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Carbon fiber reinforced plastics (CFRP) are characterized by the outstanding mechanical properties. Many 

corporations are developing this kind of composite fan blades and apply to the next generation high-bypass-ratio 
turbofan engines. Stochastic sources always cause discrepancy between realizations and nominal design, e.g. raw 
material strength, manufacturing tolerance, defect and damage (crack), assembly, service environment, etc. The 
current focus of probabilistic safety design for gas turbine components have been put on efficiently evaluating the 
reliability index. 

The objective of this study is to derive an efficient approach to evaluate the risk of a structural mistuned fan 
stage subject to vibration-induced high cycle fatigue (HCF). The stochastic variable is failure probability of a 
single composite fan blade based on corresponding probabilistic design curve in one of typical vibration modes. 
Since crude Monte Carlo simulation (MCS) is strongly dependent on probability of rare event, subset simulation 
(SS) is a remedy for this limitation by separating failure domain into a series of intermediate regions. The target 
probability is a product of auxiliary conditional failure probability with intermediate thresholds. However, low 
acceptance rate via the classical Metropolis-Hastings Markov chain Monte Carlo (MCMC) simulation leads to 
erroneous estimates of conditional probability. In the proposed ensemble subset sampler (ESS), Markov chain is 
generated by affine invariant ensemble algorithm that the acceptance rate of candidate points is increased by 
generating proposal samples using stretch move. Through conducting simple validation cases to compare 
performance with SS, the proposed method would reduce the number of limit state function evaluations and 
increase numerical accuracy. It is then fully integrated into composite fan blade-disk finite element (FE) model. 
Intermediate conditional failure probabilities are calculated with the distributed surrogate models for steady and 
vibratory stresses. The application further demonstrates good performance to a typical mistuning pattern for fan-
disk assembly. 
Keywords: subset sampling, ensemble sampler, structural mistuning, high cycle fatigue, composite fan blades. 
 
 

1. Introduction 
CFRP is characterized by the outstanding 
mechanical properties. Many aero engine 
corporations are developing the preferred fan 
blades consisting of unidirectional CFRP 
prepregs and apply to the next generation high-
bypass-ratio turbofan engines [1].  Stochastic 
sources cause discrepancies between realizations 
and the nominal design, e.g. raw material 
strengths, manufacturing tolerances, defects and 
damages (cracks), assembly, service 
environment, etc. The current focus of 
probabilistic safety design for gas turbine rotor 
components have been put on efficiently 
evaluating the reliability index. It could give an 

accurate evaluation for the potential risk of 
failure when all these uncertainties are 
incorporated, whereas an empirical safety factor 
determined the design allowable, but not able to 
give the safety level. The component is deemed 
to be safe even if applied stress is larger than the 
design allowable. The MCS is the most 
convenient methodology to assess the failure 
probability only if the joint probability density of 
input random vector is known and a closed-form 
forward prediction model is available. However, 
numerical simulation, e.g. finite element 
procedure, is time-consuming to obtain the target 
response mandatory in structural design criteria, 
e.g. HCF failure due to forced vibrations. Hence, 
it is impossible to evaluate the reliability 
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especially for rotor blades conforming to 
rigorous airworthiness requirements. An ease-of-
use and efficient sampler is attractive for 
structural reliability analysis of composite fan 
blades. 

