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Abstract— Critical Infrastructures (CIs) delivering essential 
services, like energy and water, share vulnerabilities through their 
interdependences of many kinds, including physical, operational 
and others. These interdependences generate systems of systems 
exposed to coordinated attacks that can lead to cascading failures 
across the infrastructures. This work presents an attack-defense 
game model to determine optimal defense strategies for multi-state 
interdependent CIs. The model combines game theory and 
network theory to assess the topological and operational features 
of the interdependent infrastructures considered. To estimate the 
operational impact of disruptions on the CIs, inoperability 
assessments are developed and critical nodes are identified based 
on their topological importance in the system of systems. The 
model considers the risk attitude of both attackers and defenders 
by evaluating their respective game payoffs with Cumulative 
Prospect Theory (CPT). A case study regarding a system of 
systems made of a power grid and a water network is used to 
illustrate the application of the proposed model. 

Keywords—Critical Infrastructures, Interdependencies, 
Multiple States, Inoperability, Coordinated Attacks, Attack-defense 
Game, Cumulative Prospect Theory. 

I. INTRODUCTION 
Critical Infrastructures (CIs), such as energy grids, water 

systems and transportation networks are increasingly vulnerable 
to intentional manmade attacks [1]. For example, in 2015, a 
coordinated cyberattack on Ukraine’s power grid caused a 
massive outage, leaving 230,000 people without electricity and 
straining critical services, including healthcare and emergency 
response [2]. Similarly, in 2022, a sabotage of electrical 
substations in North Carolina affected the U.S. power grid, 
leaving thousands without power and disrupting water 
distribution systems reliant on electricity [3].  

Game theory, a widely used approach for analyzing attacks on 
CIs, considers the strategic behavior of multiple players, namely 
attackers and defenders [4]. For instance, the binary attack-
defense game model has been applied to prioritize critical 
components for defense in urban water distribution networks 
[5]. Additionally, the resource allocation attack-defense game 
model has been employed to determine optimal resource 
allocation strategies for defenders to protect specific 
components, using a contest success function [6]. Both 

approaches incorporate valuable analytical insights but assume 
risk neutrality for attackers and defenders, which limits their 
applicability to real-word scenarios where risk preferences 
significantly influence action decision-making.  

To address the impact of risk preferences, a game theory-based 
model has been proposed that incorporates Cumulative 
Prospective Theory (CPT) to account for differences in how 
attackers and defenders assess risk [7][8]. One study proposes a 
framework that employs the Binary Decision Diagram (BDD) 
method to analyze potential failure states on the CI and 
demonstrates how risk attitudes influence strategic decisions [7]; 
however, the proposed framework is limited to small networks 
due to the computational challenges of BDD, making it 
unsuitable for large-scale systems. Furthermore, no strategies 
are provided to identify critical nodes in the CIs. To overcome 
this latter limitation, another framework combines CPT with 
genetic algorithms for identifying critical nodes [9]; whereas 
this improves scalability, it focuses only on a single 
infrastructure, thus not considering the cascading process across 
interconnected infrastructures.  

In this paper, we propose a framework for developing defense 
strategies against coordinated attacks on multi-state 
interdependent CIs, addressing key challenges such as critical 
nodes identification, cascading effects and resource allocation. 
First, a critical target identification method is proposed to 
develop the strategy model for players. Second, a CI 
inoperability model is introduced to evaluate the performance of 
CIs considering cascading failures. The inoperability metric is, 
then, used to construct the payoff model, incorporating the 
Cumulative Prospective Value (CPV). The framework is 
validated through a case study involving a power and a water 
network; interdependencies between the two systems are 
considered and shown to exacerbate disruptions.  

