the need for a comprehensive solution that accounts for both dimensions. In this article, we propose
a novel approach in the context of condition-based maintenance planning that integrates all three critical factors:
system scale, resource limitations, and performance constraints. Specifically, we develop a constrained multi-agent
Markov Decision Process (MDP) model to tackle the maintenance planning problem for a multi-component system,
and we solve it using a Primal-Dual algorithm. The system includes more than 50 components with known transition
dynamics. At each time step, the planner must decide whether to replace each component, balancing limited
maintenance resources with stringent availability requirements. The goal is to find an optimal policy that minimizes
the expected discounted maintenance cost while adhering to these constraints. Finally, we compare our method’s
performance against baseline approaches, demonstrating its ability to achieve superior trade-offs between cost and
constraint satisfaction.

Keywords: Condition-based maintenance, Constrained Markov Decision Process (CMDP), Large-scale fleet systems,
Resource constraint, Availability constraint, Primal-Dual approach.

1. Introduction

In many industrial applications, numerous sce-
narios require the planning and coordination of
maintenance activities on a large ensemble of
independent and heterogeneous facilities, which
can be conceptualized as a fleet, such as a wind
farm with multiple turbines, a fleet of aircraft, a
railway system or a data center with numerous
servers. The failure of facilities can harm sys-
tem performance and potentially endanger human
lives. However, overly frequent maintenance can

lead to high costs, highlighting the need for a well-
balanced maintenance policy.

Managing the maintenance of such an extensive
system is challenging, as the number of possible
states and actions grows exponentially with the
number of facilities, which makes it difficult for
traditional methods to compute maintenance plan-
ning decisions within a reasonable time frame.
Furthermore, these decisions should be made sub-
ject to multiple constraints, such as limited main-
tenance resources and system-level performance
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requirements, further complicating the decision
problem. An adapted framework is, therefore,
needed to model and optimize maintenance plan-
ning for large-scale fleet systems effectively.

We propose to model this problem in the
Markov Decision Processes (MDP) framework
to address this challenge because of its sequen-
tial decision-making nature. Numerous studies
(Zhou et al., 2022; Xu et al., 2024; Arcieri et al.,
2024) have developed methods based on MDP for
condition-based maintenance (CBM) problems.
The first article that details Constrained MDP
(CMDP) is Altman (1999). The author pointed
out that such a model facilitates the modeling of
sequential decision-making problems with multi-
ple objectives, which is ideal for obtaining main-
tenance decisions that reduce maintenance costs
while balancing maintenance resources and fleet
performance in a dynamic setting.

Limited research has focused on CBM prob-
lems utilizing CMDP. Xu et al. (2022) propose
a risk-aware maintenance model, which guaran-
tees the system’s safety level when optimizing
the maintenance strategy by introducing risk met-
rics (e.g., Value-at-Risk and Conditional Value-at-
Risk) as constraints. However, this model treats
the system as an indivisible whole, so how it
describes the states and actions of the system does
not apply to the large, heterogeneous fleet. This
model also does not take into account the mainte-
nance resource constraints.

Other works proposed frameworks for mainte-
nance
optimization problems for large multi-component
systems that consider other constraints. Bansal
et al. (2025) propose a Component-Wise MDP
and Adjusted Component-Wise MDP approach
for solving condition-based maintenance prob-
lems for large heterogeneous systems with eco-
nomic dependencies. However, the authors do not
consider the system’s performance and resource
constraints. Some other works (Glazebrook et al.,
2005; Cho et al., 2015; Abbou and Makis, 2019;
Ruiz-Hernández et al., 2020; Demirci et al., 2024)
have used Restless Multi-Armed Bandit (RMAB),
which allows one to consider hard constraints on
the available maintenance resources. In this study,

the soft constraint we apply to maintenance re-
sources corresponds to the relaxed form of the
hard constraint in the RMAB framework. How-
ever, these papers do not consider the system’s
performance requirements.

In this work, we consider a sequential decision-
making problem regarding the maintenance of a
heterogeneous large fleet, accounting for the sys-
tem performance requirements and the constraints
of limited maintenance resources. We describe
the problem as a Constrained MDP containing N

sub-problems, each of which can be considered
as an independent MDP, but system-level con-
straints couple the N sub-problems. We utilize the
primal-dual approaches in Chen et al. (2024) and
Moskovitz et al. (2023) to obtain an optimal policy
for each sub-problem of the system. We demon-
strate through a small numerical experiment that
the policies obtained by the method in this paper
are very close to the theoretical optimum. We then
conduct a large-scale numerical experiment and
compare the results with several classical CBM
benchmarks to demonstrate the advantages of our
approach. To the best of our knowledge, this study
is the first to propose a maintenance optimization
framework for large-scale fleets under resource
and performance constraints in a tractable way.