There is currently three categories of 
method, i.e. local series expansion, direct 
simulations, metamodels, to evaluate structural 
failure probability. For all these methods, a limit 
state function should be formulated to indicate 
the failure domain and its boundaries. However, 
both  metamodel-based and series expansion are 
especially widely used in engineering field but 
imposed extra approximation errors on the 
numerical models which always exists in 
practice. Thus, the simulation method has the 
most accurate predictions if difficulty in 
computational cost could be resolved. Among 
them, SS, firstly proposed by Au and Beck [2], is 
an efficient method in most application case 
since the target limit state function is divided 
into a series of sub-domains which can be easily 
solved by Metropolis algorithm. Lang et al. [3] 
had compared several Markov chain Monte 
Carlo (MCMC) algorithms used in SS, he found 
that the preconditioned Crank-Nicolson and 
conditional sampling algorithms had the higher 
performance in relative errors and variabilities of 
failure probability. Goodman et al. [4] proposed 
an affine invariant ensemble sampling technique 
to deal with a poorly-scaled and highly-
anisotropic target distributions, where the 
classical Metropolis Hastings algorithm must be 
modified to be  efficient in simulation.  If there is 
an affine transformation of original target 
posterior distribution, the simulation extracts 
samples from an easier posterior distribution. 
Lye and Reiner [5-6] both applied the affine 
invariant ensemble sampler (AIES)  in Bayesian 
inference for uncertainty in progressive damage 
simulation of composites as well as coupled 
oscillator system. Xiao et al. [7] has extended the 
SS to formulate a two-stage MCMC simulation 
in evaluating the reliability sensitivity analysis 
which is usually hard to calculate for rare event. 
To the best of author knowledge, the SS 
currently shows its potentials in reliability 
analysis with relevance to engineering design. 

This study is mainly tried to assess the 
reliability of composite fan blade-disk system 
due to forced excitations using the modified 
subset simulation. The proposal samples in each 

iteration of MCMC simulation is given by ESS 
to obtain the steady Markov chains with a higher 
acceptance rate. Thus, it provide an accurate 
estimate of intermediate failure domains. The 
proposed method is compared with the classical 
SS when applied to evaluate some simple rare 
event reliability problems, which shows an 
improved efficiency. Then, the associated limit 
state function is defined based on the weakest-
link theory to describe HCF failure probability, 
ESS shows an improved prediction accuracy in 
failure probability prediction for mistuned fan-
disk assembly. 

2. Simulation Method  
For a structural reliability analysis, the limit state 
function g(x) in sample space D is written as 
Eq.(1), where x denotes input random vector 
with dimension d, and I(·) is the indicator 
function.  
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2.1. Subset simulation 
In a conventional subset simulation algorithm for 
rare event probability estimation, the total failure 
domain Df is separated into a series of subdomains, 
which satisfies D=D0⸧D1⸧D2···⸧Dk=Df. The 
intermediate failure domain is defined by g (x) tk 
(k=1,···,m), i.e. Dk={x:g(x) tk}, where tk is 
intermediate failure threshold. Thereafter, the 
original probability mass could be formulated as 
Eq.(2). The intermediate probability density 
function (PDF) πk(x) is given in Eq.(3), the 
optimum sampling distribution in importance 
sampling. 
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To obtain the samples conforming to the 
these PDFs, MCMC simulation is used to draw 
samples. tk is determined by order statistic, then 
Eq.(2) is re-arranged as Pf = Pm  

 0 Pm , where P0 is 
the conditional probability at the empirical 
quantile computed by MCS samples, and Pm 
=ΣI(g(x)≤tk)/Nk, denotes the failure probability in 
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the last subdomain Dk where the intermediate 
failure threshold tk equals to 0. Based on the 
modified MCMC simulation introduced by Au 
and Beck, evaluation of coefficient of variation 
(CV) for Pf estimate is given in Eq.(4), where P0  
is fixed to achieve an balance between number of 
subdomain and accuracy of quantile estimation, 
ρk(n) is the average n-lag auto-correlation 
coefficient in the kth subset, with the total number 
of Nk=CN samples in the kth level. Hence SS has 
a maximum of NT=mNk times to call limit state 
function.   
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When the intermediate probability πk(x) is 
seen as the posterior distribution in Bayesʹ 
theorem, it is an update of an underlying prior 
distribution. The Markov chain is convergent to 
the target distribution using MCMC simulation if 
the detailed balance condition given in Eq.(6) is 
upheld for all iteration n. Metropolis Hastings 
algorithm draws samples in Eq.(7) from a 
multivariate Gaussian proposal PDF p(·), where 
a is a scale factor for prior covariance matrix. In 
addition, the proposal distribution is not exactly 
the state transition probability k(·) between 
adjacent steps in a Markov chain, thus the second 
term in Eq.(8) does not equal to 1. The resulting 
state transition probability is given in Eq.(9). A 
sample u � [0,1] is drawn from the standard 
uniform distribution to improve the convergence 
rate and avoid burn-in. The candidate sample is 
rejected, i.e. xn+1

