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This paper presents a load-dependent degradation model for Proton Exchange Membrane Fuel Cells using a non-
homogeneous stochastic gamma process to predict degradation under varying load conditions. The model effectively
captures uncertainties, variability, and non-linearities in the degradation process. Building on this foundation, a
novel energy management strategy is developed, specifically designed for multi-stack fuel cell systems, combining
degradation prognosis with health-conscious energy management for piecewise-static power applications. The
methodology is demonstrated on a two-stack PEMFC system, achieving significant improvements in system lifespan
and reliability compared to traditional energy management approaches. These results underscore the proposed
model’s potential to enhance the durability and operational efficiency of multi-stack systems.
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1. Introduction

The intensification of the greenhouse effect has
underscored the critical need for sustainable en-
ergy sources. Proton Exchange Membrane Fuel
Cells (PEMFCs) present a promising carbon-free
solution by converting chemical energy directly
into electrical energy. Multi-stack PEMFC sys-
tems enhance power capability and provide redun-
dancy, making them well-suited for high-demand
applications. However, their commercialization
faces significant challenges, particularly regard-
ing durability, reliability, and operational costs.
For commercial viability, automotive PEMFCs are
expected to achieve a lifetime of approximately
5,000 hours under typical operating conditions.
In practice, however, their lifetimes often range
between 2,500 and 3,000 hours Arrigoni et al.
(2022).

To address the degradation issues in PEMFCs,

Prognostics and Health Management (PHM) of-
fers a pathway to enhance the durability of multi-
stack systems by optimizing operational parame-
ters and maintenance strategies. However, accu-
rately modeling PEMFC degradation and integrat-
ing these characteristics into decision-making pro-
cesses—particularly energy management strate-
gies (EMS)—remain significant challenges. Ef-
fective EMS implementation necessitates a load-
dependent degradation model. Unfortunately, ex-
isting studies have rarely established explicit links
between degradation models and power demand
profiles, thereby limiting their practical applica-
bility.

Current EMS approaches primarily focus on
hybrid systems that integrate fuel cells and batter-
ies, often optimizing fuel consumption and dura-
bility. For example, aging-aware EMS approaches
have been proposed for hybrid vehicles De Pascali
et al. (2020), and real-time optimization methods
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have been developed for hybrid fuel cell vehi-
cles using speed predictions Zhang et al. (2021).
More recently, a deterioration-aware EMS was
developed for pure multi-stack PEMFC systems
under random load profiles, leveraging a Gamma
process stochastic degradation model Zuo et al.
(2024). However, this approach typically assumes
a homogeneous degradation process, which does
not accurately reflect the varying degradation rates
observed in PEMFC systems as they age.

This work addresses these limitations by de-
veloping a degradation model based on a non-
homogeneous Gamma process, effectively cap-
turing both age- and load-dependent characteris-
tics of PEMFC degradation. Building on this en-
hanced prognostic model, a novel EMS formula-
tion is proposed to improve the durability of multi-
stack PEMFC systems.

2. Fuel Cell Degradation Modeling
2.1. Fuel Cell Health Index

Parameters such as output voltage, output power,
and internal resistance are commonly used to eval-
uate the degradation state of Proton Exchange
Membrane Fuel Cells (PEMFCs). Furthermore,
the electrochemical surface area (ECSA) of plat-
inum has been identified as a key indicator of
catalyst performance.

In this work, the internal resistance R is pro-
posed as the state-of-health (SOH) indicator, as
it captures critical degradation characteristics and
remains unaffected by load variations, unlike volt-
age and power output. The value of R can be
estimated from the measured polarization curve
of the fuel cell using curve-fitting algorithms. A
non-linear least squares method is applied to fit
the polarization equation described in Dicks and
Rand (2018):

WC =F - V:act - V;)hm - ‘/conc (1)

where Vi is the fuel cell voltage, and E repre-
sents the open-circuit voltage. The components of
the voltage losses are defined as follows:

Vi = Aln (i> D)

10

Vohm =1+ R 3

Veone = me™? (€]

Here, Vo represents the activation loss, Vonm
denotes the ohmic loss, and Vg, is the concen-
tration loss. The parameter A is a constant de-
termined by the kinetics of the electrochemical
reaction, ¢ is the exchange current density, m and
n are empirical coefficients, and R is the internal
resistance.

