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Network models of modern systems such as critical infrastructures, systems of systems, or human cyber-physical 

systems are key for their modelling, understanding, design, and analysis. Examples include electrical, 

communication, supply and transport networks, smart homes, or physical access systems. Graph, flow, or 

engineering-physical models allow by now to assess the influence of disruptions of single or more elements at 

different system levels to an increasing level of accuracy, transiency, and real time. Also, a plethora of metrics are 

available to assess system overall risk, e.g., system loss or resilience metrics. The present approach employs the 

concept of causal graphs and their quantification to reveal levels of dependencies of nodes, which can be extended 

to cover also edges. This is first conducted at the level of two nodes starting with direct causal dependency chains 

of first order, and then proposed to be extended to causal elementary models for three elements: chain, fork, and 

immorality. To assess to which degree two arbitrary nodes of the network are linked by a causal chain of first order, 

for simplicity a linear dependency model between the nodes is assumed, and its parameters are determined assessing 

the effect of critical possible risk and resilience weighted disruptions. In this way for each causal elementary graph 

its relevancy for the overall causal network can be ranked. If this is available for all causal building blocks a 

procedure can be given how to construct the overall causal graph bottom up avoiding cyclic and undirected 

structures. The proposed approach is described stepwise as well as equations are given for up to causal chains. The 

scaling of the approach is assessed. Best local causal models as well an overall causal model can be constructed. 

For an example the causal graph is constructed and discussed using first order causal chains.   

 

Keywords: Network flow and transient model, causality graph, causal inference and quantification, chain, fork, 

immorality, local and global causal model, linear dependency model, risk and resilience weighting of disruptions.  

 

1. Introduction 
Critical infrastructures (CIs) are very successfully 

described using networks. This corresponds to 

their physical-technical realization at different 

scales. In the simplest case, networks are bus 

systems. It is assumed that all elements are 

interconnected and communicate with each other, 

exchanging energy, information or realizing 

material flows with assumed unlimited capacity. 

Bus system considerations have proved 

particularly successful in the field of power supply 

and communication.  

For a general consideration, however, it is 

necessary to take the actual capacities of networks 

into account. There is a limit of information or 

material flow through transmission nodes, hubs, 

sources and sinks as well as edges. This also 

applies when intelligent protocols are based on the 

physical technical infrastructure, for instance in 

case of software defined communication networks 

(Agnew et al. 2024), industrial control systems of 

supply water grids (Etxezarreta et al. 2023), or 

windfarms internet of things designs (Mwangi et 

al. 2024). For example, data packets are exchanged 

through still available connections when following 

internet protocols. Similarly, gas (Zhang, Weng, 

and Qi 2023), water, oil or even electricity flows 

and fixing strategies (Jasiūnas et al. 2023) can only 

be adapted to the network capacity. 

This paper examines the extent to which the 

cause of network failures can be determined based 

on an existing physical-technical network 

simulation. Aim is a contribution to the 

explainability of network disturbances or failures. 

The expectation is that causal explanations are 
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better suited to generate narratives for the 

improvement of reliability and resilience of 

networks for internal and public communication 

through understanding which nodes and edges are 

causally responsible for expected failures, i.e., are 

main root cause candidates. To this end, it is 

explored whether causal information can be 

extracted from an existing complete technical 

simulative description of a supply network jointly 

with its risk and resilience assessment.  

Therefore, the aim is to first select and define 

causal dependency relationships and describe them 

using causal graphs. An attempt will then be made 

to identify such causal graphs based on an existing 

network modeling and simulation as well as risk 

and resilience quantification. This is to be done 

locally, i.e., for few also distributed given nodes or 

edges, using simple causal elementary graphs for 

modelling their causal relationships: chains, forks 

and immoralities.  

The aim is to determine the effect of damage, 

failure and disruption events, weighted with their 

probability on up to three local network elements 

using causal elementary graphs to single out 

selected potential causal relations. It is assumed 

that a complete modeling and simulation is 

available such that the relevancy of different causal 

graph models can be determined revealing the 

strength of causal impact relationships for local 

network elements. In an overall risk weighted 

combination their relevancy for the overall system 

is then used to determine an overall causal graph.  

