
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P7829-cd

A Security Twin to Defeat Intrusions in Cyber Physical Systems

Fabrizio Baiardi
Dipartimento di Informatica, Università di Pisa, Italy. E-mail: fabrizio.baiardi@unipi.it

Salvatore Ruggieri
Dipartimento di Informatica, Università di Pisa, Italy. E-mail: salvatore.ruggieri@unipi.it

Vincenzo Sammartino
Dipartimento di Informatica, Università di Pisa, Italy. E-mail: vincenzo.sammartino@phd.unipi.it

Cyber risk assessment and management have to face a dynamic risk landscape so that probabilities of interest cannot
be estimated using historical data. This paper advocates the adoption of synthetic data generated by combining
adversary simulation with digital twin technology. A security twin of a cyber physical system (CPS) extends an
inventory of the system with information on current vulnerabilities and attacks. By describing threat agents through
other twins, we can supply the twins with a platform that simulates the strategies of threat agents to discover how
they exploit vulnerabilities and implement their intrusions. To analyze alternative scenarios, a Monte Carlo approach
is adopted that runs multiple independent simulations. This produces an intrusion graph that faithfully can describe
rapidly evolving environments and results in more accurate risk management and better resilience of the system
in spite of data shift. Initial experimental results support the effectiveness of security twins in accurately modeling
intrusions. The synthetic data produced by the simulations can also be used to train AI tools to defend a CPS.

Keywords: security twin, adversary simulation, data shift, synthetic data, AI in cybersecurity, Monte Carlo
simulations

1. Introduction

As cyber physical systems (CPSs) become more
and more interconnected and pervasive, several
threat actors (simply, actors) attempt to orches-
trate intrusions to control and manipulate CPS
components. To this purpose, actors exploit vul-
nerabilities in software, hardware, and even hu-
mans, such as users and system administrators
[6, 4, 20].

The continuous evolutions of actors result in a
highly dynamic risk scenario with frequent statis-
tical distribution shifts that prevent the usage of
historical data to estimate probabilities of interest,
and to train AI models [1] to proactively identify
intrusions. This dynamicity, combined with the in-
creasing size and complexity of CPSs, exacerbates
the challenges of effectively managing security
also because of the lack of formal models and
robust methodologies.

Inspired by digital twin technology [9], we ad-
vocate the generation of synthetic data through ad-
versary simulations of intrusions. The simulations

use executable models, or digital twins, of both the
target CPS and the actor. The twin of the CPS is a
security twin, as it abstracts from implementation
details and it is focused on security and safety is-
sues. The twin of the actor is an attacker twin, that
specifies the attacker behavior and its strategies.
To produce synthetic data on intrusions, we apply
a Monte Carlo method that runs multiple indepen-
dent simulations of intrusions. The generated data
can be analyzed to improve the robustness of the
CPS or to train AI-based defensive models.

Twin simulations of intrusions in a CPS can
produce a graph, called an intrusion graph, that
describes not only intrusions in isolation, but also
how they relate each other, e.g., in terms of the
shares of exploited vulnerability. An analysis of
such a graph help defenders to pinpoint weakness
in authentication, in programmable logic con-
trollers (PLC), or in communication protocols.
Overall, an intrusion graph provides actionable
insights and synthetic data to counteract evolving
threats in dynamic environments.

643



644 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Sect. 2 defines intrusions and their description.
Sect. 3 discusses the simulation of intrusions using
twins and their representation through an intrusion
graph. Sect. 4 analyzes the problem posed by
the dynamic risk scenario. Sect. 5 focuses on the
analysis of the intrusion graph and how AI can
improve it. Sect. 6 describes fidelity, ie how to
guarantee that the output of simulations accurately
describe intrusions. Sect. 6 presents preliminary
experimental results.