 = xn, when α(xn, x*) < u.  
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Proposal distribution p(x⁎|xj) should be as 
similar to the posterior distribution as possible 
since a badly chosen proposal distribution 
significantly affects the MCMC performance so 
that proposed samples are nearly all rejected 

based on Eq.(8). Therefore, samples in subset Dk 
is not convergent to target distribution under a 
limited number of iterations, which weakens the 
efficiency of subset sampling algorithm and 
resulting estimate accuracy of tm. In the worst 
case, it is fully degraded into the crude MCS 
when there is little overlapping area between two 
PDFs.  

 
2.2. Ensemble subset sampler 
AIES runs a set of C Markov chains, the chain 
locations xc (c=1,···,C) are updated by an set of 
chains in previous iteration. The affine 
invariance property is achieved by generating 
proposals according to strength move showed in 
Eq.(10), where  nn  = n+1 if i < c and  nn = n when 
i c. To ensure the generalized proposal 
distribution is symmetrical, PDF of random 
variable z should satisfy the equation, i.e. πz(z)= 
zπz(1/z). One of PDFs in this cluster is given in 
Eq.(11), where a denotes a scalar turning 
parameter as that in MH sampler. The proposal 
candidate is then accepted as new location of the 
cth chain with probability in Eq.(12).  
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The Ns samplers constitute an ensemble 

subset sampler, called ESS, which fully 
leverages advantages of each sampler. In this 
study, the ensemble contains two samplers as 
introduced above. Since each sampler predicts a 
respective failure probability denoted as P l 

f

(l=1,···,Ns),  ESS gives a weighted failure 
probability estimation in Eq.(13). The weight 
coefficient depends on the computation cost ∆tl 
for which sampler implements a SS, where a 
more efficient sampler has a larger weight. 
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2.3. Sampler integration 
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Many studies [5,7] have reported an optimal 
acceptance rate is 0.44 for failure probability 
estimation. An adaptive acceptance rate scheme 
is given in Eq.(14), where parameter a j 

k  is 
adjusted in each iteration batch j to be the target 
acceptance rate r*=0.21d-0.5+0.23. When the 
acceptance rate rj 

k of Ns samples is less than the 
target value, a smaller aj+1 

k  is used in the next 
iteration and vice versa.  
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The Gelman-Rubin diagnostic rGB [8] acts as 
an indicator to terminate sampler. It is calculated 
by two covariance matrices defined in Eqs.(15-16). 
The basic motivation is intuitive: the average 
covariance matrix W between C individual 
Markov chains should be same as covariance 
matrix B between C individual average statistics 

cx , where WB equals to BW.  The maximum 
eigenvalue λmax of matrix W-1B is used  to 
compute rGB 
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The procedure of ESS is listed in Fig.1. It is 
capable of evaluating the failure probability of 
rare event without increasing times of limit state 
function call. A small proportion of failed 
samples in the last subdomain is transferred into 
the Markov chain as the initial samples, which 
guarantees the acceptance criterion is not divided 
by zero. Therefore, the numerical instabilities is 
avoided when the proposal sample always lies in 
the failure domain of these sub reliability 
analyses.  

 

Fig. 1. Procedure of the proposed ESS. 
 
 
 3. Test Cases 
In this section, the proposed ESS algorithm is 
firstly validated against two simple test cases. 
Among them, the limit state functions are in 
analytical forms with much smaller time costs 
than the FE models in engineering application. It 
should be noted that the MCS provide a 
reference failure probability for both ESS and SS. 

