
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P7408-cd

Application of Monte Carlo Simulation in Modeling the Lifetime of Industrial Compo-
nents

Lucas R. de Oliveira
CTE - Space Sciences and Technologies, Aeronautics Institute of Technology (ITA), Brazil
E-mail: lucaslro@ita.br

Daniel M. C. de Lima
CTE - Space Sciences and Technologies, Aeronautics Institute of Technology (ITA), Brazil
E-mail: daniel.lima.101408@ga.ita.br

Moacyr M. C. Junior
CTE - Space Sciences and Technologies, Aeronautics Institute of Technology (ITA), Brazil
E-mail: moacyr@ita.br

Igor N. M. da Silva
CTE - Space Sciences and Technologies, Aeronautics Institute of Technology (ITA), Brazil
E-mail: gorneves@yahoo.com.br

This paper explores the application of Monte Carlo Simulation (MCS) to model the lifetime of industrial
components, specifically focusing on a contactor commonly used in automation systems. The study emphasizes
the challenges posed by the variability in system performance and the need to incorporate expert knowledge
for accurate modeling. Using expert data, MCS is employed to simulate different scenarios and determine a
probabilistic distribution that reflects the uncertainties in component lifespan. The analysis reveals that factors such
as temperature, environmental conditions, and switching frequency have significant impacts on the failure rate of
the component, thereby influencing its reliability. The results demonstrate the effectiveness of MCS in providing a
more precise estimation of component lifetime, offering valuable insights for maintenance planning and operational
decision-making. The study concludes that incorporating Monte Carlo methods into reliability assessments enhances
the ability to manage risk and optimize system performance, ensuring safer and more efficient operation of industrial
systems.
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1. Introduction

This study focuses on the application of Monte
Carlo Simulation (MCS) to model the lifetime
of industrial components, based on data obtained
through an expert elicitation process. The choice
of this technique is justified by its ability to deal
with the variability inherent in industrial systems,
where component failure can be influenced by
unpredictable factors. The approach allows sim-
ulating multiple scenarios, including positive and
negative stressors, and obtaining a probabilistic
distribution that better reflects operational uncer-
tainties.

In this context, this paper addresses the practi-
cal application of MCS to estimate the time to fail-
ure of an industrial contactor, a component widely
used in global automation. By collecting data from
experts and adjusting an appropriate probabilistic
distribution, the simulation seeks to accurately
represent the component’s life expectancy, provid-
ing support for decision-making in the manage-
ment of maintenance and operation of industrial
systems.

Although Monte Carlo Simulation is a com-
mon tool in reliability analysis, this study offers
a novel approach by integrating expert elicitation
and modeling with both environmental and op-
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erational stressors. This methodology enables a
more accurate evaluation of the uncertainty and
variability associated with factors affecting com-
ponent lifespan. Additionally, the replicability of
this method to other industrial equipment types
enhances its applicability within reliability en-
gineering. Consequently, this research provides
a valuable framework for supporting decision-
making in maintenance and operational planning.

The paper is structured into the following main
sections. The first section presents a literature re-
view, highlighting the main studies and advances
related to expert data elicitation and the appli-
cation of MCS in industrial scenarios. Then, in
the methodology section, the steps and methods
used are described, from data collection to stres-
sor modeling and simulation implementation. The
results of the analysis, presented in the following
section, include the estimation of the contactor’s
service life and the identification of critical factors
that influence its reliability. Finally, the discussion
and conclusions address the implications of the
results and suggest strategies for practical appli-
cation and future studies.

2. Literature review

According to Clemen and Reilly Clemen and
Reilly (2001), effective elicitation requires a struc-
tured approach to ensure that the information
provided by experts is both accurate and useful.
They emphasize that the process should minimize
the influence of cognitive biases and ensure that
estimates are consistent and evidence-based. The
work of O’Hagan et al. O’Hagan et al. (2006)
is relevant in this context, as it introduced for-
mal methods for probability elicitation, including
techniques for combining multiple expert opin-
ions and analyzing associated uncertainties.

Recently, the literature has advanced in under-
standing the challenges and methods to improve
the accuracy of probability estimates. Fischhoff
and Schoch-Spana Fischhoff and Schoch-Spana
(2020) explored the application of Bayesian mod-
eling techniques for the integration of expert opin-
ions, offering a robust approach to combine qual-
itative and quantitative information. They argue
that Bayesian modeling can help to address uncer-

tainty and variability more effectively, providing
a more reliable estimate than traditional methods.
Furthermore, Morss et al. Morss et al. (2008)
discussed the impact of heuristics and biases in
probability elicitation and proposed strategies to
mitigate these effects, such as the use of iterative
feedback techniques and continuous revisions of
estimates, which have shown promise in improv-
ing the quality of estimates.

