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Recent advances in the development of Al has, predictably, led to a massive increase in research on how to make
Al safe. While this is a valid and important quest, this paper emphasizes the difference between requiring an Al to
be safe, and that Al is used safely. Using Al to control a system with potentially serious safety risks, even with the
goal of making the system safer through the use of Al, doesn’t necessarily imply that the Al itself must be safe.
Focusing too much on making Al safe could result in a two-fold problem: 1) We cannot fully utilize the potential of
Al (because) 2) We struggle with demonstrating adequate safety for the Al It is our opinion that problem 2 often
can be avoided, and problem 1 alleviated because problem 2 is not relevant. This, however, requires a somewhat
different way of thinking about Al in safety-critical systems than seems often to be the case. In this paper we discuss
these problems, illustrate them with examples, and show that there is already much knowledge on how to achieve
documented safety of Al-enabled systems without having to provide safety assurance for the Al itself.
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1. Introduction argue that using Al in safety-critical systems is
A recent survey of approaches to using Artificial of;en more a concern for reliability than it is for
safety.

Intelligence in Safety-Critical Systems within in-
dustry and transportation Perez-Cerrolaza et al.
(2024), covering close to 300 sources, documents
two things very clearly: Firstly, the last 5-8 years
have seen a significant increase in research related
to Al and safety, which is not surprising given the
success of Al in this period. Secondly, there is
much focus on how to assure the Al itself is safe,
so that it can be used to manage safety.

There is a dilemma here: Requiring the Al itself
to be safe is going to put constraints on the Al,
thus reducing its capabilities and therefore the
value of using Al in the first place. While there are
good reasons to research the possibility of using
Al as part of safety functions, we are concerned
that this will have limited value in reality and that
this could lead to a suboptimal utilization of Al in
safety critical contexts.

The goal of this paper is to debate and clarify
the differences between the concepts of ”safe AI”
and “safe use of AI”, and look into some of the
alternative strategies for creating benefits from Al
in systems where safety is a concern. We will also

This paper primarily discusses Al within the
context of Cyber Physical Systems (CPS), and
our focus is on systems where failures could po-
tentially cause serious harm to people or the en-
vironment. This means that we address the use
of Al for autonomous control of physical sys-
tems/processes, i.e. industrial systems, transporta-
tion, etc. Our focus is on technical aspects, and
we will therefore not consider human-Al interac-
tion as part of this paper. While we do not make
any specific assumptions on the type of Al, we
are concerned with enabling the most capable Al
possible. This means that Deep Neural Networks
(DNNgs) is of special interest for our research.

This paper is structured as follows: Chapter 2
gives a brief review of approaches to "Al and
safety”. In Chapter 3 we will argue that focusing
on making Al itself safe could cause suboptimal
use of Al in safety-critical systems, while Chapter
4 shows that benefits from Al can be realized
without the Al becoming safety-critical. Chapter
5 builds on Chapter 4, showing that appropriate
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choice of system architecture may even allow
adaptive (thus continuously improving) Al as a
central element in safety-critical systems. Fact is
that the theory and methods for doing this to a
large extent already exists. Chapter 6 presents a
general discussion on the topics of this paper,
before Chapter 7 summarizes and concludes the

paper.

2. Al and safety - A brief review

The topic of using Al in safety-critical systems
is not a new one. In fact, there was a lot of
activity already 20 years ago. Giving a complete
overview of the history and status-quo is not possi-
ble within the context of this paper, so we refer to
Perez-Cerrolaza et al. (2024) and Bloomfield and
Rushby (2024) for more comprehensive presenta-
tions. Between them, they provide several hundred
references to work of relevance to safety and Al It
is also worth noting that Al and safety is addressed
in standardization activities, e.g. ISO/IEC5469
(2024). In this paper, we limit the presentation
to aspects of relevance for the discussion in this
paper.

There are many approaches on how to utilize Al
in safety-critical systems, and many ways to man-
age safety in Al-enabled systems. As described in
Bloomfield and Rushby (2024), from approaches
focusing on system dependability by minimizing
the need for trust in the Al, to approaches seeking
to establish trust in the Al itself, there is in reality
a spectrum of approaches. Perez-Cerrolaza et al.
(2024) defines several categories for both the use
of Al, and for approaches to manage and docu-
ment safety.

A broad way of classifying approaches to using
Al in safety-critical systems is as either black-
box or white/grey-box. The difference being that
in black-box approaches you make no assump-
tions about the inner structure or workings of the
Al while in the white/grey box case you assume
access to at least some information, and/or are
able to manipulate the internal workings of the
AL Within each of these there is a multitude of
approaches, and the following is just a brief and
simplified glimpse.