2. Executing and Describing Intrusions

We consider intelligent actors with a predefined
goal, a set of access rights on the CPS resources
they aim to acquire. Each actor has only one goal
and actors do not cooperate. An intrusion is a
sequence of actions of an actor to reach its goal
and control some physical or logical resources
[2, 14]. The MITRE ATT&CK Matrix [18] define
possible actions of an actor . An actions such a
vulnerability scan collects information to discover
the CPS components and their potential weak-
nesses while other actions are attacks that exploit
the weaknesses of the target CPS components to
gain some access rights. Lastly, a few actions ma-
nipulate some components to produce an impact,
e.g., a damage. An action may fail because of
the environment or for other reasons. Each action
is paired with known properties that include the
success probability, the execution time, the noise it
generates (the probability of being detected by an
IDS), and pre- and post-conditions that describe,
respectively, the rights to execute the action and
the information and the rights it returns if suc-
cessful. These properties are deduced from the
description of the vulnerability in some databases
[21, 12]. An intrusion is successful if, after its last
action, the actor reaches its goal. To estimate the
overall risk, we need to know any intrusion actors
can implement and its success probability.

Each action is described by a tuple:

<A, IPs, IPd, precond, postcond, information>

where: A is an action [18]. If A is an attack, it
also details enabling vulnerabilities. IPs and IPd
are the IP addresses of, respectively, the source
node where A is initiated and the target node of A.

precond and postcond are, respectively, the access
rights the actor needs to execute A those granted
to the actor after performing A. The information
field is the knowledge A returns.

As an example, assume that A runs a scanner.
Then, IPs is the address of a node that runs the
scanner and IPd is the target node. Here, the
information field includes the vulnerabilities the
scanning returns. Here precond is empty because
the scanning needs no access right. The postcond
field is empty and the information one includes
any discovered vulnerability.

The current state of an actor Ag consists of the
access rights and the information it has previously
acquired. An action A is enabled in a state if Ag
owns the rights in its precondition. The strategy
of Ag chooses the action it executes at each step
among enabled actions. As a consequence, a se-
quence of actions S is an intrusion of Ag if the
first action in S belongs to the attack surface of
Ag, i.e., it is enabled by Ag legal access rights.
Furthermore, the union of the legal access rights
of Ag and all those returned by the actions in S
before A includes the precondition of A.

An intelligent actor never executes an action
that returns information or access rights it already
owns. Furthermore, it repeats failed actions only
when conditions change (e.g., new information
is obtained, vulnerabilities are reassessed, or the
action is attempted on another target node).

An intrusion Is is successful if, at the end of Is,
Ag owns the access rights in its goal. Otherwise,
Is fails. A is useless in an intrusion if Ag does
not need the privileges or information A grants
to achieve its goal. Ag executes useless actions
because it has not collected enough information
on CPS. Ag can build distinct intrusions to the
same goal. Their number influences the overall
risk and defines the degree of freedom of Ag.

3. Emulating Intrusions using Twins

This section presents the security twin and the ac-
tor twin. Next, we discuss adversary simulations.

A twin is a digital model to simulate the entity
behaviors, monitor its ongoing status, recognize
internal and external complexities, detect abnor-
mal patterns, reflect the entity performance, and



645Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

predict future trends []qi2018digital. Both the se-
curity twin St(S) and the actor T(Ag) twin are
formal models of, respectively, a CPS S and the
actor Ag. They both focus on those attributes to
accurately model the behaviors of, respectively,
Ag and S in an intrusion.

3.1. The Security Twin

St(S) is an enriched inventory of hardware and
software modules of S that describes:

a) the hardware nodes and their connections,
b) the software modules with their operations,
c) the mapping of modules onto nodes and their

configurations,
d) the accounts on each node, and their rights,
e) any vulnerability of each module or node, the

attacks it enables, and their properties,
f) routing and filtering rules,
g) the logical connections among modules the

previous rules determine,
h) the subnet, or the endpoint, each intrusion

sensor monitors and the probability it detects
an intrusion,

i) hierarchical relations, i.e., the one between a
hypervisor and the virtual machines it runs,

j) information flows among the modules.

