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ONERA/DTIS, Université de Toulouse, Toulouse, F-31055, France. E-mail: firstname.lastname@onera.fr
Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, 31000, Toulouse, France.
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This paper describes a dedicated approach to solve the 2025 NASA-DNV UQ challenge problem using adaptive Gaussian process strategies. The
uncertainty model is determined through a calibration problem using an optimization approach to identify the aleatory variable joint distribution
and the epistemic variable uncertainties. The estimation of the prediction interval for the model output components consists of a quantile estimation
problem based on an adaptive Gaussian process strategy. Eventually, the design optimization problems are solved using Bayesian optimization
controlling the noise level involved in the estimation of the objective and constraint functions.
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1. Introduction

This paper presents different methodologies to solve the two
problems of the 2025 NASA-DNV UQ challenge. These meth-
ods mostly rely on adaptive Gaussian process strategies. In
a first section, the computational model is briefly described.
Then, in Section 2.1, the uncertainty model is determined based
on a calibration problem using an optimization strategy to deter-
mine both the joint distribution of the aleatory variables and the
best estimate of the epistemic variables. Then, in Section 2.2,
an adaptive Gaussian process strategy is used to determine
the bounds of the prediction intervals for each component of
the simulation model outputs. Eventually, in Section 3, the
design optimization problems are solved relying on Bayesian
optimization while controlling the noise level involved in the
estimation of the objective and constraint functions.

The computational model is a black-box function f(·) (Fig-
ure 1) that takes as inputs a vector X and a seed number s,
and retrieves as output a multivariate time series Y. The input
vector X is composed of three vectors X = (Xa,Xe,Xc)

where:

• Xa ∈ [0, 1]na is the vector of aleatory uncertainties
with na = 2,

• Xe ∈ [0, 1]ne is the vector of epistemic uncertainties
with ne = 3,

• Xc ∈ [0, 1]nc is the vector of control variables (nc =

3) that can be chosen by the analyst.

The output of the computational model is a multivariate time-

series of dimension 6 defined as Y(Xa,Xe,Xc, ω, t) =

[Y1(Xa,Xe,Xc, ω, t), . . . , Y6(Xa,Xe,Xc, ω, t)]. The time-
series is discretized in 60 nodes (assuming t ∈ [1, 60] with-
out loss of generality). Furthermore, the simulation model is
supposed to be stochastic. The stochasticity of this simulator
is emulated through an aleatory variable ω that belongs to a
probability space (Ω,F , Pω). It is assumed that an unknown
aleatory integer seed s of a random generator governs the
stochastic nature of the model. Eventually, the output of the
system can be written as Y(Xa,Xe,Xc, s, t) ∈ R6×60.
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Fig. 1. Computational model.

2. Problem 1: uncertainty quantification

2.1. Determination of the uncertainty model

In this section, a calibration method is proposed to identify a
probabilistic model of the input aleatory and epistemic uncer-
tainties Xa and Xe considering a set of observations provided
by NASA and DNV. The goal is to find the joint distribution of
Xa, named fa and the value of epistemic uncertainty vector X∗

e

that best fits the given observations.

375
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2.1.1. Data analysis and overall methodology

A preliminary data analysis has been carried out to analyze
the influence of all the inputs, i.e., Xa, Xe, Xc and s on
the different time-series output components. For that purpose,
assuming an independent uniform distribution in [0, 1] for all
the uncertain continuous input variables and a uniform discrete
distribution for s, a large sample has been generated and propa-
gated through the local model. The resulting time-series output
components have been analyzed using sensitivity analysis. This
analysis allowed to point out that the seed has the greatest
impact on the output trajectories, and plays a major role in
shaping the output time-series (relative evolution with respect
to time). The other variables (Xa, Xe and Xc) mainly act on the
magnitude of the time-series but not on its relative evolution.
It has also been observed that a large number of the output
time-series realizations are ”saturated” for the first three output
components i.e, they are constant to a maximum or a minimum
value for all the time nodes.

In the literature, for inverse problem (also called calibration
problem) it is possible to distinguish two main approaches Lee
et al. (2019): calibration using optimization techniques and
Bayesian techniques. As the seed (representing the stochasticity
of the simulator) has been identified as the main contributor
on the evolution of the output components, Bayesian inference
Marin (2007) seems very difficult to apply. In this work, a
dedicated methodology based on an optimization technique
has been set up to accurately estimate fa (joint distribution
of Xa) and X∗

e depending on the observed data. The method
is composed of four steps that are described in detail in the
following:

(1) determination of informative values of Xc,
(2) identification of the seed values corresponding to the avail-

able observations,
(3) identification of the values of Xa and Xe for each observa-

tion,
(4) inference of the uncertainty model for the identified values

of epistemic and aleatory uncertainties.

