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In the era of maritime autonomous surface ships (MASSs), intelligent agents are projected to make safety-
critical decisions without human intervention. Considering the various disturbances associated with the maritime
environment, enhancing their robustness during safety-critical operations is pivotal, including those related to path
following. The aim of this study is to propose a methodology that enhances the robustness of path following for a
MASS amid perception sensor noise by controlling the state space parameter of a deep reinforcement learning agent.
The agent is trained to follow a predefined path at various noise levels between a minimum and maximum value, and
a robustness metric based on the cross-track error is defined. The case study considers a container vessel that uses
light detection and ranging for the situation awareness of its surrounding environment. Simulation results suggest
that when the state space parameter related to the value of the noise level is controlled, the robustness is enhanced
up to 5,668% from its maximum trained value by not violating the cross-track error threshold. When the state space
parameter is not controlled, an enhancement of up to 112% is noted, highlighting the effectiveness of the proposed
methodology. This study contributes towards the development of agents capable of making robust decisions during
safety-critical operations under uncertainty.
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1. Introduction

In the new Shipping 4.0 era, the maritime indus-
try is experiencing a paradigm shift, where con-
ventional ships are transitioning to autonomous
ships, known as maritime autonomous surface
ships (MASSs), by adopting higher degrees of
autonomy (Kavallieratos et al., 2020). However,
autonomy comes with unique safety challenges,
as safety-critical decisions are expected to be
made by intelligent agents without human inter-
vention (BahooToroody et al., 2022).

An important step towards realizing full-scale
autonomy is the robustness of the agents used
during safety-critical operations (Staessens et al.,
2022). Specifically, the term ‘robustness’ refers
to the degree of tolerability against disturbances
without violating a set requirement (Hamon et al.,
2020). Hence, robustness against the various dis-
turbances attributed to the complex and dynamic

maritime environment need to be investigated, in-
cluding for path following, which is a fundamental
safety-critical operation related to the safe naviga-
tion of MASSs.

2. Relevant Works

Various studies have been conducted to enhance
the robustness of path following for MASSs.
For instance, Fan et al. (2019) employed line-
of-sight (LOS) and accommodated input satu-
ration, model parameters uncertainties, and un-
known time-varying external disturbances using
radial basis function neural networks (RBFNN)-
based finite-time observer. Huang and Fan (2019)
employed integral LOS and compensated for the
currents and model uncertainties using reduced-
order linear extended state observer and RBFNN.
Wen et al. (2020) employed vector field and es-
timated the model parameters using forgetting
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factor recursive least square. Mu et al. (2020)
employed fuzzy-based integral LOS and counter-
acted the effects of unknown dynamic and exter-
nal disturbances using neural network minimum
learning parameter (MLP).

Esfahani and Szlapczynski (2021) employed
approximate dynamic programming based on
actor-critic and time-delay control under stochas-
tic disturbances induced by winds, waves, and
currents. Mu et al. (2022) employed adaptive LOS
and considered modeling error and input satu-
ration under time-varying external disturbances
using neural network MLP. Liu et al. (2022) em-
ployed model predictive control (MPC), adap-
tive LOS, and event-triggered mechanism (ETM)
subject to external disturbances and nonlinear
terms using linear extended state observer. Ren
et al. (2023) employed proportional derivative-
based sigmoid fuzzy function and accommodated
unknown hydrodynamic coefficients and external
disturbances using RBFNN. Li et al. (2024) em-
ployed model predictive static programming and
ETM considering input disturbances. Song et al.
(2024) employed a nonlinear MPC and estimated
the interference using finite-time observer.

The review of the pertinent literature suggests
that most studies focus on enhancing the robust-
ness against environmental disturbances, whereas
less focus has been put on disturbances pertaining
to situation awareness, such as perception sensor
noise. Hence, the aim of this study is to propose a
methodology that enhances the robustness of path
following for a MASS without violating the cross-
track error threshold amid perception sensor noise
by controlling the state space parameters of a deep
reinforcement learning (DRL) agent.

The remainder of this study is as follows. Sec-
tion 3 presents the proposed methodology. Sec-
tion 4 presents the case study characteristics. Sec-
tion 5 presents the results with pertinent discus-
sion. Finally, Section 6 outlines the main findings,
limitations, and outlook for future studies.