Alternative module configurations may result
in distinct vulnerabilities. For each operation of
a module of S there is an access right Ag can
acquire. Hierarchical relations and information
flows determine dependencies among modules.
For example, access rights on a hypervisor allow
the control of the virtual machines it manages.
Access rights on the source of an information flow
enable the manipulation of the values it transmits
to the receiver.

Pre- and post-conditions exist also for actions,
and they determine how Ag strategy maps the
current state of Ag, i.e., the access rights and the
information the previous actions have returned.

St(S) also describes (human) user classes of S
and pairs each class with access rights and the
probability that a user in the class is the victim of
an attack implemented by stealing authentication
information or by phishing.

The starting point to build St(S) is an inventory

of S with information on nodes, connections, and
configurations. The inventory is built by inventory
management tools and it is enriched with infor-
mation on vulnerabilities that a vulnerability scans
returns. Alternative security twins of S differ in the
number of details on the modules, the granularity
of operations and the corresponding access rights.
Further details concern the behavior of the compo-
nents. For example, if St(S) neglects intrusion sen-
sors, any analysis using it returns worst-case re-
sults because it cannot model intrusion detection.
A more accurate twin can model the detection and
the resulting failure of an intrusion. However, to
minimize the simulation overhead, a security twin
never describes in full detail the CPS, its inputs,
and its computations.

3.2. The Actor Twin

T(Ag) describes the strategy of Ag, its initial
access rights and information, and its goal. The
actor attack surface includes any attack Ag may
implement to start an intrusion.

The strategy of Ag [2] maps Ag’s current state,
its goal, and the target S into the action to execute.
The status of Ag includes the access rights and
the information it has collected. If the strategy
returns an action that is an attack, it also returns
a target module on a target node and the vul-
nerability to exploit. Several alternative strategies
are possible. For example, a strategy may prefer
actions to collect information and select an attack
only when it cannot collect further information.
Instead, another strategy may execute an attack as
soon as the actor owns the privileges in the attack
precondition. This may speed up the escalation
at the expense of useless attacks. Some strategies
include social engineering attacks, while others
only exploit vulnerabilities in the CPS modules.

The state of Ag also includes a memory that
records the last actions and their result (success or
failure). A small memory implies that Ag forgets
its failures quickly and may repeat an action even
after many failures.

3.3. The Intrusion Graph

A simulation is a coevolution of the security twin
and the actor twin, starting from the actor’s attack



646 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

surface. It consists of a sequence of steps, in dis-
crete time where each step applies the actor strat-
egy, executes the action it returns, and determines
its success or failure using the corresponding suc-
cess probability in the security twin. Each step
updates the actor’s status if an action is successful.
A step also considers the reaction of the CPS to
the action. For example, an action fails if a sensor
detects the action. In turn, this may result in the
failure of the intrusion.

A simulation is successful when the actor
reaches a goal. It fails when no action can be
selected, or a predefined number of steps have
been executed without reaching the goal, or a
predefined threshold on the simulated time has
been reached, or the CPS detects an attack. The
sequence of actions of a successful simulation
leads to a successful intrusion, see Sect. 2.

We represent intrusions of Ag against S through
an intrusion graph Int(Ag, S) where each node
represents a distinct state of Ag and each arc is
labeled by the action that enables the correspond-
ing state transition. Self-arcs represent failed ac-
tion. Each simulation of Ag against S produces a
sequence of nodes, i.e., a path, and distinct simu-
lations produce a set of paths that are merged into
Int(Ag, S) by mapping into the same node those
that in distinct paths represent the same status.
All the paths start from the node that represents
the legal status of Ag, i.e., the status when the
intrusion has not started yet. Two nodes of Int(Ag,
S) may be connected by several arcs with distinct
labels. Not all intrusion paths necessarily end in a
successful state where Ag achieves its goal. Paths
may also end due to failure, such as the inability
to select further actions, or because the maximum
allowed runtime has been reached.

4. Intrusion and Data Shifts

Effective management of risk due to Ag requires
information on the intrusions it can implement,
the vulnerabilities they exploit, and their success
probability. This information cannot always be
discovered using data collected on past intrusions
against the same or similar CPSs because of data
shifts, namely because the underlying probability
distributions change too quickly.