Several studies highlight the application of
Monte Carlo Simulation (MCS) in a variety of
practical contexts. Some studies have used the
Kinetic Monte Carlo technique to model complex
processes in semiconductor manufacturing, such
as implantation, annealing, and epitaxial growth
of semiconductor devices Martin-Bragado et al.
(2018). This study showed how MCS can simu-
late the evolution of defects in silicon, validating
the results with experimental data. In the phar-
maceutical industry, it was possible to verify the
application of MCS in conjunction with genetic
algorithms to design distribution networks under
demand uncertainty Izadi and Kimiagari (2014).
The study allowed a reduction in supply chain
costs by 14%, providing a robust framework for
allocating customer demands, even in the face of
unpredictable variations, such as epidemic out-
breaks. In addition, other studies explored the use
of MCS in risk assessment in project schedules.
A probabilistic model translated project charac-
teristics into schedule risk bounds, demonstrating
its effectiveness on large-scale projects McCabe
(2003).

3. Method

3.1. Distribution reference without
considering stressors

Recognizing the uncertainty inherent in the se-
quencing of this component, an elicitation process
was conducted with experts, aiming to capture the
variations and uncertainties related to this value.
A crucial point of the method is that the data
provided by the experts should reflect nominal
information, that is, without the influence of stres-
sors such as environmental factors or operational
conditions. This aspect was repeatedly highlighted
as essential to ensure the validity of the process.
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For the elicitation, five experts in the areas of
electrical engineering, automation and system re-
liability were consulted. Each expert had a distinct
profile, and each was assigned a weight based on
their professional experience, specific knowledge
domain and the relevance of their contributions to
the scope of the study. These weights were used to
reflect the reliability and influence of each expert
on the final results. However, it is recognized that
the complete elimination of biases and heuristics
during elicitation processes is challenging, since
cognitive biases are inherent to human behavior,
even among experienced experts. Therefore, the
possible residual influence of these biases was
considered in the analysis and interpretation of the
results. The main biases and heuristics observed
and mitigated in the study include:

• Anchoring: Tendency to rely excessively on ini-
tial information provided.

• Availability Heuristic: Evaluation based on ex-
amples easily accessible to memory.

• Confirmation Bias: Search for information that
reinforces previous beliefs.

• Sunk Cost Effect: Tendency to maintain previ-
ous decisions even when they become disad-
vantageous.

• Hindsight Bias: Overestimation of the pre-
dictability of past events.

• Abilene Effect: Group decisions that contradict
individual preferences.

• Primacy and Recency: Disproportionate influ-
ence of the first and last information presented.

Biases and heuristics have been widely ad-
dressed in studies, especially in the context of
decision-making in clinical settings. For example,
in a study on medical decision-making, it was
identified that health professionals often suffered
from biases such as anchoring bias, where they
fixated excessively on initial diagnoses, which
led to subsequent decisions based on these first
impressions, ignoring other possibilities Feather-
stone and et al. (2020).

Another bias observed was availability bias, in
which clinicians tend to rely on recent or easily
remembered cases rather than considering more
comprehensive data or less common conditions.

To mitigate the effects of these cognitive biases,
approaches based on structured decision-making
practices have been implemented, such as the use
of systematic analytical tools, the implementation
of peer reviews, and the designation of roles to
challenge assumptions. These strategies aim to
promote objective assessment, minimizing the in-
fluence of cognitive heuristics that can distort the
decision-making process. The use of standardized
protocols, for example, helps to reduce the influ-
ence of biases such as confirmation and anchoring,
while peer review promotes independent critical
analysis, essential for the validation of hypotheses
and decisions in the clinical context and in clinical
trials McGowan (2023).

These approaches helped define the relevance
of each expert’s response and, above all, to qualify
whether the data provided could be used as refer-
ence values.

Regarding elicitation, it was conducted by re-
questing specific quantiles of a probability dis-
tribution, reflecting the uncertainty perceived by
the experts in relation to the real value of B10.
Three main questions were formulated for each
expert, directly and with the possibility of only
one simple answer, corresponding to the 25%,
50% and 75% quantiles of the real distribution.
The answers obtained served as a basis for the
subsequent stages of analysis.

