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In the context of modern industrial systems, efficient failure management is crucial to maintain operational integrity,
minimize downtime, and optimize maintenance. This paper explores the application of Automated Machine Learning
(AutoML) to enhance both the diagnostic and the prognostic of failure causality in industrial systems. Different
failure causes are detected by failure causality diagnostics, and the upcoming failure could be prevented by failure
causality prognostics. In fact, future failures could be avoided by preventing their causalities. Traditional machine
learning (ML) approaches require significant manual intervention for model selection, hyperparameter tuning, and
feature engineering, which can be time-consuming and cost-consuming. AutoML, on the other hand, automates these
processes, enabling faster and more accurate predictions while reducing the need for extensive domain expertise.
AutoML could be applied for prognostics, predicting the remaining useful life (RUL) of components and foreseeing
future failures. This paper integrates AutoML into real-time failure diagnostics, identifying the root causes of system
malfunctions using historical and sensor data. The Steel Plates Faults industrial real-world data set is considered to
be surveyed for fault detection using AutoML. The run times and accuracy acquired by AutoML are stated to clarify
its superiority.
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1. Introduction

In industrial systems, failure diagnostics and prog-
nostics are critical to maintaining operational effi-
ciency and minimizing downtime Yu et al. (2019).
Traditional machine learning (ML) algorithms
have been used to detect misbehavior, diagnose
faults, and predict equipment failures by analyz-
ing historical and real-time data Askari et al.

(2023); Misaii et al. (2024); Askari et al. (2023).
In recent years, ML and artificial intelligence
(AI) have attracted the attention of the research
community. Today ML is a necessary aspect of
modern business and research for many organiza-
tions. In modern industrial systems, maintaining
operational reliability and minimizing downtime
are critical objectives Friederich and Lazarova-
Molnar (2024). The complexity of such systems,
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however, poses significant challenges in identify-
ing and addressing causes of failure. Failures can
propagate across components, leading to cascad-
ing effects that compromise safety, efficiency, and
productivity Smith et al. (2017); Seligmann et al.
(2019). Diagnosing and predicting these failures is
essential for implementing proactive maintenance
strategies and enhancing system resilience. Tra-
ditional ML methods require significant human
expertise for feature and model selection, and
parameter tuning, which can be time-consuming
and may not fully capture the complexities of in-
dustrial processes. Consequently, while traditional
ML has advanced predictive maintenance and
fault detection, it often requires substantial man-
ual intervention and domain knowledge Gkioka
et al. (2024).

The advent of Automated Machine Learning
(AutoML) has opened new possibilities for tack-
ling these challenges Baratchi et al. (2024); Feurer
et al. (2015); Zöller and Huber (2021). By au-
tomating the process of model selection, hyper-
parameter tuning, and feature engineering, Au-
toML empowers practitioners to efficiently deploy
sophisticated diagnostic and prognostic models
without requiring deep expertise in data science
Thornton et al. (2013); Hutter et al. (2019). This
wider accessibility of ML aligns well with the
needs of industrial systems, where domain experts
often face constraints in time and resources to
develop custom analytical solutions.

This paper presents an innovative framework
for failure causality diagnostics in industrial sys-
tems through AutoML. Our approach leverages
the capabilities of AutoML to uncover hidden
patterns in operational data, identify root causes of
failures, and predict potential future failures with
high accuracy Salehin et al. (2024). The proposed
methodology highlights correlations and uncovers
causal relationships to provide actionable insights
for decision-makers. The key contributions of this
work are threefold:

(1) Development of a robust AutoML-based
framework tailored to the complexities of in-
dustrial systems.

(2) Enhancing the interpretability and reliability

of failure diagnostics Peters et al. (2017).
(3) Validation of the proposed framework through

a case study in the steal plate manufacturing
process to demonstrate practicality and scala-
bility.

The rest of the paper organized as follows: Sec-
tion 2 describes the proposed methodology, em-
phasizing the integration of AutoML and failure
causality. Section 3 provides details on the case
study and experimental setup. Section 4 presents
the results, followed by a comprehensive analysis
and discussion. Finally, Section 5 concludes the
paper, highlighting key findings and proposing
directions for future research.