2.1.2. Determination of informative Xc

The goal of this step is to find values of Xc that are informative
in order to infer fa and X∗

e based on available observations.
An initial distribution is considered for all the input uncertain
variables under the form of independent uniform distributions.
A large stratified Monte Carlo sample is generated according to
the initial distribution in which a first Design of Experiments
(DoE) of Xc has been sampled and for each realization of Xc,

a sample is generated for Xa, Xe and s. Then, this sample is
propagated through the local model. The best Xc (named X∗

c ) is
selected as the one minimizing the number of saturated output
stochastic process trajectories and maximizing the diversity
of trajectories (maximizing the standard deviation σ of the
trajectories) expressed as follows :

X∗
c =argmax

Xc

Et [σXa,Xe,s [Y(Xa,Xe,Xc, s, t)]]

This process allows to select X∗
c = [0.773, 0.256, 0.820]T .

The obtained trajectories with the local model for the second
component of Y are illustrated in Figure 2.

Fig. 2. Local model realizations for the second component of the
output for X∗

c = [0.773, 0.256, 0.820]T .

2.1.3. Identification of the seed values

For the chosen X∗
c , 100 observations of the output (called in

the following exact observations) have been provided by NASA
and DNV. Then, a method to identify the corresponding seed
value si∈[1,...,100] for each of the i = 1, . . . , 100 observations
has been set up. This consists in finding the seed value si that
matches to the temporal dynamics of the exact observations. For
one observation, this temporal dynamics may be synthesized
through the time positions of the local minima and maxima of
the output. To identify the seed values, a complete enumeration
of one million of seed values from 0 to 106 has been generated,
with a fixed value for Xa, Xe and X∗

c . The local model has
been evaluated to determine the corresponding outputs. Then,
for each exact observation, a seed value si has been determined
by finding in the 106 local model output realizations, the one
that perfectly matches the time position of the local extrema
(minima and maxima). From the DoE of seeds, only one per-
fect correspondence per exact observation has been identified
s∗i , confirming that the seed is the main contributor to the
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temporal dynamics of the outputs. For this identification, the
fourth component output of the exact observations has been
selected because it does not present any saturation. Example
of identification is provided at the top of Figure 3.

Fig. 3. Exact observation of the output fourth component (black
dotted line), local model output corresponding to an identified seed
(blue) and estimate output by optimization of Xa and Xe for the
identified seed (red).

2.1.4. Determination of Xa and X∗
e

To identify the values of Xa and X∗
e for each of the exact

observations and identified seeds s∗i∈[1,...,100], a weighted least-
squares optimization has been carried out using Covariance
Matrix Adaptation - Evolution Strategies algorithm Hansen
et al. (2003). Weights have been introduced to scale the differ-
ent components of the observations. This calibration through
an optimization technique allows to identify one value for X∗

e

and a set of values of Xa (one per each exact observation).
This process enables to find values of Xa and for X∗

e in
order to perfectly match the exact observations, as illustrated
in Figure 4. Finally, all the optimizations converged to the
same value of Xe = [0.333, 0.597, 0.375]T defining X∗

e . The
estimated output corresponding to the observation illustrated in
Section 2.1.3 is provided at the bottom of Figure 3.

2.1.5. Inference of fa, the joint distribution of Xa

The calibration process through optimization described in Sec-
tion 2.1.4 has been replicated for 4 different values of Xc

obtained with optimized Latin Hypercube Sampling, to get
sufficient data to estimate the joint distribution of Xa. The
estimated 400 samples of Xa are illustrated in Figure 5. Then,
margins and copula of the joint distribution of Xa have been
estimated using OpenTURNS library Baudin et al. (2015). For
the margins, among the 30 tested parametric distributions, the
Weibull minimum extreme value distribution has been selected
as fitting the best to the data, according to Bayesian Informative
Criterion Schwarz (1978). The parameters of the identified
margins for Xa1 and Xa2 are given in Table 1. Alternatively,

Table 1. Values of Weibull distribution hyperparameters
for Xa1 and Xa2.