From the experts’ responses, exponential distri-
bution curves were determined that represent the
estimate of the B10 value for each expert. Each
curve was parameterized based on the parameter
λ, which represents the expected failure rate per
operating cycle, inversely associated with the ex-
pected useful life of the component.

From the individual exponential curves, a
weighted average of the failure rates (λ) obtained
was calculated, using the weights previously as-
signed to each expert. This average was then used
to determine a consolidated estimate of the MTBF
(Mean Time Between Failures).

Based on the normal distribution parameterized
by the MTBF, an initial distribution of the failure
rate for the component was generated. This failure
rate was subsequently adjusted to incorporate the
effects of environmental factors, temperature, and
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switching frequency.

3.2. Stressors
3.2.1. Temperature

The effect of temperature on the contactor failure
rate was modeled based on the Arrhenius equa-
tion, which relates the operating temperature to
the probability of failure. To this end, the ac-
tivation energy (Ea), a constant obtained from
component-specific tables, and the average oper-
ating temperature (To), which is estimated based
on the geographic region of use of the contactor,
are considered.

The uncertainty around To was represented by
a normal distribution with mean μTo

and standard
deviation σTo

, reflecting the possible climatic and
environmental variations in the different instal-
lation regions. Thus, the temperature factor was
determined by the Eq. (1):

ftemp = exp

(
Ea

k

(
1

Tref
− 1

To

))
(1)

Where:

• Ea is the activation energy (eV);
• k is the Boltzmann constant;
• Tref is the reference temperature in Kelvin;
• To is the average operating temperature, consid-

ered a random variable with uncertainty.

3.2.2. Environmental Factor

The influence of environmental conditions was
modeled based on Table 4 of IEC 61709:2017 and
elicitation of experts, who categorized the operat-
ing environments into three main situations Inter-
national Electrotechnical Commission (2017):

• E1: Protected and stationary conditions, con-
sidered more favorable;

• E2: Stationary conditions without protection;
• E3: Portable or non-stationary conditions, asso-

ciated with the greatest environmental impact.

The experts assigned probabilities of occur-
rence for each of these categories (pE1, pE2, pE3),
enabling the construction of a probabilistic model
for the environmental factor (famb). This factor

was represented as a discrete variable, whose dis-
tribution reflects the expected proportion of each
environmental scenario.

3.2.3. Usage Factor (Switching Rate)

The contactor usage factor was modeled based
on the switching cycle frequency, represented as
a continuous random variable. According to the
experts, the switching rate (Srate) follows a normal
distribution with mean μSrate and standard devi-
ation σSrate , reflecting the different typical usage
levels of the component.

The usage factor was determined by the ratio
between Srate and a reference rate (Srate,ref), ex-
pressed as in Eq. (2):

fsrate =
Srate

Srate,ref
(2)

where Srate,ref represents the standard usage of
one cycle per hour.

3.3. Stressor Integration

The factors ftemp, famb and fsrate were incorporated
into the model to correct the contactor failure
rate as a function of operating conditions. The
integration of these factors allows capturing the
combined influence of temperature, environment
and frequency of use, providing a comprehensive
view of the component behavior in different oper-
ating scenarios.

3.4. Monte Carlo simulation

Monte Carlo simulation was used to model the un-
certainty associated with the corrected failure rate
of the industrial contactor. This method allows
the incorporation of previously identified stochas-
tic variables, generating probabilistic distributions
that represent realistic operating scenarios.

For the simulation, the parameters established
in the previous stages of the study were used
as input variables, including environmental, tem-
perature, and usage factors, in addition to the
accumulated operating time. These factors were
combined to adjust the initial failure rate, as per
Eq. (3):

λcorrected = λ · ftemp · famb · fsrate (3)
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Based on this adjusted rate, the cumulative
probability of failure was estimated using the ex-
ponential reliability function in Eq. (4):

Pfailure(t) = 1− exp(−λcorrected · t) (4)

The model was implemented using the mc2d
library in the R language, configured to perform
10, 001 iterations. During each iteration, the input
variables were sampled from their respective dis-
tributions, allowing the propagation of uncertain-
ties through the model.

The simulation structure ensured that all ad-
justment factors were integrated in a consistent
manner, preserving the probabilistic characteris-
tics of the input variables and allowing a detailed
analysis of their influence on the contactor relia-
bility. Graphs and distributions were generated as
outputs of the process, but their interpretation will
be presented later, in the chapter dedicated to the
results.

