
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P7599-cd

Industrial warning system with active devices for signal reception and 
dynamic noise attenuation using artificial intelligence algorithms 

Federico Paolucci 
Department of Engineering, University of Perugia, Italy. E-mail: federico.paolucci@dottorandi.unipg.it

Luca Landi 
Department of Engineering, University of Perugia, Italy. E-mail: luca.landi@unipg.it

Raffaele Mariconte 
Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, 
INAIL, Rome, Italy. E-mail: r.mariconte@inail.it 

Claudia Giliberti 
Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, 
INAIL, Rome, Italy. E-mail: c.giliberti@inail.it 

Francesco Antonio Salzano 
Department of Medicine, Surgery, and Dentistry "Scuola Medica Salernitana" (DIPMED), University of 
Salerno, Italy. E-mail: frsalzano@unisa.it 

Luigi Patrono 
Department of Engineering for Innovation - University of Salento Italy. E-mail: 
luigi.patrono@unisalento.it

Luca Catarinucci 
Department of Engineering for Innovation - University of Salento Italy. E-mail: 
luca.catarinucci@unisalento.it

 
The protection of workers' hearing in industrial environments is essential to ensure their safety and health. 
This article presents a general architecture and the essential components of a distributed integrated 
industrial system capable of receiving notifications from machinery and transmitting voice messages in 
real-time to workers. Utilizing a localization system based on Bluetooth Low Energy (BLE) technology, 
the system identifies the real-time position of workers. The one-way communication between machines 
and the notification server relies on an HTTP protocol with POST requests, allowing the sending of 
customized alerts to specific groups of workers. This improves communication effectiveness, ensuring 
that every potentially interested worker receives critical information for their safety. The system consists 
of two key components: a personal protective device (PPE) equipped with adaptive electronic filters 
supported by artificial intelligence, designed to dynamically filter harmful noises while allowing the 
transmission of essential alerts, alarms, and voice communications. The second component includes a 
user localization system and the transmission/reception between machines and worn PPEs, capable of 
generating safety alerts and operational instructions, thereby enhancing workers' situational awareness 
and protection. The article explores the system's architecture and highlights its potential benefits in terms 
of risk reduction in industrial environments, contributing to the creation of a safer work environment. By 
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emphasizing the importance of technology in safeguarding workers' health, this system represents a 
significant step forward toward a safer and more responsible industry. 
 
Keywords: Smart PPE, occupational safety, IoT for industry device, dynamic noise cancellation, 
machine learning for voice detection, real-time audio processing.

1. Introduction 
Noise-induced hearing loss and increased 
accident risks are persistent concerns in noisy 
workplaces. Protecting workers’ hearing 
without compromising their ability to 
communicate is a critical challenge in industrial 
safety. This research introduces a cutting-edge 
system aimed at managing noise and improving 
safety through intelligent sound filtering and 
dynamic response mechanisms. The system is 
structured into two core components: an 
advanced Personal Protective Equipment (PPE) 
device and a human-machine interaction 
module. The hearing PPE integrates Internet of 
Things (IoT) (Lee et al. 2015) capabilities and 
Artificial Intelligence (AI) algorithms to offer 
adaptive hearing protection and continuous 
safety monitoring. Central to this design are 
smart headphones with filters powered by 
Machine Learning (ML), capable of detecting 
speech, calculating sound pressure levels 
(SPL), and dynamically adjusting hardware 
filters. This functionality is complemented by 
the second system element, which includes 
smart machinery and indoor localization tools 
to provide contextual safety support. 
Conventional electronic hearing PPE devices 
often rely on static noise reduction methods that 
would not ensure optimal speech 
communication among workers and fail to 
adapt to varying conditions. The system 
proposed here overcomes these limitations by 
utilizing advanced technologies such as Voice 
Activity Detection (VAD) and Active Noise 
Cancellation (ANC) (Serizel et al. 2010). 
Enhanced by neural network algorithms, these 
techniques enable real-time isolation of speech 
from ambient noise. Indoor positioning through 
Bluetooth Low Energy (BLE) beacons adds 
another layer of safety by tracking workers’ 
locations and generating situational alerts. IoT 