The remainder of the paper is organized as follows: Section 2 
presents the proposed attack-defense framework; Section 3 
outlines the method for identifying critical targets in CIs; 
Section 4 describes the case study of the interdependent power 
grid and water distribution network; Section 5 discusses the 
results and Section 6 concludes the paper with future research 
directions. 
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II. ATTACK-DEFENSE GAME FRAMEWORK  
The attack-defense game framework proposed for 

interdependent CIs is composed of four phases, as shown in 
Figure 1. 

The first phase involves an inoperability assessment model for 
each CI. This phase considers the topological and operational 
characteristics of the interconnected infrastructures to obtain the 
identification of potential target components or systems in each 
CI. In the second phase, a strategy model is developed using the 
outputs from the inoperability assessment, including the 
identified targets, to formulate the strategic interactions between 
the attacker and defender. The third phase focuses on the 
development of a payoff model. CPT is introduced to account 
for the risk preferences of the attackers and defenders, 
quantifying their strategic utilities based on their resource 
allocations and outcomes. Finally, the fourth phase applies a 
two-stage optimization framework to calculate the game 
equilibrium solution, determining the optimal resource 
allocation strategies for the players.  

 
Figure 1. Framework of attack-defense game on CIs 

A. Assumptions 
 Before detailing each phase of the framework, the following 
assumptions underpin the proposed game model: The model 
considers one attacker and one defender, each potentially 
representing teams of multiple players. The defender acts as the 
leader, selecting defense strategies first, whereas the attacker 
follows, making attack decisions after observing the defender’s 
actions. Both players allocate resources to influence the state of 
targets in the targeted CI, where the likelihood of a target 
reaching a complete failure state is determined by the relative 
resource investment of the attacker and defender. 

B. Inoperability assessment model 
 This phase evaluates the performance of each CI under 
various disruption scenarios, considering its internal structure 
and the interdependencies with the other CIs in the system of 
systems. 

Each CI is first represented as a directed graph , 
where  denotes the nodes representing components or 
systems of the generic -th CI, and  captures the internal 
connections. Each node  is characterized by a discrete 
multi-state variable , representing operational states ranging 

from fully functional  to complete failure . These 

node states are used to construct a structural function that 
captures all potential states of the infrastructure. Under the 
assumption of a perfect state of the infrastructure 

, the nominal demand is estimated ; 
the inoperability of the infrastructure in a given state ( ) is, 
then, quantified as: 

where  is the demand met in state  and  
corresponds to the demand met in the perfect state . This 
metric, ranging from 0 (no inoperability) to 1 (complete 
inoperability), provides a standardized measure of performance 
degradation. 

To capture the interdependencies in the system of systems, 
additional edges are introduced between the graphs of the 
interdependent CIs. For instance, in the case of a generic -th CI 
interdependent with a generic -th CI, edges  and  are 
introduced between the graphs   and  Nodes associated 
with these interdependencies are identified in  as  and 

and in  as  and  These nodes represent critical 
connections through which disruptions in one CI can cascade to 
another. Cascading effects are modeled using a dependency 
matrix, as described in [10].   

When a disruption scenario occurs where one or more nodes of 
a CI are directly affected, the failed node(s) and their associated 
edges are removed, leading to changes in the states of the CI hit 
by the disruption and to potential cascading failures in the 
dependent CIs. Once the system of systems stabilizes, the 
inoperability of each CI is estimated and the overall system of 
systems inoperability, , is calculated as the weighted 
average of the inoperabilities of the individual CIs: 

where  represents the relative importance of the -th CI and  
is the total number of CIs in the system of systems. 

For each disruption scenario, generated by removing individual 
nodes,  is evaluated to quantify the operational impact. 
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Building on these results, potential target nodes are identified in 
each CI using the topological metrics described in Section III.  

C. Strategy model 
The strategy model begins by defining the initial condition 

of the game, which consists of selecting the CI to be attacked. 
Assuming that the generic -th CI is chosen as the target of the 
attack, the model is constructed based on its critical nodes as 
potential targets of intelligent attacks. The critical target node 
set for the generic -th CI is defined as  
where Given this target node set and the 
resources available to the attacker  and the 
defender the two players strategically allocate their 
resources on the K targets.  
 