3.1. 2D  function 

The first analytical example is a two-
dimensional limit state function presented in [7], 
which is given in Eq.(18). There is only one 
failure region boundary, representing a category 
of limit state function, e.g. parallel system. The 
joint probability function of input variables 
conforms to a two dimensional Gaussian 
distribution. The failure probability is calculated 
as 3.35×10-4 in total 5×107 samples by using the 
MCS. In addition, the Nk,  C, and P0 in SS are set 
10000, 10 and 0.1, with a maximum of 5 
adaptive update steps. 
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Their comparisons between computation 
time, CVs and acceptance rate is listed in Table 1. 
Both methods applies significantly less limit 
function calls than MCS. The ESS provides a 
relative estimation error 34.32%, a bit smaller 
than 41.49% by SS at same number of samples. 
Moreover, computation time decrease by 57.93%, 
showing advantage in efficiency over MCS. In 
Table 2, SS has an inferior prediction accuracy 
than ESS due to much larger acceptance rate 
which demonstrates SS does not fully explore 
the failure domain. It should be noted that, when 
limit state function is analytical, MCS needs 
only more than a few seconds, but for time-
consuming models, the increasing time is more 
obvious. 

Table 1. Performance comparisons in case 1. 

Method Pf Time / s CV / % r 
MCS 3.35×10-4 4.16 0.77 1.00 

SS 1.96×10-4 0.10 13.34 0.91 
ESS 4.50×10-4 1.75 29.72 0.41 

Table 2. The intermediate failure thresholds in 
case 1. 

Method t1 t2 t3 t4 
SS 2.12 1.05 0.36 0.00 

ESS 2.14 1.22 0.62 0.00 
      

3.2. Tantem system 
The second example concentrates on a tandem 
system with higher reliability. A two-
dimensional limit state function is defined in 
Eq.(19), which is an union of individual limit 
state function ge(x) (e=1,···,4). Input variables 
are Gaussian and mutually independent. In 
addition to a lower Pf , the failure domain 
contains four disconnected regions, filling with 
alternate safety regions. It poses a relatively 
large challenge to sampler although the initial 
MCS samples are populated within the whole 
random space. When initial samples are not all 
lied at these regions, part of Markov chains 
would have a low acceptance rate, therefore 
higher autocorrelation coefficient in this level of 
subset sampling. Moreover, the high correlated 
samples is used as the initial seeds of multiple 
chains, further affecting conditional failure 
probability estimate at the next level. The 

accumulated errors eventually are expected to 
result in a  smaller Pf. In perspective of structural 
design, the biased total failure probability 
provides conservative but undesired prediction 
for aeroengine component reliability in 
comparison with adopting an empirical knock-
down safety factor. 
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MCS provides a Pf estimate of 1.42×10-5 
with CV less than 5% in total 5×107 samples. 
Parameters in subset sampling is same as the 
first case. In Table 3, SS predicts failure 
probability deviating from reference value by -
65.70%, over which ESS has an overwhelming 
advantage. As mentioned before, SS sampler 
does not fully explore target distribution and 
introduces dependence between successive 
samples, whereas ESS quickly obtains 
intermediate failure thresholds closer to failure 
boundary. Except for the high correlation 
between samples from a Markov chain, ESS 
consumes too much time at each conditional 
level to ensure rGB less than 2. However, the 
slightly increased cost does not hide the truth 
that ESS is able to predict failure probability 
with an optimum acceptance rate. Simulation 
process is showed in Fig.2, it intuitively 
showcases failure boundary as well as how ESS 
obtain failure samples within six nested levels.  

Table 3. Performance comparisons in case 2. 