The paper is structured as follows. Section 2 

discusses the difference between CI modelling 

perspectives: graph, network, Bayesian believe 

network (BBN), and Markov diagram, and finally 

causal graphs. In addition, the building blocks of 

causal networks are listed. More fundamentally, 

the previous use of causal analyses in the area of CI 

protection is discussed. Finally, the present 

approach is presented. Section 3 describes the 

proposed procedure of determining distributed 

local causal graphs and an overall causal graph 

based on a network flow simulation and risk and 

resilience analysis. Section 4 provides sample 

quantitative expressions for selected elementary 

causal graph building blocks with which the 

strength of causal dependencies of network 

elements can be determined and are ranked to build 

an overall causal graph. The feasibility of the 

methodology is assessed in terms of computation 

effort. Section 5 presents an application example. 

Section 6 concludes.  

2. Technical network flow simulation versus 
graph abstractions and causal graphs 

The section reviews various modeling and 

simulation perspectives on CI networks, parts of 

which are used to extract causal relationships.  

For simplicity, we assume physical-technical 

networks that describe the transport of liquid or 

gaseous substances. Similar simulations can be 

applied to transport and energy systems. The 

conservation laws for mass, energy and momentum 

give rise to flow equations and together with the 

boundary conditions of the networks they define 

possible solutions. In the normal state or quasi-

static state, i.e. with comparatively slow changes of 

overall system states, infrastructure networks are in 

equilibrium with regard to the quantities of 

material fed in and flowing out. Examples are gas 

networks (Hari et al. 2022), oil transport networks 

(Ali, Abdul-Majeed, and Al-Sarkhi 2024), water 

networks (Creaco et al. 2017), and transport 

networks (Dong, Shan, and Hwang 2022).  

We consider various interruptions to the grids 

leading to transient behavior of the grids, i.e., time-

dependent changes at shorter time scales. This may 

mean that consumption can no longer be covered. 

In this case, it is not possible to find a solution in 

which all consumers are supplied, see for instance 

for gas networks (Zalitis et al. 2022) (Kopustinskas 

et al. 2022) (Ganter et al. 2024).  

In the case of incompressible liquids like 

freshwater, substance volume flow rates (volumes 

per time) are usually specified for substance 

sources and sinks. If gaseous transport mass flow 

is considered, consumers and sources can be 

described with (average) mass flow rate demands 

and in addition with minimum gas pressure 

requirements. In the gas case, it is therefore in 

general also necessary to switch off parts of the 

supply network in order to supply a residual 

network with sufficient gas at sufficient pressure.  

In the following we assume that for a CI 

supply grid solutions are available for quasi-static 

as well as for transient behavior during disruptions 

leading again to quasi-static behavior.  

One approach of causal analysis or discovery 

that operates without any a priori knowledge (Pearl 

2022) (Zanga, Ozkirimli, and Stella 2022) is to first 
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select a set of measurement data that depend on 

time and to consider them as realizations of random 

variables for which causal relations need to be 

determined. The next step is to normalize the data. 

Then a causal graph is constructed, also called 

causal qualitative analysis, see, e.g., (Kossakowski, 

Waldorp, and van der Maas 2021). The final step is 

to quantify the causal graph, also called causal 

inference, see, e.g., (Xu et al. 2023). With this a 

causal model of the data becomes available.  

An example application of causal discovery 

to detection of root causes of delivery risks using 

domain knowledge is given in (Bo and Xiao 2024). 

However, when the described process is applied for 

instance to production data without using a priori 
knowledge it is difficult to identify such causal 

quantities as failure root causes in data of 

production processes (Qalaji et al. 2024), even 

when using different method options for each 

process step and for overall approach assessment 

production failure anomaly prediction capability.  

In the case of supply grids modeled with flow 

simulation, when applying the causal discovery 

process, the throughput of nodes and edges could 

be used as random variables for which causal 

relations need to be determined using observed or 

simulated joint time histories in case of normal or 

disrupted operation. To the knowledge of the 

authors, no such approach has been tried so far.  