The allocation ratios for the attacker and defender are 
represented as  and  
respectively, where  denotes the proportion of the attacker’s 
total resources  allocated to attacking critical target , and 

 represents the proportion of the defender’s total resources 
 allocated to protecting critical target . It is assumed that 

a successful attack results in the complete failure of the targeted 
node; using the traditional Tullock model, the probability of 
successfully attacking a critical target node  ( ), denoted as 

, is given by [8]: 

This formulation captures the strategic interplay between the 
attacker and defender, where the likelihood of a successful 
attack is determined by the relative resource investments of 
both players. 
 
The interaction between the attacker and defender results in  
possible outcomes, as each of the  targets in the critical target 
set  of the target -th CI can be successfully either attacked 
or defended. These outcomes are summarized in Table I. 
 

TABLE I. SCENARIOS OF ATTACK-DEFENSE GAME 

Num of 
failed 
target 
nodes 

Description Scenarios Probability of scenario 
occurrence ( ) 

 

None target in 
 is 

compromised 
 

  

1 
One target in  
is in failure state 
 

  

2 
Two targets in 

 are in failure 
state 

  

    

 
The  targets in 

 are in failure 
state 

  

 

Possible outcomes occur with different probabilities and range 
from no target nodes being in a failure state to all  target nodes 
being in a failure state. For example, the probability of no target 
in  being in a failure state  is calculated as the product 
of the probabilities of all targets being successfully defended, 
whereas the probability of all  targets being in a failure state 

 is the product of the probabilities of all targets being 
successfully attacked. Intermediate scenarios  
to represent combinations of successful attacks and 
defenses, each with its related probabilities of occurrence. 

D. Payoff model 
 In this game,   and CPVs are employed to analyze the 
players’ payoffs, incorporating their risk preferences and the 
performance of the system of systems. The CPV for each player 
is determined by evaluating the utilities of all potential outcomes 
and their associated probabilities. For the defender, the central 
objective is to minimize inoperability by preventing the attacker 
from compromising critical target nodes. The defender’s utility 
increases when the system of systems remains operational, 
whereas the attacker’s utility increases when it becomes 
inoperable.  

The utilities  for the attacker and  for the defender in 
scenario  are mathematically defined as: 

For each scenario  among the  possible outcomes, the 
utilities represent the respective gains or losses for each player 
under all scenarios. Specifically,  the attacker’s utility 
corresponds to the inoperability of the system of systems, 
whereas the defender’s utility reflects its non-inoperability. 
These utilities, denoted as  for the attacker 
and for the defender, capture the full 
range of possible outcomes in the game. 

To better reflect potential losses and gains, the process outlined 
in [9] is adopted, where utilities are ranked in ascending order. 
For the attacker, the ranked utilities are represented as 

 where  denotes the smallest 
utility value for the attacker. Similarly, for the defender, the 
ranked utilities are expressed as 

, with  corresponding to the smallest utility value for 
the defender. 

Each utility is paired with a probability that reflects the 
likelihood of the associated outcome (Table I). For the attacker, 
the probabilities are ranked as 

 and similarly for the defender 
.  

The CPVs for the attacker  and defender  are calculated 
as:  
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In these equations,  to  corresponds to losses (scenarios 
with a utility of zero or less), whereas  to  
represents gains (scenarios with positive utilities). Decision 
weights  for losses and  for gains) reflect 
how probabilities are subjectively perceived by decision-makers. 
Specifically, decision-makers tend to overestimate low-
probability events and underestimate high-probability events [8]. 

The utility functions  for the attacker  and defender 
, whether associated with losses  or gains , are defined 

as [9]: 

where  refers to    or ,  based on the player 
and context (loss/gain). Parameters  and  define risk 
preferences:  indicates risk aversion over gains, 
while  reflects risk-seeking over losses. Higher  and 
 reduce these tendencies. The factor  represents loss-aversion, 

with  indicating that individuals are generally more 
sensitive to losses than to equivalent gains. 