3. Methodology

The proposed methodology comprises six subse-
quent phases, as presented in Figure 1. Specifi-
cally, this methodology is adopted from the pre-

vious work of Lee et al. Lee et al. (2024), whereas
a summary is given herein. In Phase 1, the main
components are modeled to simulate the inves-
tigated scenarios. Specifically, the maneuverabil-
ity of the ship, steering system, and navigat-
ing area is simulated using a four-degrees-of-
freedom maneuvering modeling group model, a
first-order linear differential equation model, and
a two-dimensional binary occupancy map model,
respectively. The distance measuring perception
sensor used for the situation awareness is sim-
ulated using a time-of-flight equation, which is
defined as:

dt =
cT

2
+ εt (1)

where dt denotes the distance measured at each
timestep t ∈ Z≥0; c, the speed of light; T , the
time of flight; and εt, the Gaussian-based added
noise with zero mean and variance σ2.

In Phase 2, the Markov decision process (MDP)
is formulated to model the decision-making prob-
lem of the investigated scenarios through the def-
inition of states, actions, and rewards. The state
of the agent at each t, as a set of state space
parameters, is defined as:

St = [ψt, ut, u̇t, vt, v̇t, ψ̇t, ψ̈t, Ut, U̇t, dt,N ,

eXT,t, ėXT,t, ëXT,t, eH,t, ėH,t, ëH,t]
(2)

where ψt denotes the heading angle of the ship;
ut, vt, ψ̇t, u̇t, v̇t, and ψ̈t, the surge, sway, yaw
of the ship and their first-order time derivatives,
respectively; Ut and U̇t, the resultant velocity of
the ship and its first-order time derivative; N , the
value of σ2; and eXT,t, ėXT,t, ëXT,t, eH,t, ėH,t, and
ëH,t, the cross-track and heading errors of the ship
from the path and their first- and second-order
time derivatives, respectively. The action of the
agent at each t is defined as:

At = [δC,t] (3)

where δC,t, denotes the commanded rudder angle
of the steering system. The reward of the agent at
each t is defined as:

Rt = R1,t +R2,t +R3,t +R4,t (4)

where R1,t, R2,t, R3,t, and R4,t denote the path
following, nominal navigation, actuator control,
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and collision avoidance rewards, respectively, as:

R1,t =k1 +
k2

e2
H,t + k3 + k4|eXT,t|

+
k5

e2
XT,t + k6

(5)

R2,t = k7v
2
t + k8ψ̇

2
t + k9v̇

2
t + k10ψ̈

2
t (6)

R3,t = k11δ
2
C,t + k12δ̇

2
C,t (7)

R4,t = k13dt + k14 (8)

where ki ∈ R denotes the reward coefficient for
i ∈ {1, 2, . . . , 14}. Specifically, k1 ∈ R≥0 and
k1 = 0 when |eXT,t| > B/2, where B denotes
the ship’s beam, in order for the agent to receive
less reward when the accuracy threshold for path
following is violated.

In Phase 3, a DRL agent is trained in the for-
mulated problem. Specifically, a deep determinis-
tic policy gradient (DDPG)-based agent is setup
that consists of 600 and 500 neurons for each of
the actor and critic networks’ two hidden layers,
respectively. In addition, the agent is trained con-
sidering a training envelope σ2 ∈ [0, 25], where a
random value with uniform distribution is investi-
gated between the minimum and maximum value.

In Phase 4, the robustness of the agent is quan-
tified in terms of a robustness metric, which is
defined as:

RM = |eXT,t|max ≤ B/2 (9)

It is worth noting that the defined robustness
threshold is equal to the threshold for the path
following reward, as presented in Equation 5.

In Phase 5, the state space parameters are con-
trolled to enhance the robustness. Specifically, af-
ter the agent training, the N is decoupled from σ2

to be controlled as an independent value.
Finally, in Phase 6, the robustness is verified by

investigating various scenarios within and outside
the training envelope, σ2 ∈ [0, 25] and σ2 > 25,
until the robustness threshold is violated.

Phase 1
Main components modeling

Phase 2
MDP formulation

Phase 3
DRL agent training

Phase 4
Robustness quantification

Phase 5
State space parameters control

Phase 6
Robustness verification

Fig. 1. Proposed methodology and its subsequent
phases.