This article presents the following structure.
In section 2, we describe the maintenance prob-
lem and its formulation. Section 3 introduces the
Primal-Dual Algorithms and a modified version
with Optimistic Ascent-Descent. Section 4 illus-
trates the numerical experiments of two sizes of
instances of fleet. Section 5 concludes our work
and provides some ideas for future work.

2. Problem Description

2.1. A multi-component System

The system we study comprises N components,
which may differ from one another, with perfect
monitoring. Functionality and degradation pro-
cesses are independent between components. Ac-
cording to the monitoring information, the system
planner decides which components to replace at
every time step. Replacing a component is an
immediate process that engages one unit of main-
tenance resource for a single time step.
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There are two constraints to this problem. (i)
Limited maintenance resources: On average, M
units of maintenance resources are available per
time step. (ii) Performance requirement: The sys-
tem’s average number of functioning machines
should be more than K.

A component’s degradation is similar to the
process described in Roux et al. (2022). Assum-
ing that each component in the system has only
one failure mode, we consider a discrete-time and
finite-state Markov chain to describe the degrada-
tion level. We abstract the state of a component
into L levels, L ≥ 2. The set of component’s
state is {0, 1, ..., L − 1}, where the smaller the
number indicates, the lower the degradation level.
0 and L − 2 stand for as-good-as-new state and
the most degraded functioning state respectively,
and L−1 stands for the failed state. A component
may degrade and move to the next more degraded
state within a given time step or go to the fail-
ure state; otherwise, it will remain in its current
state. Moreover, there are two additional settings
for this Markov chain. (i) The component cannot
spontaneously transit from a more degraded state
to a healthier state. (ii) The more degraded the
component is, the higher the probability it will go
directly to the failure state.

We aim to find a maintenance policy for this
system to minimize the total maintenance cost
while satisfying resource constraints and perfor-
mance requirements.

2.2. Formulation

We model the system using the Constrained
Markov Decision Processes (CMDP) framework,
where each component functions as an indepen-
dent MDP, interconnected by two soft constraints.
Consider an MDP (S,A, P a, r, {ci}i=1,2, γ). Let
S = {0, 1, ..., L − 1} be the state space of the
component. A = {0, 1} is the action space of the
component, where 1 represents the active action
(replacement), while 0 represents the passive ac-
tion (do nothing). P a is the transition probability
matrix under action a ∈ A. Let p(s′|s, a) denote a
transition probability for a component from state
s to s′ under action a, where s, s′ ∈ S . Then we
have P a = [p(s′|s, a)]s,s′∈S . For example, when

L = 3, we have

P 0 =

⎡
⎣ 1− p01 − p02 p01 p02
0 1− p12 p12
0 0 1

⎤
⎦ ,

P 1 =

⎡
⎣ 1 0 0

1 0 0

1 0 0

⎤
⎦ .

In addition, we have p02 < p12 to meet the second
degradation setting described in the previous sec-
tion (2.1). r is a reward function of a state-action
pair, which can be defined as follows.

r(s, a) =

⎧⎪⎪⎨
⎪⎪⎩
0 if a = 0 and s ∈ S\{L− 1}
−cOP if a = 0 and s = L− 1

−cR if a = 1

.

{ci}i=1,2 is a collection of auxiliary cost functions
of a state-action pair in the constraints. More pre-
cisely, c1 corresponds to the constraint of limited
maintenance resources,

c1(s, a) = a.

c2 corresponds to the performance requirement,
which indicates whether a component is in the
failed state,

c2(s, a) = 1{s=L−1}.

γ is the discount factor. Let π denote a stochastic
policy at the component level. The occupancy
measure of a state-action pair induced by a policy
π is defined as follows.

xπ(s, a) = (1−γ) ·Eτ∼π

[ ∞∑
t=0

γt1{St=s,At=a}

]
,

where τ is the trajectory of the component.
At the system level, let S = ×N

n=1Sn de-
note a state space of the system and st =

(s1,t, ..., sN,t) ∈ S denote a state of the system at
time step t. Let A = ×N

n=1An denote the action
space of the system, and at = (a1,t, ..., aN,t) ∈
A denote an action of the system at time step t.
The reward of the system at a specific time step
t is the sum of the reward of each component,
i.e. r(st,at) =

∑N
n=1 r(sn,t, an,t). Furthermore,

the transition probability at the system level is the
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product of the transition probability of compo-
nents: P a =

[∏N
n=1 p(s

′
n|sn, an)

]
s,s′∈S

. di is

the bound of the constraint i. Specifically, d1 =

M , d2 = N − K. Let π = (π1, ..., πN ) be a
stochastic policy at the system level.