The decision weight  and  are calculated as: 

The weighing functions for losses  and gains  are 
obtained by: 

where  and  are weighing parameters. Risk parameters such 
as  and  need to be estimated through experiments [11]. 

E. Equilibrium solution 
 In the sequential game, the defender is assumed to act as the 
leader, committing to a defense strategy, whereas the attacker 
acts as the follower, taking attack actions after observing the 
defender’s strategies. Both players aim to maximize their CPVs 
given the available resources. The optimal resource allocation 
strategies can, then, be searched using a two-phase optimization 
model  as follows: 

In this formulation Equation (13) ensures that the defender 
optimizes the CPV considering the attacker’s best response. 
Equation (14) ensures the attacker optimizes the CPV, given the 
defender’s strategy. Equation (15) and (16) enforce that the 
resource allocation for both players are normalized, summing to 
1. This two-phase optimization captures the interaction between 
the players’ strategies and ensures that the equilibrium solution 
reflects their respective objectives. 

III. IDENTIFICATION OF TARGETS IN CIS  
Identifying target nodes in CIs requires analyzing 

operational and structural characteristics. Operational metrics 
provide insights into the functionality of components or systems 
but require in-depth knowledge of CI’s operations. In contrast, 
structural information, related to the network topology, is 
usually readily available and allows topology-based analyses 
relevant for assessing potential vulnerabilities. For this reason, 
many studies focus on topological metrics to identify critical 
nodes in CIs.  

Topological metrics such as betweenness centrality, degree 
centrality and closeness centrality have been used to assess 
network vulnerabilities. Betweenness centrality, which 
measures a node’s influence by the number of shortest paths 
passing through it, has been applied to evaluate critical nodes in 
dynamic Internet of Things networks [12] and gas transmission 
networks [13], for example. Degree centrality, reflecting the 
number of direct connections that a node has, is another 
commonly used metric across various domains. In power system 
analysis, it has been applied to assess the vulnerability of power 
transmission networks [14] and Integrated Energy Systems 
(IES) [15], identifying critical nodes that support system 
performance by maintaining connectivity. Closeness centrality, 
which quantifies a node’s accessibility by calculating the inverse 
of the average shortest path length to other nodes, has proven 
effective in optimizing sensor placement for contamination 
detection in water distribution networks. By leveraging this 
metric, critical nodes can be identified to improve system 
monitoring and resilience [16]. Together, these metrics provide 
quantitative information for identifying critical target nodes in 
CIs. 

In this way, critical nodes in CIs are identified based on their 
topological characteristics, recognizing that these attacks are 
more likely to be due to the minimal information required. For a 
generic -th CI, three topological metrics are estimated for each 
node : degree centrality index , betweenness centrality 
index  and closeness centrality index . These 
metrics are selected for their ability to capture distinct aspects of 
a node’s role and influence on the network. 

The degree centrality index is defined as [17]: 

Here,  is the total number of nodes in the generic -th CI and 
 is the adjacency matrix (  if nodes  and  are 

connected, otherwise  Higher values of  
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indicate nodes with more direct connections, suggesting greater 
influence on network connectivity.  

The betweenness centrality index is estimated as [18]: 

where 

 is the total number of shortest paths between nodes  and 
, and  is the number of paths passing through node . 

The denominator  represents the total number of shortest 
paths in the generic -th CI. Nodes with higher values of  
serve as critical bridges in the network, significantly influencing 
the flow of information or resources between other nodes. 

The closeness index evaluates how quickly a node can reach 
others in the CI, and is calculated as [19]: 

where  represents the shortest path distance between 
 and . Higher values of  indicate nodes with shorter 

distances to others, implying greater accessibility and a key role 
in maintaining network reachability.  