As an example, historical data for assessing the
risk due to Ag quickly become obsolete if:

• Ag adopts new, previously unseen strategies,
• new vulnerabilities are disclosed, altering in-

trusion dynamics,
• the CPS deploy new applications, changing

the attack surface,
• logical or physical connections are modified,

affecting network paths,
• nodes are added or removed, impacting over-

all risk.

The reason for obsolescence is that these events
may result in new intrusions and/or change the
success probabilities of intrusions. In other words,
these events produce a shift in the distribution of
the data that affects the probabilities of interest.
Consequently, it is not convenient or effective to
use historical data to train an AI model [13, 11]. In
more detail, the new behaviors of Ag may change
both its actions or the sequence of actions in its
intrusions. For example, Ag may increase the time
it spends collecting information before selecting
the vulnerability to exploit. Hence, Ag has more
accurate information available, and this reduces
both useless actions and failures. We can update
Ag’s success probability after observing several
intrusions, but Ag will not repeat a successful
intrusion to allow for better probability estimates.
Further shifts are due to the discovery of a vul-
nerability, the deployment of an application, or a
new network connection because they may enable
new attacks and new intrusions. These intrusions
cannot be predicted using historical data because
new vulnerabilities increase in a non-linear way
the number of intrusions. Lack of information on
intrusions may result in a black swan or a perfect
storm disaster [3].

An alternative is to adopt synthetic data pro-
duced by adversary simulations using security
twins and actor twins. In more detail, we advocate
the adoption of Int(Ag, S) to produce data to
support risk assessment and management. Int(Ag,
S) is built by applying a Monte Carlo method that
runs multiple independent simulations using St(S)
and T(Ag). By timely updating both twins, we can
generate relevant and up-to-date synthetic data as



647Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

soon as either S of Ag changes. This reduces the
impact of data shifts. The data the analyses of
Int(Ag, S) return can be used to train robust AI
models without relying on historical data. This
improves both the prediction of intrusions and
the accuracy of their detection by leveraging ad-
vancements in intrusion detection systems and the
effective use of datasets to model evolving threats
[10, 16, 19, 17].

5. Intrusion Graph Analysis and AI

An analysis of Int(Ag, S) can identify and mitigate
critical vulnerabilities before Ag exploits them.
We discuss factors influencing the accuracy of
Int(Ag,S) which, in turn, influence the one of
alternative analyses.

In terms of Int(Ag, S), an intrusion is a success
path from the initial state to a final one. Any suc-
cess path that is not an intrusion in the target CPS
is a false positive. An intrusion that has no success
path in Int(Ag, S) is false negative. We can for-
mally prove that no false positive exists in Int(Ag,
S) if St(S) accurately describes the vulnerabilities
of S. The probability of a false negative in Int(Ag,
S) decreases with the number of independent sim-
ulations we run to build it. Independence ensures
that an action in a simulation does not affect those
of other simulations and hence does not affect the
probability an intrusion is implemented. Each path
in Int(Ag, S) has a multiplicity that depends on the
number of simulations mapped into it.

We can estimate the probability of an event of
interest in intrusions of Ag through Int(Ag, S). As
an example, the success probability of an intrusion
is the ratio of the number of simulations mapped
into the corresponding success path and the over-
all number of simulations. More in general, the
probability of an event is the ratio between the
multiplicity of the path where it occurs over the
total number of simulations. [15] and [7] describe
alternative approaches. Using Int(S,Ag) when can
compute the probabilities of events such as:

(1) Ag reaches its goal,
(2) Ag attacks a module,
(3) Ag follows a success path,
(4) an intrusion takes less than a specified time.

Also conditional probability can be estimated e.g.,
Ag reaches its goal after attacking a given com-
ponent. Low-probability, high-impact events re-
quire many simulations for robust estimation of
path multiplicity. They can be executed in parallel
(due to the independence assumption) and without
disturbing the target CPS in its operations.