Parameters Values 95% confidence interval

β1 0.302 [0.261 ,0.335]
α1 2.478 [2.057, 2.956]
γ1 0.002 [0.000, 0.034]
β2 0.197 [0.178, 0.213]
α2 1.706 [1.511, 1.885]
γ2 0.005 [0.000, 0.0165]

non parametric distributions have been tested, providing the
same level of confidence. Concerning the copula, the indepen-
dent copula has reached the best score in Bayesian Informative
Criterion, so the margins have been considered as independent.
The joint distribution of fa has then been validated using
quantile-quantile plot as illustrated in Figure 6 for the first
margin of fa. The knowledge on fa could be consolidated by
the acquisition of additional exact observations for other Xc

values.
The proposed approach based on the identification on the

seed value associated to each trajectory might not be easily gen-
eralized to problems that do not have this particular behavior.
As mentioned earlier, a more generalizable method based on
Bayesian inference could be developed with a particular focus
on the stochastic nature of the model.

2.2. Prediction intervals of output components

In this section, a method to estimate the bounds of the predic-
tion interval for each of the 6 components of the model output
is proposed. For a given confidence level α ∈]0, 1[, the bounds
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Fig. 4. Estimations of trajectories for X∗
c by a calibration approach (blue lines) and the corresponding exact observations (red dotted lines)

provided by the online exact model. The calibration approach allows to perfectly match to the exact observations.

Fig. 5. 400 identified samples of Xa for the 4 different values of Xc.

are defined by:

ȳ (Xc, α) = inf {u |pu (Xe,Xc, u) ≤ 1− α}
y (Xc, α) = sup {l |pl (Xe,Xc, l) ≤ 1− α} ,

with pu (Xe,Xc, u) = P (YM > u) and pl (Xe,Xc, l) =

P (Ym < l), and where YM := max
0≤t≤1

y (Xa,Xe,Xc, s, t) and

Ym := min
0≤t≤1

y (Xa,Xe,Xc, s, t) are introduced to lighten the

notations. In other words, for all t ∈ [0, 1], y(Xa,Xe,Xc, s, t)

belongs to the interval [y (Xc, α) , ȳ (Xc, α)] with probability
2α− 1.

For the following developments, the epistemic vector Xe is

Fig. 6. Quantile-quantile plot for the first margin of fa.

fixed at X∗
e as explained and justified in Section 2.1.4. More-

over, the baseline design is set at Xc = [0.533, 0.666, 0.5]T .

2.2.1. Quantile estimation problem

For the fixed value X∗
e , the estimation of the bounds ȳ (Xc, α)

and y (Xc, α) is equivalent to a quantile estimation problem.
Indeed, for all u ∈ R, it is possible to rewrite pu(u) as:

pu (u) = P (YM > u) = 1− FYM
(u) ,

where FYM
stands for the CDF of YM . Then:

{u | pu (u) ≤ 1− α} = {u | 1− FYM
(u) ≤ 1− α}

= {u | FYM
(u) ≥ α}

= F−1
YM

([α, 1]).
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Thus, the upper bound ȳ (Xc, α) = inf F−1
YM

([α, 1]) is exactly
the quantile of order α of the random variable YM .

Similarly, pl(l) can be written for all l ∈ R as:

pl (l) = P (Ym < l) = FYm
(l)− P (Ym = l) ,

where FYm
stands for the CDF of Ym. Then:

{l | pl (l) ≤ 1− α} = {l | FYm
(l)− P (Ym = l) ≤ 1− α}.

It can be shown that the lower bound y (Xc, α), which is
defined as the supremum of this set, exactly coincides with the
quantile of order 1 − α of the random variable Ym, unless if
FYm

is constant exactly at level 1 − α. A visual inspection
of the empirical CDF associated to each trajectory provided
in Figure 7 strongly suggests that FYm

is strictly increasing at
level 1 − α. In that case, y (Xc, α) is exactly the quantile of
order 1−α of the random variable Ym. In summary, estimating

Fig. 7. Empirical CDF of the random variable Ym associated to each
output component. Each of them has been computed with the available
sample from the provided exact dataset.

the bounds of the prediction interval consists in estimating the
quantiles of order α of YM and of order 1− α of Ym.