Each topological metric provides valuable insights but relying 
on a single index can overlook a node’s overall importance in 
the CI. For example, a node in a power grid may have high 
degree centrality due to its numerous connections but score low 
on betweenness or closeness centrality if it lacks critical shortest 
paths or is geographically isolated. Thus, using one metric alone 
could lead to a myopic assessment. This underscores the need to 
combine metrics for a comprehensive evaluation of node 
criticality.  

To address this, a novel structural index,  is introduced, 
integrating degree, betweenness and closeness centrality using 
the Borda count method. This method ranks nodes for each 
metric in descending order and assigns scores based on their 
rank [20]. The final structural index is computed as the sum of 
these scores across all metrics, providing a balanced and holistic 
evaluation of each node’s importance in the CI. 

In summary, the operational impacts of disruptions are analyzed 
through the inoperability of the system of systems, whereas the 
identification of critical nodes relies exclusively on the 
network’s topology. This approach ensures practicality and 
scalability by leveraging structural information instead of 
detailed operational data. 

IV. CASE STUDY 
The system of systems under study is made of a water 

network (WN) and a power network (PN): the PN relies on the 
WN for cooling processes and the WN depends on the PN for 
pumping operations. The PN is modeled using the IEEE57-bus 
test system and the WN’s topology is derived from the IEEE39-
bus system [21,22]. Nodes within these networks are classified 
as supplier or demand nodes based on their function in each CI 
[23]. Accordingly, the node sets are defined as 

 and .   

In both networks, supplier nodes (sets  and ) can exist 
in four states: (i) fully operational

, (ii) disconnected due to edge failures 

(iii) overloaded when exceeding capacity 

 or (iv) completely inoperable . 
Similarly, demand nodes (sets  and ) can exist in three 
states: (i) fully operational

 (ii) disconnected due to loss of connectivity with 

suppliers  or (iii) inoperable . 

The PN topology  includes seven supplier nodes  
that provide electricity to fifty demand nodes , meeting a 
demand of  MW under normal conditions 

 Similarly, the WN topology  includes ten 
supplier nodes  that deliver  
to twenty-nine demand nodes under normal conditions 
( ). Disruptions in one network can cascade to the other, 
amplifying the inoperability of the system of systems. Figure 2 
illustrates the network topologies.  

 
Figure 2. Topologies of  and  

The interdependencies  are illustrated in Figure 3. 
Each supplier node in the WN depends on power redundantly 
supplied by two specific nodes in the PN. Similarly, the seven 
supplier nodes in the PN rely on water redundantly supplied by 
two demand nodes in the WN. This redundancy ensures that 
cascading effects in the dependent CI only occur if a node in 
the dependent CI fails due to the failure of both nodes in the 
source CI that supply it. In other words, a node in the dependent 
CI remains operational unless both of its connected nodes in the 
source CI are in a state other than perfect functioning. 
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Figure 3. Physical interdependency PN↔WN 

V. RESULTS 
The proposed methodology was applied to the 

interdependent PN and WN described in the case study. As 
shown in Figure 1, the methodology begins with characterizing 
the CIs, focusing on the identification of critical nodes and their 
impact on the operation of the system of systems. Results 
highlight key nodes using topological metrics and evaluate 
cascading effects through the inoperability model.  

Table II and Table III present the top three critical nodes 
identified in PN and WN, respectively. To estimate 

Equation (2) was applied assuming equal relative 
importance for each network . 