5.1. AI for Intrusion Analysis

To select countermeasures, intrusions are ana-
lyzed using AI and Data Mining techniques to
identify the most dangerous intrusion patterns and
then deploy the most effective countermeasures.

A twin approach supports the proactive explo-
ration of alternative strategies Ag may apply, al-
lowing defender teams to anticipate evolution in
these strategies.

Classic AI planning [23, 22] is the foundation
for defining actor strategies. Recent research has
explored the effectiveness of adopting large lan-
guage models to plan and implement intrusions.
For example, [5] provides a first example of how
an intrusion can be automatically planned, show-
casing the potential of simulations to produce
data to train an AI-driven planner. The resulting
strategies enable defenders to anticipate and man-
age high-risk scenarios and to proactively deploy
proper countermeasures, even against the most
advanced attackers.

6. Model Fidelity Issues

This section details three major sources of uncer-
tainty in the security twin that affect its fidelity
[8], i.e. its ability to accurately describe the fea-
tures of interest. These sources are related to at-
tacks against, e.g., Denial-of-Service attacks, user
vulnerabilities in phishing attacks, and attacker
strategies. Each presents unique challenges that
must be addressed to improve the accuracy of
simulation outputs and the resulting effectiveness
of risk management.

6.1. Denial of Service Attacks

The primary sources of uncertainty in modeling
these attacks include:

• Time-Varying Conditions,



648 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

• Adaptive Attack Patterns,
• Non-Stationary Attack Characteristics.

The network load and traffic patterns fluctuate
rapidly and affect both detection thresholds. This
increases the complexity of anticipating the exact
conditions that determine the success or failure of
the attack. Modern DoS attacks are rarely static
because attackers tune their techniques to evade
detection and overcome defensive measures. This
creates a moving target for the simulation mod-
els. Statistical properties of DOS attacks, such as
packet rates, burstiness, and duration, vary over
time. Hence, models based on historical data may
not capture sudden shifts or emergent behaviors.

Monte Carlo simulations can address these un-
certainties by incorporating randomness into the
simulation process. However, the very nature of
stochastic simulations implies that the accuracy
of the model and its output should be carefully
quantified and managed.

6.2. Phishing Attacks

Uncertainties in modeling these attacks arise from
variability in user security awareness and techni-
cal expertise. This results in a vulnerability range
due to differing training levels and behavioral
factors. Furthermore, recent phishing campaigns,
improved training, or high-profile breaches can
quickly alter the range.

Adaptive techniques that integrate real-time
threat intelligence and behavior analytics are es-
sential to refine these parameters.

6.3. Strategy Modeling

Modeling attacker strategies is uncertain due to
first of all the large number of strategies attackers
have available. Furthermore, the choice of an ac-
tion is influenced by system state and historical in-
teractions are modeled probabilistically. This may
not fully capture adaptive adversary behavior. The
interplay between evolving offensive strategies
and defensive measures adds further complexity.

To address these uncertainties, a range of pa-
rameter values is considered, and Monte Carlo
simulations are run across the extreme cases,
thereby exploring alternative scenarios and reduc-
ing overall uncertainty.

7. First Experimental Results

We describe a first prototype of a twin-based
simulation platform and show an example of an
analysis using its outputs.

7.1. Security Twin

The current security twin includes a database that
describes vulnerabilities in system components
and related attacks with their preconditions, post-
conditions, execution times, and noise levels. It is
built using data from sources such as the NVD
and CVE databases [21, 12]. This simplifies sim-
ulations and reduces replications because a single
storage for vulnerability information.

7.2. Actor Database

This database stores the twins of actors that imple-
ment the intrusions to be simulated. Data to build
the twins are gathered from threat intelligence
reports and security analysis.

7.3. Implementation

The platform returns an intrusion graph to be an-
alyzed to discover dynamic interactions between
actors and the target system. As previously de-
scribed, this graph is the output of multiple inde-
pendent twin-based simulations, the vulnerability
database, and a profile from the actor database.