connectivity facilitates seamless Machine-to-
Machine (M2M) communication, ensuring 
timely intervention during hazardous events. 
The proposed approach builds on gaps 
identified in existing PPE solutions, which lack 
dynamic filtering and fail to integrate with 
modern safety systems. This system aligns with 
international and national regulations, such as 
the Machinery Directive 2006/42/EC 
(European Parliament and Council 2006), 
which emphasizes risk reduction in equipment, 
and Directive 2003/10/EC (European 
Parliament and Council 2003), which sets 
exposure limits for noise. Italian Decreto 
Legislativo no. 81/2008 specifies mandatory 
PPE usage above 85 dB(A), along with periodic 
health evaluations. Additionally, ISO 4869 
(International Organization for Standardization, 
1990) and EN 352 (European Committee for 
Standardization 2002) establish guidelines for 
noise attenuation and compatibility of safety 
devices.  
2. System Architecture and Conceptual 

Design 
The conceptual layout of the intelligent hearing 
protection system, designed and developed in 
this study, is shown in figure 1. It was 
established based on the filtering logic of the 
wearable device and the hazard detection and 
notification system, with the primary 
requirements being derived from the state-of-
the-art review and the integration of existing 
technologies. The system’s major components 
include the prototype of the smart headphones 
and the backend infrastructure for data 
acquisition and management. The overall 
architecture of the system is organized into two 
main subsystems (see figure 1).  
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Fig. 1. General system architecture composed by the 
first subsystem (green box) and second subsystem 
(red box) 

The first subsystem focuses on filtering external 
noise by detecting human speech in the 
captured audio and adjusting the filter 
accordingly. The headphones feature a low-cost 
electret microphone, which has been previously 
analyzed for frequency response and directivity 
pattern, and integrated within the device. This 
microphone records sound signals composed of 
speech and/or noise. The recorded audio is 
processed by a specialized algorithm that 
analyzes these signals in real time, utilizing a 
machine learning model, pre-trained in the 
cloud and executed on a Raspberry Pi®, to 
identify the presence of speech in the signals (a 
probability score is provided to distinguish 
easily understandable speech from noise-
immersed speech), as well as calculating the 
equivalent sound pressure level (SPL). The 
models incorporate Voice Activity Detection 
(VAD) techniques (Ramirez et al. 2004), based 
on Gaussian Mixture Models (GMM) and Deep 
Neural Networks (DNN) for real-time speech 
detection in audio. The worker’s environment is 
typically filled with loud, persistent sounds, but 
it is important that the speech signal of other 
workers remain audible without being 
overwhelmed by the machinery noise. A vital 

role is also played by the Digital Signal 
Processor (DSP) filter, which, embedded in the 
headphones, performs real-time adaptive sound 
filtering using AI-driven algorithms. The DSP 
detects speech signal data from the real-time 
audio stream, along with SPL information, and 
applies noise reduction using Finite Impulse 
Response (FIR) and Infinite Impulse Response 
(IIR) filters. The Raspberry Pi® serves as the 
system’s central element by executing the 
Machine Learning VAD algorithm. The second 
subsystem consists of the backend, which 
collects and processes data on environmental 
noise and worker positioning. The backend 
utilizes a pre-trained Machine Learning model 
to optimize filter settings in real time for use in 
personal protective equipment (PPE) to filter 
sounds. Additionally, the system employs 
Bluetooth Low Energy (BLE) beacons 
(Faragher et al. 2015) to track worker locations 
near machines, providing hazard alerts through 
synthetic audio messages sent to the 
headphones. The system is triggered as soon as 
the worker dons the headphones. When 
dangerous noise levels are detected, the 
headphones reduce the noise while allowing 
significant sounds, such as voices from other 
workers or alarms, to pass through. The 
Raspberry Pi® manages the worker's location 
relative to nearby machinery. Specifically, it 
continuously scans the surrounding 
environment to identify all nearby devices that 
can be detected via Bluetooth. This enables the 
detection of beacons positioned near 
machinery. It also handles communication with 
the backend system, making HTTP requests 
and dynamically subscribing to MQTT (a 
messaging protocol for IoT, enabling devices to 
publish and subscribe to topics for efficient 
communication in real-time) (Alotaibi et al. 
2024) topics associated with the machinery to 
receive any warnings. The microphone-
acquired data is sent to the backend, which 
processes noise levels, worker location, and 
machine status in real time. In the event of an 
emergency, the backend sends notifications via 
MQTT to workers in proximity to the danger. 
Each industrial machine is linked to one or 
more Bluetooth beacons and an MQTT topic, 
which allows for indoor localization of workers 
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via the Raspberry Pi® connected to the smart 
headphones. When a worker approaches a 
machine, the Raspberry Pi® receives a signal 
packet from a beacon containing an RSSI 
(signal strength indicator) value. If the RSSI 
exceeds a specific threshold, the system 
automatically subscribes the worker to the 
MQTT topic corresponding to that machine. 
The smart headphones, having obtained this 
information during an initialization phase, 
query the backend server using HTTP requests 
to confirm the machine-to-topic-to-beacon 
associations. The backend not only manages the 
system’s database, keeping track of all relevant 
information, including machine statuses, but 
also operates the MQTT broker, which is 
critical for communication between various 
system components. In case of alarms related to 
malfunctions or hazardous conditions, the 
backend receives data from machines via HTTP 
POST requests (POST is a method used in 
HTTP to send data to a server, often to create or 
update resources) (Alam et al. 2014) and relays 
this information to workers via MQTT topics. 
Finally, the architecture includes a frontend 
system accessible by safety managers, who can 
monitor machine statuses and send hazard alerts 
or update system data. This dashboard provides 
a clear, structured visualization of the data and 
enables active interaction with the backend via 
HTTP GET requests. 