2.2. Empirical Modeling of Load-Induced
Degradation

The degradation of PEMFCs is influenced by
load-dependent factors, with both load amplitude
and load variation playing critical roles in the de-
terioration process Pei et al. (2008). Additionally,
degradation typically progresses more rapidly dur-
ing the early stages of the cell’s life due to the
accelerated deterioration of the catalyst layer Ao
et al. (2020). Under the assumption of no start-
stop effects, the total resistance increment of the
fuel cell is expressed as Zuo et al. (2022):

AR = AR+ KAL 5)

where AR represents the overall resistance in-
crement, ARy, accounts for the load-dependent
contribution, K is a proportional constant, and
AL denotes the magnitude of the load variation.

ARy, is modeled using a non-homogeneous
Gamma process with a power-law shape function
A(t) = art” and a scale parameter b. The resis-
tance increase due to load L over a time interval
ot for a fuel cell of age ty is given by:

ARy, (tg, 0t) = Rp(to + 6t) — Ri(lo)

~ Gamma (aL(to + 6t)° — aLtg, b)
(6)
This formulation extends the previous degrada-
tion model by incorporating both load and age
dependencies. The load dependency is inherited
through «, as formulated in Eq. (7) Zuo et al.
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(2024).
ar — Kl(L - Lnom)2 + Qnom) 1fL > Lnom
L — .
KQ(L - Lnom)2 + Qnom) if L < Lnom
(7N

While the inclusion of the parameter [ in-
troduces age dependency, enabling the model to
account for time-varying degradation rates. This
feature is novel and adds significant depth to the
modeling framework.

The function a,, shown in Figure 1, exhibits
a parabolic shape, assigning the lowest deteriora-
tion rate to the nominal load, while minimal and
maximal loads result in higher rates.
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Fig. 1. «fr as afunction of load density (W - cm™2).

2.3. Parameter Estimation

The parameters ayom, 3, and b are estimated from
data using the maximum likelihood method out-
lined in Majeed (2020). The values are determined
as b = 0.0517, apom = 0.0076, and 8 = 0.94.

The parameter (3, with a value less than one,
reflects the effect of early, rapid degradation. It
is anticipated that 5 would decrease further under
varying load conditions. However, due to insuffi-
cient data, (3 is fixed at 0.7 and treated as constant
throughout this study. Future research could ex-
plore dynamic modeling of 3 to account for load
variations.

To estimate the parameters K; and K in
Eq. (7), a relationship can be established using the
following properties developed by Paroissin and
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Salami (2014):

E[T] ~ A~ (E[T"]) (8)

Here, E[T] denotes the expected lifetime for a
non-homogeneous Gamma process with a shape
function A(t) and a scale parameter b, A~1(z)
represents the inverse function of A(t), and E[T]
is the mean lifetime of a homogeneous Gamma
process with a shape function ¢ and a scale param-
eter b. For the specific case where A(t) = a,t7,
we have:

A%m—(I)UB ©)

ar,

Furthermore, Bérenguer et al. (2003) provide
the following approximation for E[T"]:

FT 1
E[T ~ — + = 10
[~ == +5 (10)
By substituting Eq. (10) into Eq. (8), the ex-
pected lifetime becomes:

b 2
L(FT 1 e

- « Lb 2c L
Let E[T1] be the expected lifetime for a cell
working under maximal load and E[T5] be the ex-
pected lifetime for a cell working under minimal

load. Using Eq. (11) and Eq. (7), the parameters
K1 and K5 are estimated as:

E[T] ~ A~ <E 1)

)

(5L + 1) ~ ownBITL)?

K= (12

! E[Tl]ﬂ(Lmax - Lnom)2 )

Ky = (5 + 3) = oo E[T5)° (13)
E[TQ}ﬁ(Llnin - Lnom)2

For this work, FT corresponds to a resistance
increment of 0.097) - cm?. Using K; and K>,
ay can be calculated for any load using Eq. (7).
Table 1 summarizes the parameters values under
different loads.