4. Results

Considering the elicitation and the weights as-
signed to each expert, the MTBF was estimated as
a Gaussian distribution with a mean of 1,470,000
cycles and a standard deviation of 209,120 cycles.
This estimate reflects the expected useful life of
the contactor under normal operating conditions,
being the starting point for subsequent reliability
analyses.

4.1. Bias and Heuristic Treatment

Bias and heuristics were addressed using a struc-
tured approach that included the selection of
highly qualified experts and the application of
statistical techniques to adjust the responses col-
lected. During elicitation, the question struc-
ture was focused on obtaining specific quantiles,
which helped to minimize the influence of an-
choring or other cognitive biases on the estimates
provided.

In addition, the experts’ responses were
weighted according to their experience and rele-
vance, ensuring that the most consistent contribu-
tions had the greatest influence on the final results.
Throughout the process, reviews were conducted

to identify inconsistencies or evidence of distor-
tions in the data, allowing adjustments to be made
whenever necessary to ensure greater impartiality.

Despite these precautions, it is recognized that
complete elimination of bias is practically un-
feasible due to the subjective nature of human
decision-making. Thus, the results presented con-
sider possible residual influences and were inter-
preted with this caution in mind.

4.2. Contactor Reliability Analysis

Based on the Monte Carlo model and the inte-
gration of adjustment factors, the results indicate
the cumulative probabilities of failure for different
operating times and environmental scenarios. The
generated distributions reflect the uncertainty as-
sociated with the modeled parameters, allowing a
detailed assessment of the most critical scenarios.
These analyses are essential to guide decisions on
preventive maintenance and component replace-
ment, promoting greater operational reliability.

The graphs show the dispersion of the simulated
values, as well as the relative influence of each
factor considered in the model. These data will be
presented and discussed in the next section.

The graph in Figure 1 shows the evolution
of the probability of contactor failure over time,
considering the environmental factors, usage rate
and temperature conditions incorporated into the
model. This curve was generated from Monte
Carlo simulations, using the exponential reliabil-
ity function, which relates the corrected failure
rate and the time of use.

In Figure 2, it is possible to observe the in-
creasing trend of the accumulated probability of
failure as the operating time increases, indicat-
ing the progressive degradation of the component.
The distribution reflects the uncertainty in the in-
put parameters, showing a probabilistic behavior
that captures both more conservative and extreme
scenarios.

Table 1 presents a summary of the main re-
sults obtained from the Monte Carlo simulation
performed to evaluate the system reliability under
different operating conditions. It provides infor-
mation for the reliability analysis, including the
corrected MTBF, the failure rate, environmental
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and temperature factors, and the adjusted failure
rate.

The corrected MTBF, with an average of ap-
proximately 544,000 hours, represents the ex-
pected average time of system operation before
failure occurs, considering actual operating con-
ditions. This value is accompanied by the average
failure rate, which is 1.84 × 10−6 failures per
hour, and provides a quantitative metric of the sys-
tem’s reliability over time. These two indicators
are essential for planning maintenance strategies

Fig. 1. Graphs generated by the simulation: MTBF at
the top, failure rate in the center and failure probability
at the bottom.

Fig. 2. Cumulative failure probability Fn(x)

and projecting the system’s useful life, since they
reflect the expected frequency of failures based on
operational and environmental conditions.

Table 1. Summary of simulation results considering
10% and 90% percentiles

Parameter Mean Median 10% 90%

Elicited MTBF (103h) 1.442 1.451 1.183 1.629
Environmental Factor 1.26 1.00 1.00 2.00
Temperature Factor 1.38 1.00 1.00 2.44
Adjusted Failure Rate (10−6/h) 1.84 1.42 0.89 3.02
Adjusted MTBF (103h) 0.544 0.704 0.401 0.976

Furthermore, environmental and temperature
factors play a crucial role in assessing reliability,
as they indicate how external conditions impact
system performance. The environmental factor,
with an average of 1.26, suggests that, on average,
the operating environment increases the system
failure rate by 26%. This factor ranges from 1.00,
indicating no significant impact, to 2.00, repre-
senting more challenging environmental condi-
tions. The temperature factor, with an average
of 1.38, implies that temperature has an average
effect of 38% on the failure rate. This factor can
range from 1.00 (no impact) to 2.44, highlighting
the need for thermal control to ensure system
durability.