Let Jr(π) be the total expected discounted re-
ward induced by policy π. The following expres-
sion gives its definition.

Jr(π)

= (1− γ) · Eτ∼π

[ ∞∑
t=0

γt
N∑

n=1

rn(Sn,t, An,t)

]
,

where τ is the system’s trajectory, and Sn,t and
An,t are the random variables of state and action
of component n, respectively, at time step t. Sim-
ilarly, the following expression gives the i-th total
expected discounted auxiliary cost under policy π.

Jci(π)

= (1− γ) · Eτ∼π

[ ∞∑
t=0

γt
N∑

n=1

ci,n(Sn,t, An,t)

]
.

The auxiliary cost is related to the model’s main-
tenance resources and performance requirements.
The Jc1

(π) and Jc2
(π) represent the average

number of resources used by the system and the
average number of failed components, respec-
tively.

Then, we can express our problem as

max
π

Jr(π)

s.t. Jci(π) ≤ di, i = 1, 2.
(1)

2.3. Lagrangian Relaxation

In order to solve this constrained optimization
problem, we perform a Lagrangian relaxation on 1
(Adelman and Mersereau, 2008). We put the two
constraints into the objective function and get the
Lagrangian:

L(π, λ) = Jr(π) +

2∑
i=1

λi(di − Jci(π))

=

2∑
i=1

λidi +

N∑
n=1

Jλ
n (πn),

(2)

where

Jλ
n (π) = (1− γ) · Eτ∼π

[ ∞∑
t=0

γtrλn(s, a)

]
, (3)

and

rλn(s, a) = rn(s, a)−
2∑

i=1

λici,n(s, a). (4)

Thus, the problem 1 takes the following equiv-
alent form:

inf
λ

sup
π

L(π, λ). (5)

Then, the original problem splits into N sub-
problems, each of which, under a fixed λ, can
be seen as a modified unconstrained MDP with
instantaneous reward rλn.

3. Primal-Dual Approach

3.1. Primal-Dual Algorithm to CMDPs

Classical methods for solving a CMDP rely on
linear programming; however, it is intractable for

Algorithm 1 Primal-Dual Algorithm to CMDPs
(Chen et al., 2024)
Input: step size η, projection area ΛM .

Initialize πn,0 for n ∈ {1, ..., N}; λi,0 for i ∈
{1, 2}.
for t = 1, 2, ..., T do

Compute the occupancy measure
xπn,t−1 , n ∈ {1, ..., N} by solving the linear
system 6.

Compute the total expected discounted aux-
iliary costs Jci

(πt−1), i ∈ {1, 2} via equation
7.

Compute the Qπn,t−1,λt−1 via solving the
linear system based on equation 8.

Update λ via equation 10.
Update π via equation 9.

end for
λ̄ = 1

T

∑T
t=1 λt.

x̄n = 1
T

∑T
t=1 x

πn,t , ∀n ∈ {1, ..., N}.
π̄n(·|s) = x̄n(s,·)∑

a∈A x̄n(s,a)
, ∀n ∈ {1, ..., N}, s ∈

S .
Output: average policy π̄, average dual variables

λ̄.
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a CMDP consisting of many sub-problems as the
state space and action space are too large. There-
fore, we use the primal-dual approach proposed in
Chen et al. (2024), which allows the two groups
of variables in L(π, λ) to be updated alternately
and eventually find the saddle point by averaging
the trajectory of primal and dual variables. We
update λ using traditional gradient descent and up-
date π with a single Regularized Policy Iteration
(RPI) step. Since the update in the value of λ in
each iteration changes the equivalent N modified
unconstrained MDPs of the inner problem in 5,
performing only one step of the RPI instead of
the complete RPI reduces the computational bur-
den. It is worth mentioning that we cannot simply
average the resulting policies at each iteration.
Instead, we first average the occupancy measures
corresponding to each policy in each iteration and
then derive the policy from the resulting average
occupancy measure.

More specifically, in each iteration of the
primal-dual algorithm, we first compute the occu-
pation measure of each component corresponding
to the current policy by solving a linear system.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xπ(s, a)∑
a′∈A xπ(s, a′)

= π(a|s),

∀s ∈ S, a ∈ A;∑
(s,a)∈S×A

xπ(s, a)(1{s=s′} − γP (s′|s, a))

= (1− γ)μ0(s
′), ∀s′ ∈ S.