Proc. ofthe 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Table 1. Estimated Model Parameters for Different Loads
Load (W - cm_2) E[Lifetime] (h) ay,
Lmax = 4.181 E[T1] = 600 0.0214
Lnom = 2.381 - anom = 0.0076
Lin = 0.175 E[T] = 600 0.0214

3. Prognostic and Remaining Useful Life
Prediction

Given the future load profile, current age, and state
of health (SOH) characterized by the resistance
R, the prognostic tool estimates the probability
distribution of the remaining useful life (RUL)
of the PEMFC. The stack is considered to have
failed when its degradation (resistance) exceeds a
predefined failure threshold F'7T'.
The random time of failure, T, is defined as:

Tp=inf{t>0:R > FT}

where R; represents the resistance of the stack
at time t.

Consider a stack with an age ¢. and a current
resistance R.. The RUL is defined as the time
elapsed from the current time ¢, until the failure
time 7', given that the stack has not failed during
the interval [0, ¢.]. For ¢ > ¢, it is expressed as:

RUL(t,) = inf {(t — t.) : Ry — R. > FT — R.}

Lett' =t —t. > 0, and consider the case of a fuel
cell operating under a static load L. The cumula-
tive distribution function (CDF) of RU L(¢.), de-
noted as Frup¢,)(t'), and the probability density
function (PDF) of RUL(Z..) are given by Egs. (14)
and (16), respectively:

Fruve (t) = P(RUL(t,) < t' | R, < FT)
_ T(A( +t) — Alte), F58)
D(A +t.) — A(te))
T (an (¢ +te)% —1F) , FEpHe)
r (aL ((t' )P — tf))
(14)
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where I'(z) = [;¥ 2" 'e *dz is the Euler
Gamma function, and I'(s, z) is the upper incom-

plete Gamma function, defined as:

F(s,x)z/ tsle=t dt (15)

The probability density function (PDF) of
RUL(¢,.) is:

JIFT—RojA@ -+t - A ) () =
(1/b)A(t’+tc)fA(tC)
F(A(t/ + tc) - A(tc))

( FT — RC>
Xexp| ————

(FT o RC)A(t’thc)fA(tc)fl

b
(16)
The mean remaining useful life (RUL) can be
expressed as:

oo
E[RUL(t.)] = / ' TR A e - 5 () At
0 (17
Consider an aged fuel cell with a current age of
t. = 1500 h and resistance R, = 0.04 Q-cm?, op-
erating under a static nominal load. The simulated
degradation paths for this scenario are shown in
Figure 2.
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Fig. 2. Simulated degradation paths for an aged fuel
cell with tc = 1500h and R, = 0.04) - cm? under
static nominal load.

The exact mean RUL, calculated using Eq. (17),
is found to be 2185.4 h. In comparison, the simu-
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lated mean RUL using 500 degradation paths is
2178.5h. To gain deeper insights into the RUL
distribution and its accuracy, Figure 3 shows the
exact probability density function (PDF) vs. the
kernel density estimate of the PDF from simu-
lation, while Figure 4 shows the exact and sim-
ulated cumulative distribution function (CDF) of
the RUL for this aged fuel cell. It is concluded
that 500 paths are sufficient to estimate the RUL
with accuracy since the difference between the
simulation and analytical results is small enough.
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Fig. 3. Comparison of the simulated and exact PDF of
the RUL for t. = 1500 h and R. = 0.04 12 - cm? under
static nominal load.
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Fig.4. Comparison of the simulated and exact CDF of
the RUL for t. = 1500h and R, = 0.04Q2 - cm? under
static nominal load..
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For a fuel cell operating under a variable load,
deriving analytical expressions for the RUL distri-
bution becomes more challenging. In such cases,
Monte Carlo simulations can still be employed to
perform prognostics, estimate reliability metrics,
and predict failure.

4. Energy Management Formulation

Consider a multi-stack fuel cell system with n
stacks. The energy management problem involves
distributing the load demand across the n stacks
to minimize the expected degradation over the
decision horizon h. In this context, it is assumed
that the load demand is known for the upcoming
decision horizon and remains constant until the
next decision point. Additionally, the resistance
Ropsi, the age t; of stack 7, and the failure threshold
F'T are known at the decision time, as illustrated
in Figure 5.

Multi-stack FCs

. . . . SOH R;, and ages t;

— Power Demand

ﬂ Total load: L
—»

Tine
Piecewise Static Load

!7:uoneso||y peol

EMS

Power Demand (W)

Fig. 5. Load allocation diagram.