2.2.2. AK-MCS algorithm

Since evaluating the numerical model is quite computation-
ally intensive, the quantiles of interest are estimated by com-
bining both Monte Carlo simulation and Kriging metamod-
eling Williams and Rasmussen (2006). Indeed, the proposed
procedure is an adaptation to the case of quantile estimation
of the AK-MCS algorithm Echard et al. (2011).

The AK-MCS algorithm consists in iteratively enrich a con-
ditioned Gaussian process until reaching a stopping criterion.
The latter quantifies the quality of the approximation of the
metamodel near the limit state, such that it can discriminate
with high accuracy failed samples from safe ones. The main
difference with the initial AK-MCS algorithm designed for rare

event estimation is that the limit state parameter is the quantile
itself Schöbi et al. (2017), which is re-estimated after each
iteration.

For the estimation of the upper bound ȳ (Xc, α), the Gaus-
sian process built during the AK-MCS algorithm is an approx-
imation of the function: Xa ∈ [0, 1]2 �→ YM (Xa), where
YM (Xa) has been averaged over the random seed for all Xa ∈
[0, 1]2, i.e.:

YM (Xa) =
1

nrep

nrep∑
i=1

YM

(
Xa, s

(i)
)

and with
(
s(i)

)
i∈[[1,nrep]]

an i.i.d. nrep-sample of random seeds.
In other words, a double loop over first the random seed and
second Xa instead of a single loop over the pair (Xa, s) is
performed in order to estimate the probabilities of exceedance
pu(u). This choice has been made because it provides more
stable and consistent numerical results. Furthermore, the es-
timation error of YM (Xa) caused by the Monte Carlo ap-
proximation is ignored. Thus, the function to approximate is
considered as deterministic. The same procedure is performed
with Ym for the estimation of the lower bound y (Xc, α).

2.2.3. Numerical results

For the following experiments, the OpenTURNS library Baudin
et al. (2015) is used to draw the initial DoE and the Monte Carlo
sample, and the SMT toolbox Saves et al. (2024) is used to build
the heteroscedastic Gaussian processes.

First, the estimation of the bounds of the prediction intervals
for output components 4, 5 and 6 has been done with the AK-
MCS algorithm. To do so, an initial DoE of size NDoE = 10

is generated by Latin Hypercube Sampling (LHS) to build an
initial Gaussian process. Then, the latter is iteratively enriched
until the minimum of the U -function, defined in Echard et al.
(2011), evaluated on the Monte Carlo sample exceeds a given
threshold (U ≥ 2.0). The estimated bounds for α = 0.95 and
α = 0.999 are given in Table 2. Second, a more direct analysis
can be done for output components 1, 2 and 3. Indeed, as shown
in Figure 7, these components have a high saturation rate at 3.35
(more than 30%). Thus, a straightforward estimator of the upper
bound ȳ (Xc, α) for output components 1, 2 and 3 is 3.35 for
both α = 0.95 and α = 0.999. Moreover, the minimum of more
than 10% of the trajectories for output components 2 and 3 is
equal to 0. So a straightforward estimator of the lower bound
y (Xc, α) for output components 2 and 3 is 0. for both α =

0.95 and α = 0.999. At last, the available dataset from the real
system is not informative enough for estimating y (Xc, 0.95)

for output trajectory 1 because the first non-zero value is very



380 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Table 2. Bounds of the prediction intervals for output components 4,
5 and 6.

α Output component y (Xc, α) ȳ (Xc, α)

0.95 4 14.43 981.30
5 7.11 482.27
6 6.01 407.70

0.999 4 3.93× 10−3 1824.76

5 1.99× 10−3 896.86

6 1.65× 10−3 758.16

close to quantile level 1− 0.95. So the AK-MCS has been used
to estimate this bound. In summary, the estimated bounds for
both α = 0.95 and α = 0.999 for output components 1, 2 and
3 are given in Table 3.

Table 3. Bounds of the prediction intervals for output components 1,
2 and 3.