(6)
Then, we compute the value of the total ex-

pected discounted auxiliary costs according to the
following equation.

Jci
(π) =

N∑
n=1

∑
s∈S

∑
a∈A

xπn(s, a)ci,n(s, a) (7)

We also compute the Qπ,λ under the current
policy, which is the state-action value of each of
the N modified unconstrained MDPs equivalent
to the inner problem of Problem 5. It is defined as
follows:

Qπ,λ(s, a)

= (1− γ) · Eτ∼π

[ ∞∑
t=0

γtrλ(St, At)|s, a
]
.

We compute the value of Qπ,λ by solving the
following linear system.

Qπ,λ(s, a)

= (1− γ)rλ(s, a)

+ γ
∑
s′∈S

∑
a′∈A

P (s′|s, a)π(a′|s′)Qπ,λ(s′, a′),

∀s ∈ S, a ∈ A.
(8)

After calculating the necessary values, the next
step is to update the policy and dual variable. Let
t be the current iteration number, and πt−1 and
λt−1 be the results of the previous iteration. We
update the policy with the following equation.

πn,t(·|s)←Z−1
t−1πn,t−1(·|s) expQπn,t−1,λt−1(s, ·),
∀n ∈ {1, ..., N}, s ∈ S

(9)
where Zt−1 =

∑
a∈A πn,t−1(a|s) ·

expQπn,t−1,λt−1(s, a) is a normalizing factor.
The update of λ is as follows.

λt ← ProjΛM
{λt−1 − η(∂λL (πt−1, λt−1))},

(10)
where ΛM = {λ|λ ∈ R2

+, ‖λ‖ ≤ M} is a pro-
jection area which guarantees that the dual vari-
able λ is bounded and positive. [∂λL (π, λ)]i =

di−Jci
(π) is the distance between the bound and

the total expected discounted auxiliary cost in the
constraints.

After completing all primal-dual updates, we
output the average dual variable and the average
policy derived from the trajectory. The complete
procedure is presented in Algorithm 1.

3.2. Policy-based Reinforcement
Learning with Optimistic
Ascent-Descent (ReLOAD)

Although Algorithm 1 can finally get the optimal
policy, it needs to average the trajectory, which
means that the policy obtained by the last iteration
is not necessarily optimal. Next, we take the idea
of Optimistic Optimization from Moskovitz et al.
(2023) to achieve last-iterate convergence.

We achieve this change in each iteration by re-
placing the gradient gt with the optimistic gradient
g̃t, where g̃t = 2gt − gt−1 = gt + (gt − gt−1).
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With this substitution, the trajectory in the primal-
dual algorithm no longer oscillates back and forth
within the same interval. Instead, the oscillation
region gradually shrinks toward the optimum and
eventually converges.

Specifically, we need to change 10 and 9 as
follows.

λt ←ProjΛM
{λt−1 − η(2∂λL (πt−1, λt−1)−

∂λL (πt−2, λt−2))},
(11)

πn,t(·|s)←Z−1
t−1πn,t−1(·|s) exp(2Qπn,t−1,λt−1(s, ·)
−Qπn,t−2,λt−2(s, ·)),
∀n ∈ {1, ..., N}, s ∈ S,

(12)
where Zt−1 =

∑
a∈A πn,t−1(a|s) ·

exp(2Qπn,t−1,λt−1(s, a) − Qπn,t−2,λt−2(s, a)) is
a normalizing factor. Upon completing all primal-
dual updates, we output the dual variable and
policy of the last iteration. The entire procedure
is illustrated in Algorithm 2.

4. Numerical results

4.1. A 3-component system

First, we consider a fleet comprising three differ-
ent components with three state levels. The degra-

Algorithm 2 Policy-based Reinforcement Learn-
ing with Optimistic Ascent-Descent (ReLOAD)
(Moskovitz et al., 2023)
Input: step size η, projection area ΛM .

Initialize πn,−1, πn,0 for n ∈ {1, ..., N};
λi,−1, λi,0 for i ∈ {1, 2}
for t = 1, 2, ..., T do

Compute the occupancy measure
xπn,t−1 , n ∈ {1, ..., N} by solving the linear
system 6.

Compute the total expected discounted aux-
iliary costs Jci

(πt−1), i ∈ {1, 2} via equation
7.

Compute the Qπn,t−1,λt−1 via solving the
linear system based on equation 8.