Techniques relevant for white/grey-box ap-

proaches include formal verification Vassev
(2016) and various monitoring techniques. For-
mally verifying safety properties of Al is very
attractive, because it provides a high level of trust.
However, formally verifying DNNs with large
numbers of parameters is not a practical reality,
and we will not go further into this topic. Moni-
toring was among the early proposed approaches
Cukic et al. (2006), and can be done in many ways.
One possibility is to use monitoring to control how
the Al evolves during training, another to monitor
the output from the Al in order to check its va-
lidity before passing it on. Formal approaches and
monitoring may also overlap, e.g. in cases where
formally specified rules are used in the monitoring
of the Al. Again, we refer to Perez-Cerrolaza et al.
(2024) for a thorough presentation of the various
approaches.

Black-box approaches are in reality limited to
monitoring/evaluation of the AI’s output, and the
use of “safety-bag” techniques. Safety-bag means
that the system has an architecture where failure of
the AI can be prevented from causing hazardous
system states. Monitoring of the AI’s output must
in this case be done without knowledge of the
Al itself, i.e. it must be based on system models.
An important distinction exists between monitor-
ing the AI’s outputs, and monitoring the system’s
state. In many cases, the state of a system will
change slowly enough to allow monitoring of the
AT’s effect on the system before deciding whether
an intervention is necessary. The latter approach
allows the AI the most ’freedom”, i.e. interven-
tions are done at the last possible moment.

Monitoring and safeguarding systems based on
models is in reality an important topic of its own,
and has become increasingly important as the use
of advanced autonomy (with or without AI) has
increased. Ames et al. (2019) provide a recent
discussion of control theory in the context of
safety, while Garcia and Ferndndez (2006) and
Osborne et al. (2021) discusses the possibility of
safe online learning of control systems. ASTM
(2021) provides a specific way to go about this,
through defining Run Time Assured (RTA) archi-
tectures. This provides an architectural framework
for developing a system which provides run-time
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assurance as an alternative to design-time assur-
ance to fulfill safety requirements for an unassured
or complex function (e.g. Al). An early approach
similar to this, but specifically aimed at Al, was
discussed in Winther (20006). It is also worth men-
tioning that Bloomfield and Rushby (2024) sys-
tematically lists a number of relevant architectural
concepts.

Although non-trivial, the various techniques for
real-time monitoring of black-box control algo-
rithms represent approaches with potentially great
value for the practical use of Al in safety-critical
systems, exactly because they treat Al as a black-
box.

Before we end this chapter we also need to
address the issue of how to convincingly argue
that an Al-enabled safety-critical system is safe.
While there are standards and guidelines emerg-
ing, addressing Al in the context of safety, e.g.
ISO/IEC5469 (2024); DNV (2023), we will focus
on certain specific principles we consider most
flexible and capable as a general approach to doc-
umenting and communicating assurance of Al-
enabled safety-critical systems. A methodology
that has proven to work well for making safety
cases for complex systems is the use of graphical
argumentation notations, such as e.g. Goal Struc-
turing Notation (GSN) SCSC (2021).

What type of evidence we need to produce to
argue adequate safety depends directly on how
the Al is used in the system. If the Al is a key
safety-element, we need evidence addressing the
Al specifically. In cases where safety is managed
by other means, e.g. safety-bag techniques, the
evidence need to address architectural issues and
the safety of non-Al elements.

Hawkins et al. (2021) has proposed a GSN-
based methodology directly addressing the assur-
ance of ML-elements, called Assurance of Ma-
chine Learning for use in Autonomous Systems
(AMLAS). The aim of AMLAS is to support
systematic integration of safety assurance while
developing ML components, and the generation
of evidence justifying the safety when integrat-
ing ML-components into autonomous systems.
AMLAS consists of a 6-stage iterative process,
where the use of assurance argument patterns are
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an important part. These are standardized pieces
of argumentation described using GSN-notation.
Hawkins et al. (2023) presents a practical applica-
tion of AMLAS.

While AMLAS is limited to the ML/AI com-
ponents themselves, Bloomfield et al. (2021)
presents safety case templates for the broader
context of autonomous systems, using many of
the same principles as AMLAS, but also includes
approaches to manage situations where ML/AI is
an element of a bigger system.