Strategies and Intrusion Planning

The current prototype supports four strategies:

• Random: selects the next action randomly.
• Privilege First: prefers the acquisition of

access rights.
• Success First: prefers actions with the high-

est success probability
• Noise First: selects actions with the lowest

noise.

Future versions will implement strategies based
on AI planning methods.

Data Shift Analysis

Data shifts can occur for any change in the CPS
or actor behavior. An important reason for an
expected and positive change is the patching of



649Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

vulnerabilities chosen through some simulations.
The impacts of all these shifts can be estimated
through new simulations.

Simulation Outputs

The outputs of multiple simulations support an
estimation of the probabilities of the events of
interest as well as the evaluation of centrality mea-
sures for the CPS nodes weighted w.r.t. successful
intrusion probabilities. The latter is important for
patch scheduling.

The output of simulations can be used as the
input for AI and Data Mining analyses to discover:

• Attack Paths and Sequences: Detailed se-
quences of actions in intrusions,

• Success Rates: Estimated intrusion success
probabilities, True Positive Rate (Recall),
True Negative Rate (Specificity),

• Time Metrics: Time to reach goals.
• Impact Assessment: Evaluations of attack

impacts, based on a cost model related to the
business processes using the CPS.

7.4. A First Example

We experiment with a simplified CPS where com-
ponents include servers, workstations, network
devices, and users. The overall system architecture
consists of 60 nodes and 15 users, featuring a
diverse array of components including servers,
workstations, a router, a firewall, and a database
server. Fig. 7.4 illustrates a subset such a system.

Node Type Connections
Node A Server B, C
Node B Workstation A, D, E, User 1
Node C Router A, D, E
Node D Workstation B, C, F, User 2
Node E DB Server B, C, F
Node F Firewall D, E
User 1 User B
User 2 User D

We assume the system nodes are affected by a
total of 50 vulnerabilities. Despite efforts to main-
tain security through regular patching, around 15
vulnerabilities remain unaddressed.

Our simulation software is implemented in
Python, using NumPy for numerical computations
and NetworkXa for network analysis.

We have run simulations to analyze alterna-
tive scenarios to investigate the baseline attack
paths, the selection of countermeasures, and the
existence of new actors. A first experiment with
100 simulations shows that the common attack
path is from node A to B to E and the attacker
success probability is 65% if a phishing attack
targeting User 1 is successful. The average time
to compromise is 2 hours.

After patching vulnerabilities and improving
firewall rules, we run 100 simulations and accord-
ing to this experiment there is a new scenario with
a new attack path from Node A to C to E, the
success probability is reduced to 30%. and the
average time to compromise increases to 4 hours.

The deployment of countermeasures resulted
the choice of a distinct path due to the patching
of some vulnerabilities. The ability to predict the
reaction of an actor to a countermeasure is funda-
mental for risk management.

The simulation of an advanced strategy aimed
at minimizing noise results in an attack path from
A to B to C, with a success probability of 75%
and an average time to compromise of 1.51 hours.
This shows that a sophisticated threat agent can
adapt to existing security controls, modifying its
strategy to optimize success probability and mini-
mize time to compromise.

To assess the impact of emerging vulnerabili-
ties, we have run a what-if analysis that introduces
a new vulnerability on node C. This results in
a significant change because the attack path is
from A to C to E, its success probability is 90%
and the average time to compromise 1.04 hour.
This emphasizes how even minor changes, the in-
troduction of one vulnerability, heavily influence
intrusions and affects both success probability and
attack paths.

8. Conclusion

CPSs face significant threats because of vulner-
abilities in software, hardware, and human ele-

ahttps://networkx.org/



650 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

ments, often using physical or phishing attacks.
Although countermeasure selection needs intru-
sion data, rapidly evolving risk scenarios reduce
the accuracy of prediction using historical data.
Merging digital twins with adversary simulation
can generate synthetic data to counter data shifts.
AI integration further improves the emulation of
intelligent threat actors.