α Output component y (Xc, α) ȳ (Xc, α)

0.95 1 7.63× 10−3 3.35
2 0. 3.35
3 0. 3.35

0.999 1 0. 3.35
2 0. 3.35
3 0. 3.35

3. Problem 2: Design optimization

Different optimization problems have to be solved in order to
identify the optimal control parameter Xc with respect to differ-
ent objective functions and constraints. In these three problems,
objective and constraint functions are either expected values or
probability that can only be estimated. In the following these es-
timations are performed by sampling approaches (Monte Carlo,
AK-MCS, etc.) leading to noisy evaluation of the objective
function and constraints. This estimation noise is an epistemic
uncertainty that can be reduced by adding more samples to
the estimator i.e., increasing the dimension of the Monte Carlo
sample. In order to handle these optimization problems under
epistemic uncertainty, the strategy developed in Dubreuil et al.
(2020) is retained. The first optimization problem can be written
as:

X∗
c =argmin

Xc

−J(Xe,Xc)

where the objective function is given by,

J(Xe,Xc) =

∫ 1

0

∑
i∈I1

E[yi(Xa,Xe,Xc, s, t)]dt,

where E[·] is the expected operator with respect to the random
vector Xa, the seed s and I1 the set of index of the output com-
ponents 1, 2 and 3. In the following, the problem is simplified
by assuming a fixed value for Xe (as specified in Section 2.1.4),
therefore, the dependence w.r.t. Xe is omitted. A prerequisite
for solving the optimization problems is the ability to estimate
the value of J(·) for a given Xc ∈ [0, 1]3. To do so, the
objective function J(·) is rewritten as:

J(Xc) = E

[∫ 1

0

yI1 (Xa,Xc, s, t) dt
]
,

with yI1 = y1 + y2 + y3. This alternative writing allows to use
Monte Carlo integration to estimate J(Xc) as:

Ĵ (n)(Xc) =
1

n

n∑
i=1

∫ 1

0

yI1

(
X(i)

a ,Xc, s
(i), t

)
dt,

where
(
X

(i)
a

)
i∈[[1,n]]

∼ fa is an i.i.d. n-sample and where(
s(i)

)
i∈[[1,n]]

is an i.i.d. n-sample of random seeds. Further-
more, the integral of yI1 with respect to t ∈ [0, 1] is esti-
mated by the trapeze method using the discrete evaluations
(y

(i)
I1
)i∈[[1,m]] (where m = 60 is the number of time steps in

the numerical simulation). At last, the central limit theorem
provides the asymptotic behavior of the estimator:

√
n
(
Ĵ (n)(Xc)− μJ(Xc)

)
d−−−−−→

n→+∞ N (0, σJ(Xc)),

where:

μJ(Xc) = J (Xc)

σJ(Xc) =

√
V

(∫ 1

0

yI1 (Xa,Xc, s, t) dt
)
,

and V[·] the variance operator. Therefore, Ĵ (n)(Xc) can be
considered as a Gaussian random variable of mean μJ(Xc)

and standard deviation σ
̂J(n)(Xc) = σJ(Xc)/

√
n for n large

enough. The optimization problem is thus:

X∗
c =argmin

Xc

−μJ(Xc). (1)

Obtaining an accurate estimation μJ(Xc) (i.e., with a low
σ

̂J(n)(Xc)) can be quite computationally intensive as it may
require a large sample size n. The ability of the optimization
algorithm to handle epistemic noise and its capacity to focus
the computational budget on promising area of the design
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space leads us to choose Bayesian optimization Williams and
Rasmussen (2006) and more precisely the algorithm developed
in Dubreuil et al. (2020) designed to iteratively decreased the
epistemic noise σ

̂J(n)(Xc) only in promising Xc points i.e.
the MC sample size n is increased adaptively if needed (see
the following description). The main steps of the proposed
algorithm are described in the following:

(1) Build a DoE by using LHS of size N , for each point Xci ∈
[0, 1]3 associate (μJ(Xci), σ ̂J(n)(Xci)) ∀i = 1, . . . , N

and compute the coefficient of variation cv(Ĵ (n)(Xci)) =

σ
̂J(n)(Xci)/μJ(Xci).

(2) Build a heteroscedastic Gaussian Process regression model
(GP) Williams and Rasmussen (2006) from which one can
obtain a predicted mean value μGP(Xc) and a predicted
variance σ2

GP(Xc), ∀ Xc ∈ [0, 1]3.
(3) For each DoE point Xci, compute the probability,

Pmin(Xci), that the point Xci solves the optimization prob-
lem given by Eq. 1. These probabilities are computed by
Monte Carlo sampling and the numerical cost associated
is negligible as it only involves the resolution of a discrete
optimization problem over the DoE.