3. System Design and Deployment 
3.1. Adaptive Noise Filtering subsystem for 

Headphones 
3.1.1. Low-Cost Microphones 

Three low-cost lavalier microphones (Sinclair 
2001) were selected for the project, with the 
potential for integration into the headphones 
(see figure 2). The selection process, aligned 
with the project’s goals, focused on 
affordability, a theoretically omnidirectional 
(Omni in the table 1) polar pattern, and 
suitability for the audible frequency range. 
These microphones (see table 1) vary in cost 
and theoretical performance, which will be 
validated through testing in both reverberation 
and anechoic chambers. The microphone 
demonstrating the best performance in terms of 
frequency response and directivity will be 

integrated into the hearing protection device 
(PPE). 

Table 1. Characteristics of Low-Cost Microphones 
(Mic.). 

 
 
 
 
 

 
Fig. 2. Selected lavalier microphones 

The experimental campaigns carried out in 
reverberation and anechoic chambers (see 
figure 3) compared the performance of these 
low-cost microphones with that of a reference 
professional Class 1 Sound Level Meter, 
focusing on their frequency and directional 
responses. In the reverberation chamber, the 
microphones were exposed to pure tones 
ranging from 125 Hz to 8000 Hz, generating 
equivalent sound pressure levels at the 
respective frequencies. These levels were then 
compared to the measurements obtained from 
the Sound Level Meter. Microphone A showed 
increasing discrepancies at higher frequencies, 
reaching a maximum error of 8 dB at 8000 Hz. 
Microphone B, on the other hand, had a 
maximum error of just 1 dB (see table 2) 
proving to be highly reliable for non-
professional applications. Microphone C 
exhibited more significant deviations, 
particularly beyond 1000 Hz. In the anechoic 
chamber, the microphones were further tested 
to assess their directional response. Microphone 
B demonstrated excellent sensitivity, with 
minimal signal loss (see figure 4), confirming 
its superior performance in both accuracy and 
cost-effectiveness, making it the optimal choice 
for the project’s requirements. 

Mic. Polar 
pattern  

Audio 
sensitivity  

Frequency 
Range  

 (theoretical) (dB  re 1 
Volt/Pascal 
+/- 3 dB) 

(Hz) 

A Omni -32 50 - 20000 
B Omni -35 20 - 20000 
C Omni -38 20 - 20000 

A)                              B)               C) 
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Fig. 3. Experimental campaigns: a) reverberation 
chamber b) anechoic chamber 

Table 2. Comparison of equivalent sound pressure 
levels (SPL) between sound level meter and 
microphone B: maximum error = 0.9 dB 

Frequency  Sound Meter 
Level SPL  

Microphone B 
SPL  

(Hz) (dB) (dB) 
125 94.3 94.6 
250 107.6 107.8 
500 94.5 95.3 
1000 98.4 98.3 
2000 105.9 105.4 
4000 99.3 100.2 
8000 89.6 90.4 

 

 

Fig. 4. Polar Pattern of lavalier microphone B: good 
directional response with sensitivity losses under 
1.5dB. 