2. Methodology

AutoML provides reasonable results in time by
automating the ML workflow, including tasks
such as data preprocessing, feature selection,
model selection, and hyperparameter optimiza-
tion. Figure 1 provides an overview of the Au-
toML process. Unlike traditional ML, AutoML
encompasses a broader scope, integrating and au-
tomating five critical steps typically performed in
traditional ML workflows.

Fig. 1.: Overview of an automated ML process.

This automation significantly reduces the time
and expertise required to develop effective ML
models, making it accessible even to users without
in-depth knowledge of ML techniques. This ap-
proach not only speeds up the model development
process but also ensures that the resulting models
are robust, reliable, and optimized for specific
data characteristics, making it a powerful tool for
industrial applications where time and accuracy
are critical.
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Fig. 2.: An efficient pipeline for processing data
sets through AutoML.

The following steps are discussed to develop an
efficient pipeline for processing data sets through
an AutoML pipeline in Figure 2.

Set Up Workspace: A dedicated workspace is
configured to support the development and ex-
ecution of the AutoML job. This workspace is
assigned to a specific resource group to ensure
streamlined management and organization of as-
sociated resources.

Register Dataset: The data set is uploaded to
facilitate advanced analytics and ML workflows.

Data Preprocessing: Data preprocessing in-
volved a comprehensive selection of character-
istics to ensure that the data set was optimally
prepared for training.

Split the Data: Data set is divided into training
and testing portions to evaluate the performance
of the models.

Configure AutoML: A variety of classification
methods are applied during the model selection
phase to ensure robust predictive performance and
adaptability to the data set.

AutoML Experiment: To run the AutoML ex-
periments, the task settings are configured to align
with the specific requirements of the data set and
ML problem.

Evaluate Models: Various evaluation metrics
are used to evaluate the performance of the model
during experiments.

Deploy the Model: To consume the model, it
must be deployed to be integrated with a service
that enables applications to make real-time predic-
tions for individual data points or small batches of
data.

3. Case Study

In this paper, we use Steel Plates Faults as the
case study to evaluate the performance of AutoML
for fault diagnostic problems and the Microsoft
Azure cloud platform is applied to streamline the
process of model development, hyperparameter
tuning, and evaluation.

3.1. Steel Plates Faults Data Description

The well-known Steel Plates Faults data set, pro-
posed by Buscema and Tastle (2010), is consid-
ered. The data set, obtained from research under-
taken by the Semeion Research Center of Sci-
ences of Communication, consists of a detailed
classification job focused on detecting surface im-
perfections in stainless steel plates. The data set
comprises 1,941 instances, each characterized by
27 features that describe various aspects of steel
plates, such as geometric measurements, luminos-
ity indices, and material properties. These features
are instrumental in identifying and classifying sur-
face defects, which are categorized into six major
distinct types and other faults, Figure 3:

• Bumps: Often appearing as little raised
patches or lumps, these are imperfections on
the surface of the steel plate that protrude
outward. Smoothness and general quality of
the plate surface might be impacted by bumps.

• K Scratch: Describes scoring marks or
scratches on the steel plate’s surface that take
the form of the letter “K.” The integrity and
beauty of the plate may be jeopardized by
these variations in depth and severity.

• Z Scratch: These are scuffs or abrasions on
the surface of the steel plate that have the
shape of the letter “Z.” These scratches, which
affect the surface polish and may cause struc-
tural flaws, can range in size and depth like
K Scratch.

• Pastry: Generally speaking, pastry flaws are
surface defects on the steel plate that mimic
patterns seen in baked products or pastries.
Often the result of manufacturing oddities
or flaws, these patterns may include swirls,
loops, or other unique designs.

• Stains: Stained spots or marks on the surface
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of the steel plate caused by different impu-
rities or chemical reactions during handling
or manufacturing procedures are known as
stains. Small stains to more obvious imperfec-
tions can all detract from the plate’s appear-
ance and maybe its usefulness.

• Dirtiness: Defects in dirtiness are those in
which there are foreign particles or debris
on the steel plate’s surface. These particles,
which lessen the hygienic and high-quality
surface of the plate, can be dust, oil residue
or other pollutants.

Fig. 3.: Different fault types.

The Other Faults category encompasses defects
not specified in the aforementioned types. These
detailed categorizations facilitate the development
and evaluation of ML models aimed at automating
fault detection and classification in steel manufac-
turing processes.