We will now turn our focus to what we consider
to be potentially problematic about aiming for safe
Al

3. Why focusing on safe AI might not be
the best strategy

A fact that is important to remember regarding Al
and safety is that Al is software, and the level of
assurance needed for safety-critical software will
also be required for safety-critical Al. The ques-
tion, and focus of much of the ongoing research,
is therefore on how to practically achieve this.

A fundamental requirement for assurance is
transparency and predictability. If we cannot de-
termine how a system behaves, we cannot trust
it. One of the most basic types of information
on a system’s behavior comes from testing. When
testing, we can treat the system as a black box, and
don’t have to make any assumptions on its internal
workings. However, there are substantial limita-
tions regarding the level of assurance this can
provide. As demonstrated more than three decades
ago, solely basing assurance on testing is not fea-
sible Butler and Finelli (1993); Littlewood and
Strigini (1993). Although there are strategies that
to some extent alleviate the problem, e.g. through
bootstrapping Bishop et al. (2021), statistical ap-
proaches will have limited value with regard to
providing assurance. This means that to achieve
any level of assurance reasonable for safety-
critical Al, we need knowledge of, and/or control
with, the inner workings of the AI. This means
that we are, in reality, limited to white/grey-box
techniques, which implies constraints on the Als
we use.

Obvious options are:
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e Using Al-techniques for which assurance
is possible.

e Controlling how machine-learning (ML)
models evolve during training. Which
would require that we identify and for-
mulate rules/requirements the Al must
comply with.

e Run-time monitoring of the Al’s output,
which means that we must establish rules
the output must satisfy.

The first option implies a serious limitation
on what Al-techniques can be used, and ML-
based approaches will be challenging. Monitor-
ing and controlling how an ML-based model
evolves during training (the second approach
above) provides more options, but ensuring that
all rules/requirements have been identified and
satisfied, is not a trivial task. This approach will
likely have to be conservative, and thus put signif-
icant limitations on the algorithm’s possibility to
learn optimally. The third option is the one that
provides the greatest degree of freedom, and it
is supported by established methods and theory
(e.g. Ames et al. (2019)). However, this approach
will limit the AI's behavior in the way that any
output not considered acceptable by the monitor
will be discarded, even if that output in reality is
“smarter” than that of a conventional algorithm.
L.e., the smartness of the Al is limited by the
monitor.

The effect of these issues is that aiming for
safe Al will likely limit the effect we can get
from using Al thus potentially representing a sub-
optimal strategy for utilizing Al in safety-critical
contexts. Whether this is the case, however, de-
pends on whether we can utilize Al in a safety-
critical system while limiting the criticality of the
Al itself. This is the topic of the next chapter.

4. Realizing the benefits of Al in
safety-critical systems without the Al
becoming safety-critical

Safety is never the primary function when we de-
velop new systems. Safety is something we some-
times need to manage, in order to get the func-
tionality we need and want. The primary function
of a car or an aircraft is to transport people and

things from one place to another, but because the
transport may fail in ways that can cause harm, we
need to ensure that these systems, in addition to
being effective and efficient in doing their primary
task, also are safe. Thus, whenever we consider
using Al in a system where safety is an issue, it
is paramount that we really understand what we
want to get from using the AL. As we will see later,
using a common approach to managing safety,
using Al in safety-critical systems will often be
a reliability problem, not a safety problem. The
following example, while somewhat simplified
compared to the real world, illustrates the points
above.

A modern car is typically equipped with cam-
eras and Al image analysis capabilities, enabling
the car to establish a real-time model of its sur-
roundings. This model can be used for many
things, e.g. adaptive cruise control, conflict avoid-
ance (warning of other cars in driver’s blind
spots), lane assist and collision avoidance. Of
these, only the last two are truly safety functions.
Adaptive cruise control and conflict avoidance are
not critical by themselves, because safety is man-
aged by the collision avoidance function. Using
Al as part of adaptive cruise control and conflict
avoidance is sensible, because this will enable
more sophisticated handling and smoother driving
than is possible with simpler methods. It is also
not problematic with regard to safety, because
safety is managed outside these functions. While
it is undoubtedly tempting to use Al also for lane
assist and collision avoidance it would require us
to establish a high level of assurance for the Al.
The question is whether Al is necessary to realize
these safety functions. Looking closer, we see that
(in this case) it is not:

e Lane assist can be achieved by e.g. hav-
ing a radiating cable (antenna) in the road
base layer, detectable by sensors on the
car. This is similar to the classic case
of robots following white or black lines,
and only require a few lines of basic
programming.

e Collision avoidance can be achieved us-
ing LIDAR/RADAR and simple rule-
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based logic.