3.1.2. Python®-Based Real-Time 
Processing of Audio Data 

A Python®-based software has been developed 
for noise characterization, leveraging acoustic 
signal processing libraries like scikit-maad 

(Ulloa et al. 2021), widely used for 
environmental acoustic measurements. The 
system acquires signals from microphones and 
processes them in real-time, calculating both 
instantaneous and time-averaged equivalent 
sound pressure levels and generating spectra in 
octave or third-octave bands. Initially 
implemented on a Windows PC, the software 
was later ported to a Raspberry Pi 5, with 
comparable analysis times for each 1- second 
acquisition: 1.3 seconds on the PC versus 3.3 
seconds on the Raspberry Pi 5. This 
discrepancy arises from the stream acquisition 
time, as computation times for both systems 
remain under 0.1 seconds per calculation. In 
addition to scikit-maad, the software 
incorporates libraries like PyAudio for real-
time audio capture, NumPy and SciPy for 
numerical processing and filtering, and 
Matplotlib for visualization. A user-friendly 
graphical interface, developed with Qt Creator, 
enables intuitive configuration of parameters 
such as device-specific audio gain, microphone 
sensitivity, processing bandwidth (octave or 
third-octave), measurement duration (manual 
or default), and signal weighting A, C, or Z 
(Kinsler et al. 1999). Users can select recording 
modes: sound level meter (real-time display and 
text file recording) or wave (saving audio in 
both .wav and text formats). Before acquisition, 
microphones and the sound level meter 
underwent calibration (Myiara 2017) using a 
professional Class 1 calibrator with 94 dB and 
114 dB reference levels at 1000 Hz, 
determining a dynamic range of 96 dB for 16-
bit encoded signals. The software normalizes 
raw microphone voltage signals to waveform 
format, similar to recorded .wav files. Using 
scikit-maad, it calculates sound pressure levels 
and spectral data in bands. Results are 
computed every second with exponential 
averaging using “S” weighting (slow, time 
weightings = 1 s) (IEC 61672-1 2013), aligning 
with sound level meter settings for direct 
comparison. Output includes spectral plots in 
octave or third-octave bands and time history of 
the equivalent sound pressure level averaged 
over the processing duration (see figure 5). 

 

a) b) 

<1.5 dB 
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Fig 5. Spectrum in bands averaged over the duration 
of the individual test and time history, averaged over 
the measurement time, of the equivalent level 

A post-processing program has also been 
developed for offline analysis of .wav files 
generated by the real-time algorithm. Using an 
interface designed with Qt Creator®, the 
program enables users to select a wave file 
while automatically detecting its recording 
parameters. 

3.1.3. Smart Headphone Hardware 
Device 

The DSP module selected for the smart headset 
project is the NEDSP-1901-KBD (see figure 6) 
from BHI-LTD. This module was chosen for its 
compact design and real-time audio processing 
capabilities, including signals from an electret 
microphone. It supports adjustable noise 
reduction while maintaining speech 
intelligibility, offering attenuation levels 
ranging from 8 dB to 40 dB. These features 
allow for optimal configuration to significantly 
enhance voice clarity in various noisy 
environments. The DSP employs bandpass 
filtering algorithms that isolate vocal signal 
components within the 0.2 Hz to 5 Hz range, 
while attenuating irrelevant frequencies 
classified as noise. The module is 
programmable via external microcontrollers; 
during the testing phase, a simple Arduino 
board was used, but it can also interface with 
more complex and miniaturized devices. This 
programmability enables remote control of 

functions such as power management and noise 
filter adjustments. For device testing, a setup 
was developed using audio recordings 
simulating industrial environments with typical 
sounds like chainsaws, pneumatic hammers, 
and engines. The objective was to evaluate the 
DSP’s performance in noise attenuation while 
preserving speech intelligibility. The module 
was integrated with a PCB powered at 12V and 
connected to audio input and output devices, 
ensuring efficient signal processing and the 
application of DSP filters. Additionally, the 
NEDSP-1901-KBD module features a 7W 
high-efficiency audio amplifier from Texas 
Instruments, making it easily adaptable for 
integration into existing devices. For the final 
design, miniaturization of the circuit will be 
essential to fit the module within the ear cups or 
belt of the PPE. This can be achieved by 
developing a custom PCB that incorporates all 
selected components in a smart and compact 
architecture. 