Let D(L,t1,t2) represent the degradation rate
of a cell of age ¢; subjected to load L over the
time interval [¢1, t2], defined as:

arb(ty —17)

D(Lytlth): (tQ—tl)

(18)

The expected resistance increment due to the
load amplitude L for a fuel cell stack with an
initial age ¢ over a future time horizon h, denoted
as ARy (L,tg, h), is expressed as:
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ARy (L,tg,h) = D(L,tg,to + h) - h
= apbd|(to + h)? — (to)”]
The objective function of the load allocation
problem can be formulated as the sum of all ex-

pected increments across all stacks, considering
both load level and load variation:

19)

Minimize
J(Ls, ti h) = ZARL Liti,h) + KAL;
= > awb((t+ ) - (1))
i=1
+ KAL;
(20)
subject to:

Lyin < L; < L.  for all Stacks

ALZ- = Li _ Liprevious

where L% s the load supplied by stack i
prior to the decision-making step.

The optimization problem is solved using se-
quential quadratic programming (SQP) in MAT-
LAB.

5. Simulations and Results
5.1. Simulation Setup

The simulation setup assumes a system compris-
ing two fuel cell stacks with different initial ages
and degradation levels, operating under piecewise
static load. The load demand is considered suf-
ficient to ensure both stacks operate at least at
their nominal load levels while not exceeding the
maximum load capacity of the two stacks. These
loads remain constant between decision times but
are updated at decision intervals. At each decision
point, the load is allocated between the two stacks
to minimize degradation.

To evaluate the effect of load allocation, the
system is simulated over an extended period using
the proposed strategy and the average load split
method. A comparison of the resulting lifetime
distributions is then provided. During the simula-
tion, stacks may fail and require replacement. A
simple replacement policy is employed to ensure
this does not affect the performance of the load
allocation strategy. Specifically, if a stack fails, it
is replaced immediately, and the load distribution
is recalculated based on the updated system con-
figuration.

This setup ensures uninterrupted operation and
isolates the effectiveness of the Energy Manage-
ment Strategy in prolonging stack life.

The primary parameters used in the simulation
are summarized in Table 2.

Table 2.  Simulation Parameters for EMS

Parameter Value

Total Run Time 10° hours
Simulation Time Step 1 hour
Decision Horizon 300 hours
Fuel Cell 1 Initial Age 0 hours

Fuel Cell 2 Initial Age 600 hours
Failure Threshold 0.097 Q - cm?
Fuel Cell 1 Initial Resistance 0

Fuel Cell 2 Initial Resistance 0.05Q - cm?

Load

2Lnom < L < 2Lmax

5.2. Simulation Results

EMS showed advantages compared to the average
load split method in terms of extending the life-
time of stacks. Figure 6 shows the probability den-
sity of lifetimes collected during the simulation
for both strategies. The EMS strategy shifts the
lifetime distribution to the right, indicating a clear
improvement in fuel cell lifetime while delivering
the same load.
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Fig. 7. Simulated degradation paths and load alloca-

tion decisions over time.

Further analysis reveals that the EMS allocates
loads more effectively between the stacks, as il-

Parameter With EMS  AVG Load
Replacements 1235 1277
Mean Lifetime (h) 1619 1566
95% CI (h) [1605, 1632] [1551, 1580]

lustrated in Figure 7. Specifically, the newer stack
receives loads closer to the nominal load (Lo ),
while the older stack experiences more extreme
loads. This behavior is consistent with expec-
tations, as newer stacks typically exhibit higher
degradation rates. Over time, as both stacks age,
the load allocation becomes more balanced, opti-
mizing the system’s overall durability.

Note: EMS: Energy Management Strategy. CI: Con-
fidence Interval. AVG Load: Average load split.

6. Conclusion

This work addresses the limitations in fuel
cell degradation modeling by developing a non-
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homogeneous Gamma process-based model that
effectively captures both age- and load-dependent
characteristics of PEMFC degradation. Building
on this enhanced prognostic model, a novel En-
ergy Management Strategy (EMS) formulation is
proposed to improve the durability of multi-stack
PEMFC systems. Extensive simulations demon-
strated that the EMS strategy, compared to equal
load distribution, resulted in fewer replacements
and a 3.4% increase in the mean fuel cell lifetime.
This work can be further extended to develop
EMS for dynamic loads with potential rapid vari-
ations and to enhance the model by investigating
the relationship between its assumed fixed param-
eters and the load.
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