Another approach could be to transform a 

supply grid flow simulation network into a causal 

graph, or at least a similar graphical structure. To 

this end we investigate how close supply grids are 

already to causal graphs.  

Abstract graph models only consider nodes 

and directed edges, which could be based on 

abstractions of flow simulation grid models that 

also contain pumps, storage facilities, etc. Graphs 

determine a list of network-topology based metrics 

to assess resilience, e.g. centrality, connectedness, 

and redundancy (Ji et al. 2024). Network models 

suitable for flow simulation can be abstracted to 

graphs that also can be cyclic and that can have 

undirected (bidirectional) edges., e.g., if three 

nodes are connected with undirected pipelines this 

forms a cyclic graph. However, causal graph 

models require acyclic and directed graphs, which 

can be quantified to become causal inference 

models. So, there is no direct transition from 

networks suitable for flow simulation to causal 

graphs.  

Also Bayesian Belief Networks (BBNs) can 

only be based on acyclic directed graphs, but allow 

a well-defined probabilistic interpretation as a 

compact representation of a joint distribution 

function of a complex system (Gaur et al. 2021). 

However, they are in general not causal graph 

models (Druzdzel and Simon 1993). Therefore, 

even from a general BBN, which can be assumed 

to be based on the flow model, causal graphs are 

not accessible. 

In summary, there is no direct link between 

CI flow simulation network models and causal 

graphs, as the former can be cyclic and undirected, 

whereas the latter need to be acyclic and directed. 

Nevertheless, the flow network structure can be 

expected to be explorable to find causal 

relationships between nodes and edges in terms of 

causal graphs.  

In the present case, instead of assuming an 

arbitrary variation of node or edge random 

variables as done in standard approaches just 

reviewed, the ambition of the paper is to consider a 

risk and resilience informed weighting wiggling 

driven by expectable disruptions. This will serve as 

an example how to use causality concepts in the 

domain of resilience of CIs (Häring et al. 2024).  

3. Derivation of the Methodology 
Instead of a transformation of the simulation flow 

network to a causal graph the idea is to determine 

it bottom up inductively by identifying 

elementary causal graphs, see Fig. 1.  
 

 
Fig. 1. Elementary causal graphs, see e.g. (Neal 2020).  

 

The aim is furthermore to not only to use very 

basic causal relations, consisting of only two 

elements, out of the set of edges and nodes, see Fig. 

1 for illustration. This is expected to allow for more 

subtle causal modelling, e.g., including the effect 

of cofounders, forks and colliders, to ensure 

sufficient complexity of the causal model.  

Further idea is to use an overall risk ranking 

of potential disruption events on overall system 
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level. Note that in standard approaches where data 

distributions for random variables are given, e.g., 

each random variable is wiggled around its mean 

value using its standard deviation as order of 

magnitude of the wiggle amplitude, and there is no 

relative weighting of random variables. However, 

we use systemic effects to identify and weight 

causal influence of single disruptions on relevancy 

of causal basic relations. This is expected to ensure 

that key causal relations are sufficient prominent in 

the final causal overall model.  

The approach proposed reads:  

1. Determine a flow network model of a CI. 

2. Determine a set of boundary conditions for 

successful operation. 

3. Determine a system loss function of the 

overall network considering short-term and 

long-term consequences, i.e. resilience 

informed consequences. 

4. Determine the flow simulation solution of the 

network without any disruptions. 

5. Generate a list of potential single disruption 

events.  

6. Estimate the probabilities of the disruptions.  

7. Determine for each disruption event the 

effect on the network for each node and edge 

as well as its resilience informed overall 

consequence.  

8. Calculate the overall risk rank of each 

disruption using 6 and 7. Provide a critical 

overall risk threshold.  

9. Generate a list of elementary causal graphical 

building blocks with up to three nodes.  

10. Determine for all possible sets of two and 

three nodes of the flow grid network model 

the effect of all disruptions.  