Future work will refine statistical analysis of the
intrusion graph, expand applications across CPSs,
and leverage AI to strengthen defenses against
evolving cyber threats.

References

1. D. Amodei, C. Olah, J. Steinhardt, P. F. Chris-
tiano, J. Schulman, and D. Mané. Con-
crete problems in AI safety. arXiv preprint
arXiv:1606.06565, 2016.

2. A. Applebaum, J. Baker, D. Beck, and
M. Haase. Attack flows — beyond atomic
behaviors. MITRE Engenuity, 2022.

3. T. Aven. On the meaning of a black swan in a
risk context. Safety science, 57:44–51, 2013.

4. M. Bada and J. R. Nurse. The social and psy-
chological impact of cyberattacks. In V. Ben-
son and J. Mcalaney, editors, Emerging Cyber
Threats and Cognitive Vulnerabilities, pages
73–92. USA, 2020.

5. G. D. P. et al. ChainReactor: Automated
privilege escalation chain discovery via AI
planning. In 33rd USENIX Security Sym-
posium, pages 5913–5929, Philadelphia, PA,
Aug. 2024. USENIX Association.

6. S. Furnell, H. Heyburn, A. Whitehead, and
J. N. Shah. Understanding the full cost of
cyber security breaches. Computer fraud &
security, (12):6–12, 2020.

7. A. Gelman and J. Hill. Data Analysis Using
Regression and Multilevel/Hierarchical Mod-
els. 2006.

8. J. Jordon, L. Szpruch, F. Houssiau,
M. Bottarelli, G. Cherubin, C. Maple, S. N.
Cohen, and A. Weller. Synthetic data - what,
why and how? CoRR, abs/2205.03257, 2022.

9. C. McLean, Y. T. Lee, S. Jain, C. Hutchings,
and C. Hurchings. Modeling and simulation
of critical infrastructure systems for home-

land security applications. NIST, Gaithers-
burg, MD, USA, Tech. Rep. NISTIR, 7785,
2011.

10. Y. Mirsky et al. Kitsune: An ensemble of
autoencoders for online network intrusion de-
tection. arXiv, 2018.

11. J. Moreno-Torres, T. Raeder, R. Alaiz-
Rodrguez, N. Chawla, and F. Herrera. A uni-
fying view on dataset shift in classification.
Pattern Recognition, 45(1):521–530, 2012.

12. NIST. National vulnerability database, 2024.
13. J. Quinonero, M. Sugiyama, N. Lawrence,

and A. Schwaighofer. Dataset Shift in Ma-
chine Learning. MIT Press, USA, 2009.

14. M. Ryan. Ransomware Revolution: The Rise
of a Prodigious Cyber Threat. Springer
Cham, Berlin, 2021.

15. D. W. Scott. Multivariate density estimation:
Theory, practice, and visualization. 2015.

16. F. Shahid et al. Cyber threat intelligence using
deep learning: An overview. IEEE Access,
8:212345–212356, 2020.

17. A. Storkey. When training and test sets
are different: Characterizing learning transfer,
dataset shift. In Machine Learning, pages 3–
28, 2009.

18. B. Strom et al. Mitre att&ck™: Design and
philosophy, 2020.

19. A. Subbaswamy and S. Saria. From develop-
ment to deployment: Dataset shift, causality,
and shift-stable models in health ai. Biostatis-
tics, 21(2):345–352, 2020.

20. K. Thakur, M. L. Ali, N. Jiang, and M. Qiu.
Impact of cyber-attacks on critical infrastruc-
ture. In BigDataSecurity/HPSC/IDS, pages
183–186. IEEE, 2016.

21. The MITRE Corporation. Cve, 2024.
22. Z. Wu, Z. Wang, X. Xu, J. Lu, and H. Yan.

Embodied task planning with large language
models. ArXiv, abs/2307.01848, 2023.

23. Z. Zhao, W. Lee, and D. Hsu. Llms as
commonsense knowledge for large-scale task
planning. ArXiv, abs/2305.14078, 2023.