TABLE II. TOP THREE CRITICAL NODES IN THE  ACCORDING TO  

Node 
ID 

   
 Value 

of 
index 

Ranking 
Value 

of 
index 

Ranking 
Value 

of 
index 

Ranking 

13 0.11 1 0.28 2 0.29 1 0.01 

38 0.09 3 0.32 1 0.27 3 0.01 

9 0.11 1 0.24 3 0.26 4 0.009 

 
TABLE III. TOP THREE CRITICAL NODES IN THE  ACCORDING TO  

Node 
ID 

   
 Value 

of 
index 

Ranking 
Value 

of 
index 

Ranking 
Value 

of 
index 

Ranking 

16 0.13 1 0.48 1 0.29 1 0.15 

4 0.08 5 0.29 3 0.28 2 0.02 

14 0.08 5 0.30 2 0.27 4 0.02 

 

Based on the identified critical nodes, defense and attack 
strategies can be defined. The structural index, which integrates 
multiple metrics ( ,  and ), effectively identifies critical 
nodes from multiple topological perspectives. For instance, in 
the PN, nodes 9 and 13 share the same value for , but the 
structural index points to node 13 as most critical due to its high 
influence across other topological metrics.  

The inoperability results confirm the robustness of the system of 
systems under single-node failures, as  remains low. Yet, a 
comparison of the last column in the Tables shows that WN 
attacks have a greater impact on the system of systems than 
attacks on the PN. Notably, attackers targeting multiple nodes, 
as shown in Figure 4, can significantly disrupt the system of 
system, with WN attacks causing higher inoperability due to the 
system-of-systems configuration. This underscores the 
importance of considering the topologies of the CIs to inform 
attack-defense strategies.   

To advance the analysis, equilibrium strategies and payoffs are 
evaluated using the attack-defense game model introduced in 
Section II. The model considers risk preferences to reflect 
realistic decision-making, with parameters detailed in Table IV 
based on [8]. 

 
Figure 4.  under direct attacks on  (red bars) and  

(blue bars) 

The expected payoffs for the attacker, considering scenarios 
where nodes are protected or unprotected, are analyzed for PN 
and WN under varying numbers of targeted nodes. If a node  
is unprotected,  indicating that the attacker is 
guaranteed to succeed. Conversely, if  is protected, the 
probability of a successful attack  depends on the resource 
investment of both players, as described by Equation (3). 
 

TABLE IV. MODEL PARAMETERS SETTING 

Contest 
success 
function 

 

Weighing function 

 

Utility function 

 

  
Loss-

aversion 
factor 

Risk 
aversion 

over 
gains 

Risk 
seeking 

over 
losses 

      

 
Figure 5 shows that as the number of targeted nodes increases, 
the attacker’s payoff rises, with the WN yielding significantly 
higher payoffs than the PN due to its critical role in the system-
of-systems configuration. The disparity between protected and 
unprotected scenarios is also greater in the WN, where targeting 
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unprotected nodes offers a higher strategic advantage. For 
example, attacking three unprotected WN nodes yields a payoff 
of 0.2263 compared to 0.0756 for protected nodes, showing that 
protection mechanisms could reduce the attacker’s 
effectiveness by over 66%. In practical terms, this means that 
implementing effective protection strategies in the WN could 
drastically limit an attacker’s ability to achieve their objectives, 
particularly in scenarios involving coordinated attacks on 
multiple nodes.  
 
On the other hand, the PN demonstrates inherent resilience 
under limited-scale attacks. For instance, the payoff difference 
is smaller when targeting a single critical node (node 13) or 
multiple nodes. Figure 6 confirms that defender’s payoffs 
improve with protection measures, especially in the WN. In the 
PN, differences between protected and unprotected scenarios 
are minimal. For example, when three nodes are targeted, the 
defender’s payoffs decrease only slightly from 0.9844 
(protected) to 0.9766 (unprotected). 
 

 
Figure 5. Attacker’s expected payoffs for targeting  (red) 

and  (blue) in protected and unprotected scenarios 

 
Figure 6. Defender’s expected payoffs for targeting  (red) 

and  (blue) in protected and unprotected scenarios 

In contrast, WN shows a more significant improvement in the 
defender’s payoff under protection. When three nodes are 
targeted, the payoff rises from 0.8305 (unprotected) to 0.8889 

(protected), representing an approximate 7% increase. This 
highlights the WN’s higher susceptibility to attacks and 
underscores the importance of protection strategies to mitigate 
cascading failures. These results reinforce the critical role of 
targeted defense measures in enhancing system resilience, 
particularly for the WN.  
 