4. Case Study

The investigated case study considers a MASS
that follows a global path, as presented in Figure 2.
Specifically, the straight global path is generated
by two waypoints located on a 5×5 km map.
The same initial conditions are considered in each
episode, including the initial location and nominal
navigation of the MASS, but the σ2. In addition,
the episodes are diversified by randomly allocat-
ing a static obstacle on the path to avoid over-
fitting the agent. The MASS detects the obstacle
using light detection and ranging (LIDAR), whose
particulars are presented in Table 2. Finally, the
main particulars of the MASS reflect the S-175
container ship, as presented in Table 1.

5. Results & Discussion

The training performance of the agent is presented
in Figure 3. Considering the convergence of the
return, the training is terminated at episode 5,820.

A total of six scenarios are investigated, whose
robustness metrics are presented in Table 3.
Specifically, robustness in scenario 3 is noted until
σ2 = 53 m2 when σ2 = N , which is an increase
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of 112% from its maximum trained value. This
suggests the great generalization of DRL-based
agents capable of making decisions beyond the
trained values. However, robustness in scenario 4
is noted until σ2 = 1,442 m2 when σ2 �= N ,
which is an increase of 5,668% from its maximum
trained value. This suggests that the robustness
against perception sensor noise during path fol-
lowing can be further enhanced, when the state
space parameter N is controlled independently.

To highlight the effectiveness of this method-
ology, the agent is simulated at σ2 =1,442 m2

and the differences between the robustness of path
following when N = σ2 and N �= σ2 are
presented in Figures 4 and 5. It is noted that
when N is not controlled the agent conducts a
turning circle maneuver by commanding |δC|max,
thus failing to follow the path. However, when N
is controlled the agent manages to follow the path
without violating the robustness threshold, even
when 99.7% of all LIDAR measurements have an
uncertainty within ±112.7 m.

Fig. 2. Investigated case study.

Table 1. Main particulars of the MASS.

Particular Symbol Value

Length L 175.0 m
Beam B 25.4 m
Draft T 8.5 m
Depth D 11.0 m
Displaced volume ∇ 21,222 m3

Block coefficient cB 0.559

Table 2. Main particulars of the LIDAR.

Particular Value

Maximum detecting range 1,341 m
Field of view 225 deg
Angular resolution 5.63 deg

Fig. 3. Training performance of the agent in terms
of the return per episode. The sliding window for the
moving median is 150 episodes.
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Table 3. Robustness metric for path following with-
out and with controlling the state space parameter N .

Scenario N σ2 RM

1 0 m2 0 m2 0.3 m
2 25 m2 25 m2 2.1 m
3 53 m2 53 m2 11.5 m

4 0 m2 1,442 m2 12.7 m
5 25 m2 784 m2 12.7 m
6 53 m2 191 m2 12.7 m

(a)

(b)

Fig. 4. Simulation result of the agent’s maneuvering
when (a) N = σ2 = 1,442 m2 and (b) N = 0 m2 and
σ2 = 1,442 m2.
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(a)

(b)

Fig. 5. Simulation result of the agent’s actions in
terms of δC when (a) N = σ2 = 1,442 m2 and (b)
N = 0 m2 and σ2 = 1,442 m2.

6. Conclusions

The robustness of intelligent agents used dur-
ing the safety-critical operations of MASS is of
paramount importance. The aim of this study was
to propose a methodology that enhances the ro-
bustness of path following for a MASS without
violating the cross-track error threshold amid per-
ception sense noise by controlling the state space
parameter of a deep reinforcement learning agent.
A DDPG-based agent was trained to follow a
predefined path at various noise levels between
a minimum and maximum value. The case study
considered a container vessel that used LIDAR for
the situation awareness of its surrounding envi-
ronment. The main findings of this study are as
follows.

(i) Robustness of up to 112% from its maxi-
mum trained value was noted when N was
not controlled, suggesting the generalization

capabilities of DRL-based agents.
(ii) Robustness of up to 5,668% from its maxi-

mum trained value was noted when N was
controlled, highlighting the effectiveness of
the proposed methodology.

The main limitations of this study are the con-
sideration of a simplistic noise model, the ab-
sence of other environmental disturbances, and
the investigation of simple paths. Nonetheless,
this study contributes towards the development of
agents capable of making robust decisions during
safety-critical operations under uncertainty.
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