(4) Identify within the DoE the interesting points, denoted
by the set (Xc)

DoE
min, with high probability Pmin (defined

in practice by Pmin

[
(Xc)

DoE
min

] ≥ 1/N ), and with high
accuracy estimate defined by a threshold value εcv of the
coefficient of variation cv(Ĵ (n)((Xc)

DoE
min)). At this step the

local numerical model is called until cv(Ĵ (n)((Xc)
DoE
min)) ≤

εcv . Usually this enrichment leads to the identification of a
unique point in the set (Xc)

DoE
min i.e., only one point of the

DoE satisfies both Pmin [Xc] ≥ 1/N and cv(Ĵ (n)(Xc)) ≤
εcv). If it is not the case, either the problem has equal local
minima or the threshold value εcv is too large to identify a
unique global minimum. In the following a unique value of
(Xc)

DoE
min is needed to define the infill criterion, in practice

the one with the highest Pmin

[
(Xc)

DoE
min

]
is retained.

(5) Maximize the infill criterion (for instance the Expected
Improvement Williams and Rasmussen (2006)) computed
analytically from the GP surrogate (step 2) and (Xc)

DoE
min

(step 4) to identify a potential candidate: X∗
c

EI(X) = (μGP(X)− (Xc)
DoE
min)Φ(Z) + σGP(X)φ(Z)

where Z =
μGP(X)−(Xc)

DoE
min

σGP(X) , Φ(·) and φ(·) are respec-
tively the cumulative and probability density functions of
N (0, 1).

(6) Compute J(X∗
c) and update the DoE (return to step 2).

(7) Stop the algorithm after a fixed number of iterations.

For the numerical experiments, the SMT toolbox Saves et al.
(2024) is used to build the heteroscedastic Gaussian processes.

3.1. Optimization problem 1 for performance-based
design

The performance-based design X∗
c is solution of

X∗
c =argmin

Xc

−J(Xefixed,Xc). (2)

Beginning with five initial DoE consisting of 10 points each,
five runs are performed with 30 iterations and εcv = 0.3%. The
convergence plots are given in the Figure 8 and the identified
optimal points are presented in the Table 4. For each of these
five points, cv(Ĵ (n)(X∗

c)) = 0.24%, indicating that it is chal-
lenging to determine the optimal value of J(·).

Table 4. Optimal values for X∗
c and

J(Xefixed,X
∗
c).

Xc1 Xc2 Xc3 Jmin

0.162 0.414 0.558 -7.215
0.139 0.369 0.657 -7.235
0.684 0.847 0.792 -7.211
0.710 0.337 0.649 -7.262
0.137 0.818 0.641 -7.247

Fig. 8. Convergence plots of five runs for problem 2.1, featuring a
99% confidence interval of for the J value, alongside the associated
X∗

c values on the radar plot.
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3.2. Optimization problem 2 for reliability-based
design.

The reliability-based design X∗
c is given by

X∗
c =argmin

Xc

pofsys(Xefixed,Xc)

with pofsys(Xe,Xc) = P[min
i∈I2

gi(Xa,Xe,Xc, s)],

where I2 is the set of index of the output components 4, 5 and
6.

The same Bayesian optimization strategy is used to solve this
problem. Figure 9 presents the results obtained by two different
runs (different initial DoE). Both converge towards a probabil-
ity of failure of order 10−7 for the same X∗

c ≈ [0.37, 0.60, 1.0].

Fig. 9. Results on problem 2.2. Convergence plot for the failure
probability pofsys value, alongside the associated X∗

c value on the
radar plot.

4. Conclusions and perspectives

This paper is an attempt to answer to the NASA-DNV UQ
challenge 2025 relying on adaptive Gaussian process-based
strategies. Given some exact model observations, a dedicated
calibration technique based on an optimization approach has
been implemented to identify the aleatory variable joint distri-
bution and the epistemic variable uncertainties while managing
the stochastic nature of the exact model (through the seed).
Then, adaptive Gaussian process-based methods have been de-
rived to identify prediction interval for the model output com-
ponents via AK-MCS and to solve design optimization under
uncertainty through Bayesian optimization involving stochastic
simulation model. The proposed approaches could be enriched
first by taking into account the Monte Carlo estimation error
of YM (Xa) and Ym (Xa) while building the Gaussian process
for the estimation of the bounds of the predictions intervals, and

second by considering a set for the epistemic variables introduc-
ing an additional layer of analyses. At last, it could be valuable
to develop a more generic approach for identifying uncertainty
models, particularly for problems where the stochastic nature
of the simulation has a significant impact.
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