When combined, these environmental and tem-
perature factors result in the adjusted failure rate,
which, with an average of 1.84 × 10−6 failures
per hour, provides a more realistic estimate of sys-
tem reliability under specific operating conditions.
The adjusted failure rate value exhibits significant
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variation, with 10th to 90th percentiles ranging
from 0.89×10−6 to 3.02×10−6 failures per hour,
reflecting the different scenarios that the system
may face. These data are essential for a detailed
reliability analysis, as they allow the adjustment
of maintenance strategies and the efficient man-
agement of the system life cycle.

These parameters, calculated in the simulation,
provide valuable information for assessing system
reliability and for developing effective failure mit-
igation strategies.

It is important to highlight that the proposed
model can be adapted to various industrial sce-
narios, enabling engineers and decision-makers to
obtain probabilistic reliability estimates for dif-
ferent components. Although this study does not
include a specific case study, the methodology can
be applied to real-world data in future research,
allowing for empirical validation of the results.
The proposed framework facilitates risk analysis
in contexts where historical failure data are lim-
ited or incomplete, providing a valuable tool for
generating more accurate reliability estimates and
supporting strategic maintenance planning.

5. Discussion

The results obtained from the MCS provide a
detailed view of the MTBF behavior and the prob-
ability of failure, considering the operating con-
ditions and environmental factors. The graphical
analysis and the presented data reveal important
points about the reliability of the evaluated sys-
tem.

The MTBF distribution presents an average in-
dicating that the system has reliable performance
under ideal conditions. The failure rate, inversely
proportional to the MTBF, presents average values
consistent with the expected reliability. However,
correction for the influence of environmental fac-
tors, temperature and intensive use increases the
corrected failure rate significantly, highlighting
the impact of these external variables.

The failure probability graph shows how op-
erating time directly affects system reliability.
The curve obtained demonstrates an exponential
growth in the failure probability over time, in ac-
cordance with the adopted reliability model. The

results show that, under severe operating condi-
tions, there is a considerable increase in the failure
probability, which reinforces the importance of
mitigation strategies, such as preventive mainte-
nance and control of environmental conditions.
This analysis can be verified by a second elicita-
tion moment a posteriori.

Environmental and temperature factors were
modeled in a realistic manner using expert-based
distributions. The analysis revealed that portable
or non-stationary equipment is more prone to fail-
ure due to the increase in the environmental fac-
tor and the corrected failure rate. Similarly, high
operating temperatures resulted in an exponential
increase in the temperature factor, highlighting the
sensitivity of the system to thermal variations.

Additionally, the rate of use showed a signif-
icant impact, with more intense operating cycles
resulting in an increased probability of failure.
This finding suggests that reducing continuous use
may be a viable strategy to extend equipment life.

Therefore, the modeling and results presented
are consistent with theoretical expectations and
help to understand how different factors affect
system reliability. This information can be applied
in planning maintenance strategies and in devel-
oping new systems with greater robustness against
adverse operating conditions.

6. Conclusions

This study used expert data elicitation to establish
the parameters needed to model the reliability of
systems under different environmental and usage
conditions. Based on these parameters, such as
MTBF, failure rate, environmental, thermal and
usage factors, a Monte Carlo simulation was im-
plemented to evaluate the probability of failure
over time. The results demonstrated the relevance
of external variables, such as temperature and op-
erating intensity, in increasing the corrected fail-
ure rate and reducing system reliability. The anal-
ysis revealed the importance of mitigation strate-
gies, such as preventive maintenance and control
of operating conditions, to minimize failure risks.

As limitations of the study, although the meth-
ods used allowed a robust evaluation, the depen-
dence on expert data elicitation introduces possi-
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ble biases and heuristics that can affect the results,
as explained by overconfidence in judgments or
insufficient representativeness of the modeled sce-
narios. In addition, simplifications made in the
models, such as the assumption of independence
between factors, may not fully reflect the com-
plexity of the system under all real conditions. For
future work, it is recommended to use machine
learning methods to refine estimates and reduce
biases in elicitation. It is recommended that the
model be applied to real industrial systems, ac-
companied by the collection of empirical data to
assess the accuracy of the generated estimates.
Additionally, comparing the proposed approach
with other methodologies, such as deterministic
models, could provide further insights into its ro-
bustness and applicability. Expanding the study
to include other operational scenarios (such as
the additional consideration of technical factors
- voltage, electrical current and electrical stress)
and critical variables can also improve the gen-
eralizability of the results. Finally, validating the
models through empirical data from field failures
is essential to consolidate the applicability of the
conclusions in the industrial context.
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