Numerous researchers worked on this data set
for fault detection and classification, evaluating
ML algorithms for imbalanced data sets, and
feature selection and extraction tasks, such as
Lourenço et al. (1996); Buscema et al. (2010);
Farahmand-Tabar and Rashid (2024); Dorbane
et al. (2024). This paper attempts to predict these
different causes of failure using AutoML.

3.2. Experimental Setup

For the AutoML pipeline, a compute cluster was
provisioned with the Standard D4s v3 configura-

tion, featuring 4 cores, 16 GB of RAM, 32 GB
of storage, and a cost-effective pricing of $0.24
per hour through Microsoft Azure Machine Learn-
ing (Azure ML). The Steel Plates Faults data set
was uploaded as a data asset in Azure ML to
facilitate advanced analytics and ML workflows.
In Azure, data preprocessing includes identify-
ing and performing key actions such as clean-
ing missing values, detecting and addressing data
imbalances, and applying normalization to man-
age features with varying scales. We employed
Monte Carlo Cross-Validation (MCCV) with a 5-
fold approach and an 80/20 train-test split. In this
approach, 20% of the data was randomly allo-
cated to the test set, while the remaining 80%

was used for training the models. The model
training space includes a variety of classification
methods, such as Logistic Regression, Stochas-
tic Gradient Descent (SGD), Multinomial Naı̈ve
Bayes, Bernoulli Naı̈ve Bayes, Support Vector
Machines (SVM), k-Nearest Neighbors (KNN),
Decision Tree, Random Forest, Extreme Random
Forest, LightGBM, Gradient Boosting, XGBoost,
and Linear SVM Classifiers. By systematically
comparing these techniques, the selection process
aimed to identify the most effective classifier that
balances accuracy, computational efficiency, and
generalization capabilities, ultimately optimizing
the fault detection pipeline for steel plate man-
ufacturing. To run the AutoML experiments, we
configured the task settings to align with the spe-
cific requirements of the data set and classification
problem. The task type was set to classification,
focusing exclusively on a subset of the data, with
the target column specified to predict the pres-
ence or absence of fault categories. These settings
provided a structured and efficient framework for
conducting the AutoML experiments, enabling the
identification of the best-performing classification
models within the specified parameters. In Au-
toML experiments for classification tasks, various
evaluation metrics are utilized to assess model
performance, including Accuracy, Precision, Re-
call, F1-Score, AUC-ROC, Log Loss, Matthews
Correlation Coefficient (MCC), and Balanced Ac-
curacy. Among these, one is designated as the
primary metric, which is used to rank and sort
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models after training. The selection of the pri-
mary metric depends on the specific objectives of
the task, such as F1-Score for imbalanced data
sets or Accuracy for balanced ones, ensuring that
the best-performing model aligns with the desired
performance criteria. After identifying the best
model based on the selected primary metric, the
model can be deployed for practical use, such
as deploying it as an endpoint to be integrated
into a production environment. Furthermore, the
deployed model can be updated on a predefined
schedule or based on specific triggers, such as
system maintenance or changes in data patterns.

4. Results and Discution

4.1. Traditional ML Fault Detection

Dorbane et al. (2024) used five powerful machine
learning models, including Random Forest (RF),
AdaBoost, Decision Tree, Support Vector Ma-
chines (SVM), and Naive Bayes to detect the fail-
ure causes. The ensemble models (i.e., RF and Ad-
aBoost) harness the collective power of multiple
weak learners to enhance discrimination capac-
ity. Table 1 shows that Random Forest achieved
the highest AUC of 0.942, with an accuracy of
0.771 and a balanced F1 score, compared to the
other models. This comprehensive investigation
improves fault detection efficacy and promotes
informed decision-making in steel plate manufac-
turing processes.

4.2. AutoML: Multi-Class Single-Output
classification

A diverse range of algorithms was considered for
model selection, each accompanied by a variety
of hyperparameters to optimize. Additionally, var-
ious feature engineering techniques, such as nor-
malization, were explored to enhance the mod-
eling process. For example, the model selection
includes a variety of classification methods, such
as Logistic Regression, Stochastic Gradient De-
scent (SGD), Multinomial Naı̈ve Bayes, Bernoulli
Naı̈ve Bayes, Support Vector Machines (SVM),
k-Nearest Neighbors (KNN), Decision Tree, Ran-
dom Forest, Extreme Random Forest, LightGBM,
Gradient Boosting, XGBoost, and Linear SVM.
Given the expansive search space of algorithms

and hyperparameter configurations, along with
feature engineering strategies, our experiments
involved designing and evaluating 1003 unique
combinations. Each combination was carefully
tuned, and the most effective configuration was
ultimately selected as the best model for the given
dataset, ensuring optimal performance and gener-
alization.