Ensuring safety by having a “safety layer”, of-
ten accomplished using basic conventional tech-
nology, is of course a well-known approach. We
see it in nuclear power plants, in the form of re-
actor trip systems, and railway signaling systems
which will go to a fail-safe state (signals set to
”stop”) if any of a number of failure conditions are
detected. It is therefore imperative to be conscious
on how, and for what, the Al is used, and that using
conventional ways of achieving safety would help
us avoid making the Al unnecessarily critical.

However, assuming that conventional safety
functions are available, using Al as part of higher-
level functions in a safety context is not without
problems. Unexpected behavior of the Al will
likely have the effect of triggering the safety
functions, thus causing reliability issue. However,
managing a reliability issue is clearly preferrable
to safety issues, because the assurance needed
usually will be much less rigorous.

In the next chapter we will turn our attention
to the practical issues on how to exploit Al in
safety-critical systems, and specifically address
the potential of using reinforcement learning.

5. Practical approaches to enable
continuously improving Al in
safety-critical systems

The main reason we want to use Al in the con-
trol of systems is that Al potentially perform
better than conventional models. If we can also
allow the Al to continue to learn while in op-
eration, the performance of the Al-model would
steadily adapt and improve. The problem is, of
course, that assuring safety of continuously im-
proving Al is even more challenging than for pre-
trained Al. However, from the previous chapters
we know that there are approaches where safety
is assured through redundancy, e.g. Run Time
Assured (RTA) architectures ASTM (2021) and
various strategies for defense in depth Bloomfield
and Rushby (2024). Furthermore, because these
approaches considers the Al as a black box, it
doesn’t really matter whether the Al continues to
improve or not. As we have seen, there is even re-
search specifically focused on safe online learning
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of control systems Osborne et al. (2021).

In this chapter, we will discuss practical ap-
proaches to enabling reinforcement learning in the
control loop of safety-critical systems, addressing
both system design issues and how to provide
assurance arguments on safety. The theory is al-
ready there, so our focus is on how to do it. In
the following subsections we will address two
specific approaches to using Al in safety-critical
systems, both are variations of “Al-upgrading”.
When introducing Al to an existing system, we
have the benefit of having access to an already
assured system.

It should be noted that the following discussion
focuses on principles, and therefore is simplified
as compared to real-world cases. In the real world,
there will be a number of practical and formal
issues that must be addressed.

5.1. Al-upgrade: Scenario 1

In this scenario we assume that the the system
has a verified safety function that is (adequately)
independent of the control system, as illustrated in
Figure 1. Solutions similar to this are found in e.g.
nuclear power plants.

Safety sensors
Control sensors

EUC Cont'rol Safgty
logic logic

[€—Control actuators

|¢——Safety actuators:

Fig. 1. Control system with an independent safety
function. (EUC = Equipment Under Control, e.g. a
chemical plant, self-driving car, etc.)

This means that we have:

e A pre-existing control system we know
performs fairly well, and in particular
does not cause the activation of safety
functions more often than is acceptable.

e A safety function that has been assured
as adequately safe.
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We can exploit this as illustrated in Figure 2.
This architecture is a combination of Architecture
2 in Bloomfield and Rushby (2024) and a safety-
bag technique where the state of the system is
monitored. Note that the monitor is a decision
device, and that for every cycle of reading sensors
and commanding actuators, the monitor decides
whether it is the Al or the pre-existing control
logic that shall be allowed to control the process
in the next cycle of the control loop. The monitor
is placed upstream of the Al because it monitors
the effect of the Al on the system, not the output
from the Al

Safety sensors—

|_Control sensors,
A 4

@ Safety

ogic

Control
logic

EUC

Al

[¢——Control actuatorsJ
|@—— Safety actuators

Fig. 2. Introducing Al, exploiting existing resources.

An important point here is that in this specific
case the safety-bag technique is used to ensure re-
liability, not safety, because safety is managed by
the dedicated safety logic. However, this doesn’t
mean that safety is necessarily unaffected by the
change. In a very simplified form, illustrated using
Goal Structuring Notation (GSN) SCSC (2021),
arguing for safety must be adapted as seen by
comparing Figures 3 and 4.

What is required, from a safety perspective, is
therefore only to show that the introduction of a
monitor and the Al will not affect the safety func-
tion. Given that this was possible in the original
case, there is no reason that this should pose a
serious problem.