Sampler Pf Time / s CV / % r 
MCS 1.14×10-5 4.62 4.18 1.00 

SS 3.91×10-6 0.10 16.23 0.86 
ESS 6.57×10-6 10.82 32.57 0.41 

Table 4. The intermediate failure thresholds in 
case 2. 
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Sampler t1 t2 t3 t4 t5 t6 
SS 2.91 2.01 1.24 0.65 0.19 0.00 

ESS 2.93 1.80 1.11 0.59 0.11 0.00 
 

 
             (a) k=1                                 (b) k=2 

     
            (c) k=3                                (d) k=4 

 
                                 (e) k=5                         

Fig. 2. Samples of tandem system during ESS 
evaluation process. 
 

The parallel sampling scheme also does not 
guarantee each region has at least one sample 
given at finite sample size especially when 
density of disconnected regions increases. For 
moderate complex tandem system in engineering 
application, however, it is reasonable to suppose 
that size of these regions is less than Nk, giving 
rise to a negligible performance degradation. 

4. Engineering Application 
The FE composite fan blade model runs with a 
batch mode, where layup design for composite 
material and applied boundary conditions are  
disclosed in [9]. It is supposed that only the 
longitudinal engineering elastic modulus is the only 
the uncertainty source which could be represented 
using the continuous PDF type. Variability of 

elastic modulus results in the vibration 
characteristics, i.e. natural frequencies and mode 
shapes, and the harmonic responses under 
aerodynamic force excitations. The structural 
mistuning is simplified to be known and formulated 
in Eq.(20), where ∆E1=[∆E1 

1 , ···, ∆Es 
1 , ··· ∆ENb 

1 ] 
follows the pattern in Fig.3. The  first component of 
random vector x is a standard Gaussian marginal, 
i.e. x1~N(0,1), and CV=10%. Excitation frequencies 
is fixed whatever natural frequencies of mistuned 
fan-blade assembly varies to.  
 

 
(a) Typical mistuning pattern 

 

 
(b) Finite element model 

Fig. 3. Physical  model of mistuned composite fan 
blade-disk system. 
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In this case, a stochastic surrogate model is 
constructed to replace structural stress responses 
σs/a of the sth sector at the basis of non-intrusive 
polynomial expansion (PCE) in Eq.(21)  
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p
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The univariate Hermite polynomials 
actually corresponds to a series of orthonormal 
base functions in original domain D0. In this 
scenario, the pth degree polynomial base ψp 

k  (k≠0) 
is constructed by reference to [10]. These 
coefficients are calculated using ordinary least 
square regression.  

When material fatigue limit is less than the 
applied vibratory stress, composite fan blade is 
failed and the underlying design parameter set 
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located at failure domain. Moreover, the fatigue 
limit of carbon fiber reinforced composite 
material follows a Weibull distribution when it is 
subject to a uniform load based on the Weakest-
link theory [11-12], which supposes the 
microcracks uniformly locate in the structural 
volume consisting of brittle material. For the fan 
blade-disk assembly system, considering failure 
event in the fan disk is impossible, the system is 
failed only if the overall composite fan blades 
are damaged. For the parallel system, i.e. the 
first case in Section 3,  failure probability for 
each blade Ps 

f  (s=1,···,Nb) determines the system 
safety 1-Pf. The common two-dimension limit 
state function, gs(σe, ξ)=σe(σ s 

m (x1))–σ s 
a (x1), is 

formulated, where σs 
a  denotes the local vibratory 

stress at a specific sector location, and σe is 
material fatigue strength softening by local 
steady stress σs 

m. Therefore, the joint PDF π(σe,σa) 
is not equal to π(σe)π(σa), more complicate than 
the first two cases. Moreover, using material 
property listed in Table 5,  failure probability in 
Eq.(22) provide a reference to prediction by ESS 
based on the direct numerical quadrature (DI). 

b

f f
1

=
N

s

s
P P

�
�                            (22) 

Table 5. Composite material fatigue strengths. 