11. Considering disruptions with critical overall 

resilience-informed systemic risk define for 

each causal basic graph a metric to determine 

its relevancy.   

12. Rank the set of nodes for each causal 

elementary model using the metric of 11. 

Provide a minimum critical value of the 

metric such that a dependency should be 

considered.  

13. For each causal diagram type, rank its 

relevancy for overall causal graph building.  

14. Using the ranked list of basic causal building 

blocks, combine the dependencies to the 

overall causal diagram while ensuring that 

causal graph model requirements are 

observed. If ambiguities arise use the ranking 

of identified elementary graphs as well as 

their internal ranking to determine how a 

causal dependency is considered.  

15. Conduct the overall process till stability with 

respect to minor changes of the process 

steering parameters, e.g., loss function 

definition in 3, probability of disruption 

event estimates in 6, relative weighting of 

elementary diagrams in 13, as well as 

threshold values, e.g., critical resilience 

informed overall risk as introduced in 8 and 

minimum dependency metric as introduced 

in 12.  

The question arises, how key steps of the 

proposed approach can be formalized to assess if 

the steps can be fulfilled in practical 

implementations.  

4. Equations for Overall Risk-Supported 
Causal Graph Construction 
Let  be a set of nodes and 

 be the corresponding set of 

directed edges, where , if there is an edge 

from  to  and , if not. Then define 

 as maximum sink mass flow rate of 

node , passive nodes as , maximum 

source node flow rates as , similarly 

minimum and maximum pressures  and  

for sink and source nodes are defined. The 

capacity of maximum net mass flow rate through 

a node is  and through a directed edge 

. If the network flow model with the 

above given network data and initial conditions is 

solvable then for each node the quasi-static 

pressure  and net mass flow rate  can 

be determined, as well as for each edge direction 

the flow rate .  

To describe the effect of disruption events let 

 be a set of representative 

disruptions. Let  be the resilience aware 

probability by considering detection and 

prevention of the event  and  be its 

resilience-aware consequence by considering 

reduced consequences in case of fast recovery on 

system level, resulting in the overall risk value at 

system level of . Let  

be a critical overall minimum risk threshold. Then 
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 is the pressure at the node  in case of 

the disruption . 

For simplicity, we determine in the following 

the dependence of nodes on each other only in 

case of single disruptions occurring as well as in 

terms of the change of pressure as random 

variable X at the nodes, see Fig 2. Let  be 

a pair of nodes with  . 

To model causal dependency, we assume the 

linear model  

 (1) 

where  is a constant pressure offset and  

is a constant direct proportionality factor relating 

pressure changes at node  to changes at node 

 that parametrizes the causal chain dependency 

of  on  of first order.  
 

 
Fig. 2. Selection of sample sets of 2 (green) and 3 (blue) 

non-overlapping nodes for the evaluation of the 

relevance of the causal dependency chains of length 2 

and 3. Boundary conditions are red. The darker the 

colors of nodes, the more likely it is that they will be 

confirmed by the flow simulation. 
 

Using eq. (1) and assuming that the causal 

elementary graph describing that  causes  in 

Fig. 1 needs to be identified we compute for each 

combination  the related coefficients 

 using Chi-square minimization of  

 

where between the absolute value lines of eq. (2) 

is just the lhs. of eq. (1) minus the rhs. of eq. (1), 

and , e.g.,   

Now  of (2) can be used to assess the 

overall systemic risk and resilience weighted 

causal dependency strength of node  on node 

. It is positive if on average over all disruption 

events  the pressure at node  decreases if the 

pressure at node  decreases. For the ranking of 

the direct causal relation of the node pairs 

, e.g., the expression  is used to 

consider all possible dependency patterns.  

Also, for constructing the overall causal 

graph the metric  can be used to rank all 

causal connections  while considering a 

minimum threshold value of the dependency 

metric  

   (3) 

To avoid undirected graphs always the pair 

 is selected with the higher dependency 

metric. Starting with the highest ranked pair 

further nodes are added. However, if a circular 

loop is observed, the node is not added to avoid 

constructing a cyclic directed graph. In this case 

the node pair that would close the loop is removed 

from the list of ranked nodes and not further 

considered.  