Following a comprehensive exploratory data
analysis (EDA), we observed that the steel plate
dataset contains seven output or class labels, each
representing a binary classification. To streamline
the classification task, we combined all class la-
bels into a single column, representing the final
target variable, where each sample corresponds
to a specific fault type. We initially ran AutoML
on the dataset, and the results for both training
and testing are presented in Figures 4 and 5.
The model achieved a performance of 0.80900 on
the MCSO training and 0.78920 on testing data,
which was lower than expected due to a signifi-
cant class imbalance in the dataset. This issue is
further highlighted in the confusion matrix for the
testing data in Figure 4 and 5, where certain fault
types were underrepresented in the predictions. To
address this imbalance, we applied data augmen-
tation techniques, including the Synthetic Minor-
ity Oversampling Technique (SMOTE) and Ran-
dom Oversampling (ROS), to create a more bal-
anced dataset. The AutoML classification pipeline
was then rerun with the same configuration. As
shown in Figures 4 and 5, the performance of
the model improved significantly in the balanced
data set, demonstrating the effectiveness of these
techniques in mitigating the impact of class im-
balance. For MCSO, the best model is a voting
ensemble that consists of 10 XGBoost classifiers,
each wrapped with a standard scaler to ensure con-
sistent feature scaling. In the case of SMOTE, the
ensemble includes 9 XGBoost classifiers, along
with a LightGBM classifier that uses a MaxAb-
sScaler to handle data with varying magnitudes.
For ROS, the ensemble incorporates 8 XGBoost
classifiers, a random forest classifier, and a Light-
GBM classifier, with the XGBoost and random
forest models using a standard scaler, while the
LightGBM classifier utilizes the MaxAbsScaler.
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Table 1.: Traditional ML results.

Model AUC Accuracy F1 Precision Recall MCC
RF 0.942 0.771 0.771 0.776 0.771 0.705
AdaBoost 0.829 0.735 0.734 0.737 0.735 0.661
Decision Tree 0.823 0.706 0.708 0.713 0.706 0.630
SVM 0.908 0.673 0.670 0.671 0.673 0.580
Naive Bayes 0.890 0.626 0.625 0.672 0.626 0.556

(a) Confusion Matrix - Training-MCSO

(b) Confusion Matrix - Training-SMOTE

(c) Confusion Matrix - Training-ROS

Fig. 4.: Confusion Matrices for Training MCSO and Different Sampling Methods: SMOTE and ROS

5. Conclusion

In conclusion, an AutoML approach was success-
fully applied for fault detection and failure diag-
nosis in the steel plate manufacturing process. The
results from various experiments demonstrate that
AutoML outperforms traditional machine learn-
ing (ML) techniques, primarily due to its capa-
bilities in automated feature engineering, hyper-

parameter tuning, and model selection while the
running time for AutoML is longer compared to
conventional methods. Future work could explore
the integration of deep learning techniques, build-
ing upon the promising results achieved thus far.
Additionally, incorporating maintenance strate-
gies within the AutoML workflow for predictive
maintenance could help automate the entire pro-
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(a) Confusion Matrix - Testing-MCSO

(b) Confusion Matrix - Testing-SMOTE

(c) Confusion Matrix - Testing-ROS

Fig. 5.: Confusion Matrices for Testing MCSO and Different Sampling Methods: SMOTE and ROS

cess, offering a more comprehensive and efficient
solution for fault detection and maintenance plan-
ning in the steel plate industry.

References

Askari, B., G. Cavone, R. Carli, A. Grall, and
M. Dotoli (2023). A semi-supervised learning
approach for fault detection and diagnosis in
complex mechanical systems. IEEE Transac-
tions on Automation Science and Engineering,
1–6.

Askari, B., Y. Langeron, G. Cavone, R. Carli,
A. Grall, and M. Dotoli (2023). An integrated
approach for failure diagnosis and analysis of
industrial systems based on multi-class multi-
output classification: A complex hydraulic ap-
plication. In M. P. Brito, T. Aven, P. Baraldi,
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