σT /MPa σC /MPa σχ 
m /MPa σχ 

e  /MPa nT nC 
2586 1378 275 902 1.7 2.2 

           
The direct quadrature provides a reference 

value when relative error between two 
subsequent step is constrained to 1×10-12. For a 
single composite fan blade, the minimum failure 
probability is calculated to 1.07×10-6 based on 
numerical integral for each blade failure event. 
HCF failure probability is 2.69×10-26 for fan-disk 
assembly if these failure events are mutually 
independent, which determines the upper limit 
for total failure probability. Amongst blade 
failure event the smallest probability is selected 
to validate the effectiveness of ESS. Three 
samplers employ the corresponding same 
parameter settings used in Section 2. In Table 6, 
MCS gives a probability estimate with 8.41% 
error due to the limited size of sample set. Again, 
ESS improves prediction provided by SS from -
75.89% to -30.19%. Besides, it saves about 6 s in 
comparison with MCS despite accuracy loss. 

To evaluate failure probability of fan-disk 
assembly, the first two method in Table 6 is 
implemented foremost. Given high 
dimensionality, statistical correlations between 
concentrated ply stresses, it is tough to derive 
joint PDF to directly calculate failure probability 
integral. On the other side, MCS obtains a zero 
failure probability by just drawing 5×107 samples, 
indicating all samples fall into safe domain and  
far from enough to ensure CV less than 5%. 
However, two predictions by subset simulations 
are feasible, which are listed in Table 7. SS 
obtains conservative estimation due to an 
unreasonable acceptance rate. ESS gives the only 
left failure probability prediction by ten subsets 
shown in Fig.4. It can be found that the strong 
correlations between ply stresses distributed in 
circumferential direction, increases failure 
probability by a magnitude of ten folds. If HCF 
failure events for  each components in fan-disk 
assembly are mutually independent, resulting 
probability is equivalent to an average failure 
probability 0.306 for each composite fan blade. 
In this regard, the manufacturers are able to 
achieve such moderate quality standard, e.g. 
strictly controlling fabricating defects in 
composite material. 

Table 6. HCF failure probability for a single 
composite fan blade. 

Sampler Pf Time / s error  r 
DI 1.07×10-6 0.29 1×10-12 1.00 

MCS 1.16×10-6 17.88 13.13 (CV / %) 1.00 
SS 2.58×10-7 0.24 18.06 (CV / %) 0.87 

ESS 7.47×10-7 11.98 41.33 (CV / %) 0.48 

Table 7. HCF failure probability for fan-disk 
assembly. 

Sampler Pf Time / s CV / %  r 
SS 4.67×10-11 0.46 21.74 0.77 

ESS 6.86×10-10 17.57 44.35  0.34 
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Fig. 4. Samples to evaluate failure probability of 
mistuned fan-disk assembly by ESS. 

5. Conclusion 

In this paper ESS is proposed by means of fully 
exploring random space and adaptively adjusting 
scale parameter for proposal distribution, which 
it is found to have a better performance than SS. 
To obtain samples among a series of subsets, the 
mixed sampler is to evaluate the intermediate 
failure probability. Two analytical case 
demonstrates ESS provides more accurate total 
failure probability prediction even if 
computational cost increases by a small extent 
than SS, but faster than MCS constrained with 
same size of sample set. They also showcase 
ESS is not sensitive with how failure domain 
distributes within random space.  

It is integrated into an estimate of HCF 
failure probability due to harmonic aerodynamic 
force acting on composite fan blade-disk 
assembly. For a single blade failure event, ESS 
again shows great advantage over SS, which 
reduces prediction error from -75.89% to -
30.19%. When MCS and direct quadrature is not 
feasible for blade-disk assembly even if 
variability is only from longitudinal elastic 
modulus for laminas, ESS provides a valuable 
failure probability prediction considering the 
statistic correlations in steady and vibratory 
stresses. This case demonstrates ESS has a 
promising capacity in engineering reliability 
analysis, especially for reliability estimation with 
small size of test data available. In the future, 
fatigue failure probability of fan disk and 
associated retention system is to be evaluated. 
This will enrich engineering application cases to 
validate ESS. 
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