 

Fig. 6. NEDSP-1901-KBD module 

3.2. Human-Machine Interface Subsystem 

This subsystem, as previously noted, 
establishes a connection between industrial 
machinery, the backend, and the frontend. To 
replicate this setup, a data transmission 
architecture was designed to link the machine 
with the backend server. This architecture 
integrates a CNC lathe console, the modified 
Data Collector Manager (DCM) by D.Electron, 
a Python® HTTP server (running on a PC or 
Raspberry Pi® 5), and a modem for 
connectivity (see figure 7). The Python® server 
script incorporates several libraries: http.server, 
which facilitates the quick creation of static web 
servers for development or testing; 
socketserver, which simplifies server 
development and customization by handling 
socket creation, listening, and connection 
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acceptance; datetime, which records the current 
date and time of the host computer; and socket, 
which enables manipulation of IP addresses and 
ports. Communication between the machine 
and the server is achieved via HTTP POST 
requests. In this process, the DCM collects, 
formats, and transmits data (see figure 8) to the 
server at a specified IP address and port. The 
transmitted data includes information about the 
machine's operational status, alarms, 
maintenance needs, control display status, 
smart service functionalities, and details of 
executed programs. As outlined earlier, data is 
sent in a structured format comprising the 
machine's serial number, data type, numeric 
value, value description, and timestamp. During 
system testing, no data loss was observed, 
achieving a zero-failure transmission rate. 
During system testing, no interference was 
detected, highlighting the stability of the 
communication channel. The setup time of the 
system is less than 1 second at the current stage. 

 

Fig. 7. Data transmission layout between machine 
and server: I) lathe console + DCM, II) HTTP POST 
server, III) Modem for lathe and server connection 

 

Fig. 8. Example of transmitted strings 

To replicate a complex industrial environment, 
the layout has been enhanced using digital twins 
of typical machine tools. These are realized 
through virtual clients, developed in 

Python®/Qt Creator, which emulate the 
operations of the DCM via POST requests. 
Each simulated machine is assigned its own 
client, functioning as a digital twin of the 
physical machine, capable of simulating 
operations and complex scenarios in real-time. 
The digital twin runs on a Raspberry Pi (see 
figure 9.2). The physical machine included in 
the layout is a modified CNC lathe, equipped 
with a PLC for seamless communication with 
the system supervisor (see figure 9.1). The PLC 
transmits real-time data regarding machine 
downtime and emergency conditions, ensuring 
an uninterrupted flow of information to the 
backend server. This system enables 
asynchronous communication between the PLC 
and the backend, guaranteeing swift and precise 
responses during emergencies. The architecture 
is carefully designed to support continuous 
control and immediate feedback between 
machines, the digital twin, and the supervisor, 
optimizing operational management and 
improving overall system reliability. 

 

Fig. 9. 1) Data transmission layout; 2) Digital twin of 
machine on Raspberry Pi 

The human-machine feedback system 
integrates the smart headphones with the work 
environment, collecting data on ambient noise 
and monitoring worker positions. This 
information is processed by a cloud-based 
Machine Learning model, which analyses the 
data to send safety alerts or operational 
instructions, enhancing worker awareness and 
protection. 
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4. Conclusion 

This work demonstrates an advanced intelligent 
hearing protection system that leverages IoT 
and AI for real-time, adaptive noise filtering. 
By integrating a Digital Signal Processor (DSP) 
with pre-trained machine learning algorithms 
for voice detection, the smart PPE attenuates 
harmful noise by up to 40 dB with a latency 
below 10 ms, ensuring that essential 
communications are maintained. The system 
employs Bluetooth Low Energy (BLE) for 
indoor localization and uses MQTT for 
efficient, real-time alert delivery. We are 
developing a survey and its data indicates that 
existing hearing protection devices are often 
underutilized—due to issues like discomfort 
and communication barriers—or overused, 
which compromises situational awareness and 
contributes to high social costs from hearing 
damage and workplace accidents. Our proposed 
solution addresses these challenges through a 
context-aware design that encourages proper 
use and significantly reduces the associated 
social costs. Moreover, the system’s scalable 
architecture allows for seamless adaptation 
across diverse industrial environments without 
requiring significant hardware modifications. 
Compliance with regulatory standards such as 
Directive 2003/10/EC and ISO 4869 further 
underscores the practical viability of this 
technology in enhancing workplace safety. 
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