To assess the effort needed for implementing 

this minimal realization of the 15-step approach 

scheme provided in section 2, first a conservative 

upper bound of the number of potential single 

disruptions is estimated as 
, (4) 

which counts the options of removing single 

nodes and directed edges assuming that always 

bidirectional connections are realized.  

The number of the potential direct causal 

relations for which the dependency strength 

metrics  need to be assessed using (2) is 

,  (5) 

as the nodes do not interact with themselves, but 

all potential dependencies need to be assessed, see 

Fig. 3.  

Regarding computational main effort, the 

computation of the resilience-informed 

consequences  of disruptions is expected to 

be dominating as it requires flow-grid 

simulations. We observe that the upper bound of 

the latter scale in the same way, see (4), as the 

number of minimization problems according to 

(2), which need to be solved for the computation 

of the dependency metrics, see eq. (5). 

The present approach can be extended to the 

consideration of elementary causality graphs of  

3-rd order in the following way. Instead of eq. (1) 

consider for triples , e.g. assessing 

the presence of causal chains according to Fig. 1, 

the following nested expression  
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(

),  (5) 

where , ,  and  are 

determined. As a joint metric of the relevancy of 

the elementary chain causal relationship based on 

eq. (5)  is a natural choice. Thus, 

besides a list of direct causal dependencies of 2-

nd order, a ranked list of elementary causal chains 

of 3-rd order can be generated. 

 

5. Application example 
To evaluate (2), we choose the sample system of 

Fig. 3. Nodes  and  are source nodes with 

flow-in boundary conditions as described in 

section 3. All nodes  have 

outflow boundary conditions to be served. We 

assume a bus like flow distribution such that each 

node connected to any of the two sources is 

supplied. For instance,  is supplied by  and 

 and only fails if both sources fail. Node  is 

only supplied by . 

 
Fig. 3. CI network example with 4 nodes: (a) grid 

model, (b) causal model when only considering simple 

chains for assessment.  
 

Table 1 lists the probabilities of disruption 

assumed, consequences in case of loss of nodes 

and resulting risks on system level using the 

notation introduced in section 3.  
 

Table 1. Probabilities of node disruptions, 

consequences and risks on system level for sample 

system.  
Dis-
rup-
tion 

Ini-
tial 
loss 

Fur-
ther 

nodes 
lost 

All 
nodes 
lost 

 

Proba-
bility 

 
[  

Risk 
 

[  

   2   

  - 1   

  - 1   

  - 1   
 

We assume a critical risk threshold level of 

overall system loss of  below 

of which risks are neglected. Hence, in equation 

(2) only the effects of the disruptions  and  

are considered to compute the linear 

dependencies  between nodes  and . 

Furthermore, we set  for the p-norm 

resulting in the modulus norm.  

Table 2 gives the results for the linear 

dependencies between the nodes as matrix 

. For instance,  is obtained 

from  

 

 

               ,  

which is equivalent to  
 

, 

. Hence, we 

find  and  as in Table 2.  

From (5) we realize that there are  

possible combinations of pressures if in (5) a 

pressure value of 1 is used in case node is supplied 

and 0 if node is not supplied. For   

 

, 

. 

Hence, we find  and . For  
 

, 

. Hence 

. For  
 

, 

, which is indepen-

dent of . Hence  is arbitrary. Now for each 

entry type in Table 2 one example has been given. 

The other entries are computed similarly.  
 

Table 2. Linear dependency matrix for example system.  
  

 1 2 3 4 
1 1  1 a. 

2  a.  0 

3 0  1 0 

4 a. a. a. a. 
 