Table V and Table VI present equilibrium solutions, 
considering the interactions between the attacker and defender 
under different target numbers, in the context of attacking the 
power network and the water network, respectively. It is shown 
that as the number of targets increases, the expected payoffs for 
the attacker rise, whereas the expected payoffs for the defender 
decrease. Both players tend to distribute their resources across 
multiple targets as the number of targets grows. This can be 
attributed to the fact that the inoperability of the system of 
systems grows as the number of simultaneous failed nodes 
rises, prompting both players to consider all targets.  
 

TABLE V. THE EQUILIBRIUM SOLUTION FOR ATTACKING  

Target 
num Node ID     

1 [13] 1 1 0.0053 0.9940 

2 [13,  
38] 

0.4996, 
0.5005 

0.5001, 
0.4999 0.0108 0.9882 

3 
[13,  
38,  
9] 

0.3560, 
0.3604, 
0.2836 

0.3475, 
0.3542, 
0.2984 

0.0153 0.9844 

 
TABLE VI. THE EQUILIBRIUM SOLUTION FOR ATTACKING  

Target 
num Node ID     

1 [16] 1 1 0.0593 0.9087 

2 [16,  
4] 

0.9087, 
0.0914 

0.8698, 
0.1302 0.0669 0.9007 

3 
[16,  
4,  

14] 

0.7846, 
0.1119, 
0.1036 

0.6409, 
0.1028, 
0.2563 

0.0756 0.8889 

 
By comparing Table V and Table VI, it can be observed that, 
when the number of target nodes considered is three, both 
players tend to distribute their resources evenly across the nodes, 
specifically [13, 38, 9] when attacking PN because the failure of 
each of these node has a roughly equal impact on , as 
indicated in Table II. In contrast, when attacking WN, the impact 
of targeting node 16 on  is considerably greater than that of 
nodes 4 and 14, as demonstrated in Table III: under this 
situation, both players prioritize the allocation of resources to 
node 16. 

VI. CONCLUSIONS 
This paper presents a game theory-based framework to 

model and analyze coordinated attacks and defense strategies in 
interdependent CIs. By integrating network theory, topological 
metrics and CPT, the methodology captures the complexity of 
intelligent attacks, where attackers strategically target nodes 
with high structural importance.  
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The framework incorporates multiple dimensions of failure, 
including cascading effects and escalating disruptions across 
interdependent CIs. The case study results demonstrate the 
greater vulnerability of the WN, where disruptions lead to higher 
inoperability compared to the PN. The model effectively 
captures how failures propagate through direct dependencies 
and amplify across the system of systems, providing insights for 
CI owners and planners.  

The analysis also emphasizes the importance of strategic 
resource allocation in defense planning. Given limited 
protection resources, prioritization is necessary to maximize 
system operability. The results show that protecting critical 
nodes in the WN significantly reduces the attacker’s payoffs, 
particularly in multi-node attack scenarios, where targeted 
defense can lower the attacker’s effectiveness by over 66%. In 
contrast, the PN exhibits greater resilience under single-node 
attacks, suggesting that protection efforts should focus on nodes 
that contribute most to multi-node disruptions.  

Concerning the computational demand, the critical node 
identification by topological metrics is computationally quite 
efficient whereas the equilibrium solution search through 
iterative game-theoretic calculations can be computationally 
intensive, especially for large-scale networks with numerous 
interdependent nodes. Then, for scalability of the framework, 
future research should explore the use of parallel computing and 
the introduction of heuristic search approaches. Additionally, 
future work will refine critical node identification by 
considering operational and interdependent perspectives, 
incorporating a deeper understanding of the attacker’s 
knowledge and strategies. The model could also be expanded to 
account for potential edge failures and the costs of protecting 
nodes and edges.  
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