Update λ via equation 11.
Update π via equation 12.

end for
Output: policy πT , dual variables λT .

dation transition matrix of the three components is
as follows:

P 0
1 =

⎡
⎣0.5 0.3 0.2

0 0.7 0.3

0 0 1

⎤
⎦ , P 0

2 =

⎡
⎣0.5 0.3 0.2

0 0.5 0.5

0 0 1

⎤
⎦ ,

P 0
3 =

⎡
⎣0.3 0.3 0.4

0 0.5 0.5

0 0 1

⎤
⎦ .

(13)
Table 1 lists the other parameters used in the
experiments.

Table 1. Experiment Parameters

Description Value

Opportunity cost cOP 2
Replacement cost cR 1
Maintenance resource M 1.5
Performance requirement K 2.4

We used linear programming-based methods to
obtain theoretical values for dual variables and oc-
cupation measures. Next, we ran 3×105 iterations
using the primal-dual and ReLOAD algorithms.

Figure 1 illustrates the trajectory of the second
dual variable associated with the performance re-
quirements over the first 1.5 × 105 iterations. We
do not show the dual variable associated with the
maintenance resource constraint because, in this
instance, the maintenance resource is relatively
sufficient, so the corresponding total expected
discounted auxiliary cost does not reach the set
bound. We can see that the trajectory of the second
dual variable in the primal-dual oscillates in the
same interval all the time. Therefore, the results
of dual variables must be averaged before output.
The trajectory of the dual variable obtained by
ReLOAD is gradually converging. The output of
both algorithms eventually converges to the theo-
retical value.

Figure 2 shows the heat map of the theoretical
value of the occupancy measure and the compu-
tation results of the two algorithms. We can see
that the output occupancy measure of the two
algorithms is very close to the theoretical value.
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Fig. 1. Trajectories of 2nd dual variable

4.2. A 50-component system

Next, we consider a fleet consisting of five types of
components, each with a distinct transition matrix
and ten components per type. Each component
has five possible states. The transition matrices
and maintenance costs are randomly generated
while adhering to the specifications described in
Section 2.1. We set the constraint bounds such that
the average usage of maintenance resources does
not exceed 25 and the average number of failed
machines does not exceed 10.

Table 2. Results

Policy Jr Jc1 Jc2

(≤ 25) (≤ 10)

PD -20.57 14.77 9.53
ReLOAD -20.57 14.77 9.53
T1 -19.25 13.34 10.66
T2 -17.53 12.28 11.97
T3 -17.34 12.17 12.13
T4 -17.32 12.16 12.16

Note: PD and ReLOAD represent the stochastic policy ob-
tained by the primal-dual and ReLOAD algorithms. T1, T2,
T3, and T4 represent the policy with state thresholds of 1,
2, 3, and 4, respectively. Italicized numbers indicate that
the result satisfies the constraint. The upper bounds of the
constraints are in parentheses.

We computed 3 × 105 iterations using the
primal-dual algorithm and ReLOAD algorithm,
respectively. In this example, the system has a
state space of size 550 = 8.88 × 1034 and an
action space of size 250 = 1.13 × 1015. Solv-
ing this problem using LP would require 1050

variables and 8.88 × 1034 constraints, making it
computationally intractable. Therefore, we adopt
a threshold-based heuristic policy for comparison.
Expressly, we set the threshold to 1, ..., L − 1,
and a component is immediately replaced once its
state reaches or exceeds the specified threshold.
We simulated 100 episodes of length 200 with
different random seeds for each policy, calculated
their total empirical discount reward and total
empirical discount auxiliary costs, and averaged
the results. Table 2 presents the results. As can
be seen from the results, both algorithms used
in this paper produce policies that can conform
to both constraints. However, the threshold-based
algorithm cannot do so.

5. Conclusion

This paper investigated the condition-based main-
tenance (CBM) problem for a heterogeneous fleet
under limited maintenance resources and specific
performance requirements. To address this chal-
lenge, we proposed a Constrained Markov Deci-
sion Process (CMDP)-based model that efficiently
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Fig. 2. Theoretical occupancy measure versus occu-
pancy measure computed by primal-dual and ReLOAD
algorithms

balances system performance and resource con-
straints. Moreover, we exploit the primal-dual ap-
proach to compute the optimal policy, overcoming
the curse of dimensionality. The results demon-
strate that, within our proposed framework, the
obtained maintenance policy converges to the op-
timal value and satisfies all constraints. In con-
trast, the threshold-based heuristic approach can-
not guarantee constraint satisfaction. In future
work, we aim to recast the soft constraint of lim-
ited resources into a hard constraint and consider
economic dependency between components.
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