By inspection of Table 2,  is linear depen-

dent on , i.e.  which is as expected from 

Fig. 3 through the directed connection from  to 

. Node  does not depend on  as there is no 

connection. Node  does not depend on  as the 

latter is not assumed to fail according to the critical 

system risk threshold assumed.  
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Node  does not depend on  as it is 

supplied by . Also, as  is assumed as not 

failing due to the critical systemic risk threshold 

assumed,  will always be supplied independent 

of . The computation allows for an arbitrary 

value  Whether  depends on  cannot 

be decided as  is found to be arbitrary, also not 

whether  depends on , and whether  

depends on . The last three statements hold as  

is assumed to be never failing due to the systemic 

critical risk threshold assumed. Hence, the arbitrary 

entries also mark independence, however, in this 

case due the assumption that the failure of certain 

nodes needs not to be considered because the 

systemic risks are assumed to be negligible.  

The value  can be interpreted such 

that the supply of  decreases if  is supplied, 

which contradicts the additional supply of . In 

addition,  has independent supply anyway. So, 

this value needs to be rejected as non-physical 

solution. Also,  is independent of  as it has its 

own supply. Similarly,  is independent of  as 

it has its own supply. Furthermore,  is 

independence of  as it is supplied by . In all 

these cases the solutions  

can be rejected as not physical.  

In addition, note that the node set 

{  contains a collider elementary 

graphical model, see Fig. 1, which also holds for 

{ . In the latter case we take advantage 

that  is not assumed to fail anyway. Hence, we 

can expect a behavior different than for a chain or 

a double chain, see Fig. 1.  

The diagonal linear self-dependencies 

reflect for  and  their dependency on their 

own operation as there is no backup. However,  

is supplied by and  even by  and . 

Let us summarize the causal dependencies 

as identified form (2) when considering a simple 

chain of length two as basic causal model to 

collect information, a risk threshold excluding the 

consideration of the failure of 2 out of 4 nodes, 

and the modulus p-metric case. We find that the 

only causal dependency that can be extracted 

besides self-dependencies is that  depends on 

, see Fig. 3 right hand side.  

This result as obtained from the 

minimization task of equation (2) is consistent 

with the assumptions and direct inspection, as we 

consider only single disruptions of nodes. Node 

 only depends on own supply,  and  have 

redundant supply, thus showing no dependence 

on a single node failure. Node  is only supplied 

if  is operational. We emphasize the significant 

reduction of complexity of the dependencies 

when comparing the grid model and the causal 

graph model of Fig. 3.  

5. Conclusions and Outlook 
The paper has introduced options of constructing 

causal graphs locally and then globally from 

existing flow models of CIs. The bottom-up 

approach generates for each pair and triple of nodes 

a metric assessing the applicability of causal 

elementary diagrams. An explicit equation has 

been given using elementary causal chains of 2-nd 

order and been proposed for causal chains of 3-rd 

order. Ranked local causal diagrams weighted with 

a relative importance of elementary causal diagram 

types while avoiding undirected and cyclic graphs 

are proposed to construct overall causal graphs.  

Due to the combinatorial scaling of the 

computational effort with the number of nodes in 

quartic order, it is expected that hyperparameters 

need to restrict the numbers of combinations, e.g., 

by using a critical overall resilience-informed risk 

threshold , and a limited number of local 

causal graphs, e.g., the10 % dominating ones. 

Novelty of the approach is that disruption 

weighting reduces the causal dependencies to the 

most dominating ones utilizing that nodes are 

assessed to be relatively robust or redundant 

compared to others and/or their loss has limited 

systemic effect. This was also seen in the 

application example. It computed the causal graph 

of a 4-node network with 2 sources and in total 4 

directed edges. Only the failure of 2 nodes was 

found to be relevant on system level. The causal 

graph reduced to a single chain dependence and 2 

self-loops only. Linear dependency allowed to rank 

the causal dependencies using the modulus norm.  

Future work planned is to implement the 

approach to larger grids and to use more 

elementary causal graph models with up to 3 nodes. 

For small CI grids the constructed graph can be 

assessed by humans. Results could also be 

benchmarked with causal graph models 

constructed automatically without any domain 

knowledge and if quantified be used to assess the 

relative contribution of nodes to observed failures, 

which could be compared to flow grid simulative 

results. The approach can be generalized to 
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consider multiple disruption events, where higher 

order elementary causal diagrams are expected to 

become even more influential. Finally, also 

coupled grids could be considered.  
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