The main benefits of the architecture in Figure
2 are that safety will be as before, and that the use
of the monitor and the pre-existing control logic

System is
safe

Safety function is verified, and
independent of control loop

Safety function
independent of
control loop

Safety function
verified

Fig. 3.
.

Safety argument for the architecture in Figure

System is
safe

!

Safety function is verified, and
independent of control loop,
monitor and Al

Safety function
verified

Safety function
independent of Al

Safety function
independent of
control loop

Safety function
independent of
monitor

Fig. 4. Safety argument for the architecture in Figure
2.

ensures that the Al doesn’t significantly reduce
reliability. It is also obvious that this set-up will
allow online training of the Al, i.e. reinforcement
learning. The “price” we must pay to achieve this,
is the development of the monitor and the burden
of documenting additional independencies.

5.2. Al-upgrade: Scenario 2

We will now look at a slightly different situation,
where there is no independent safety function. Le.,
safety is managed by the control logic itself. This
situation is illustrated in Figure 5. If we want to
upgrade this system to Al, the obvious choice is
some sort of safety-bag technique, e.g. as illus-
trated in Figure 6.

For the system in 6, the monitor and the pre-
existing control logic must together ensure both
safety and reliability. More specifically, as de-
scribed in Winther (2006), we need to substantiate
the following claims:
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Sensors

Control and

EUC safety logic

"¢——Actuators

Fig. 5.
logic.

System where safety is integral to the control

| Sensors.

C>

Control and
safety logic

I
[¢—Actuato rs.—|

EUC

Al

Fig. 6. Al-upgrade of the system in Figure 5.

(1) That the monitor is able to detect when the
system is outside defined bounds, and transfer
control to the pre-existing control logic before
the system enters an unsafe state.

(2) That the pre-existing control logic is able to
avoid an unsafe state when given control.

(3) That neither the Al or the monitor can cause
the pre-existing control logic to fail in ensur-
ing safety.

Support for claims 1 and 2 can be based on
existing theory and methods, e.g. using control
barrier functions Ames et al. (2019). Claim 3 is of
the same type regularly handled when proving in-
tegrity of safety functions, and thus a well-known
(if not trivial) issue.

5.3. Comparing the scenarios

While the two scenarios utilize the same basic
principle for integrating Al into an existing sys-
tem, there is one major difference between them.
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In scenario 1, the introduction of Al is primarily
a reliability problem. Safety is managed through
an independent dedicated safety function, and the
pre-existing control logic is only used to reduce
the chance of the AI triggering the safety function.
In the second scenario, the monitor takes on a
much more important role with regard to safety.
We also need to show that the pre-existing control
logic will remain safe when used as a back-up, and
only called upon when a potentially unsafe state is
approached.

While scenario 1 is preferrable, we consider
scenario 2 to be a viable option in many situa-
tions. The key question is how fast the system can
change state, and whether it will be possible to do
the switching from Al to the pre-existing control
logic in time to prevent an unsafe state. Thus, the
viability of the approach in the second scenario
depends on the nature of the process that is being
controlled.

6. Discussion

While using Al in systems where safety is im-
portant is not without concerns, the capabilities of
Al are obviously interesting as the complexity of
systems increase. We are concerned, however, that
there will be serious limitations on what level of
assurance can be achieved for Al, and in particular
for the most capable types of Al (typically DNNGs).
Because certain Al-models are very capable, and
in some cases the only realistic option (e.g. in
autonomous driving), one can easily end up using
Al to perform safety functions. If we are not able
to establish the necessary level of assurance for
the Al we are stuck.

However, as we have seen, there are ways to
avoid making Al critical, even if it plays a central
role in systems where safety is imperative. In fact,
much of the theory for doing this already exists.
We are concerned there is lack of consciousness
about this, and that this will unnecessarily limit
the potential benefits of using AL

We believe a good strategy for using Al in
safety-critical systems will be to first explore
system design/architectural options to reduce the
need for trust in the Al as much as possible. Be-
ing conscious that conventional safety functions



Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

might be available, and that there are already in
place much knowledge and theory that can be used
to reduce the criticality of Al, is essential.

7. Summary and conclusions

In this paper we have seen that there is much
knowledge relevant to the exploitation of Al in
systems where safety is important. A major point
of this paper is the importance of understanding
the difference between “safe AI” and the safe
use of AI”. The latter includes the former, but will
allow the use of more capable Als than is possible
in a ”safe AI” approach. As we have shown, there
are ways of using Al in safety-critical systems
without the Al itself becoming safety-critical. The
relevance of such approaches is based on the fact
that more often than not, there are other reasons
than safety for wanting to use Al
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