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This paper presents a novel approach to spatiotemporal crime analysis, tailored for risk management and safety
applications, by introducing the Non-Stationary Moving Average (NSMA) method. The NSMA method extends
the standard Moving Average technique by incorporating non-stationarity, addressing the dynamic nature of crime
patterns. By combining temporal smoothing with spatial clustering through the K-means algorithm, this approach
enables the identification of distinct crime clusters and provides insights into temporal trends. The proposed
methodology is formulated as a multicriteria optimization problem, balancing the objectives of spatial clustering
and temporal regularization through a regularization parameter. The problem is solved using a subspace algorithm,
similar to the approach used in K-means, which alternates between optimizing cluster centers and cluster moving
averages. Applied to real-world crime data from the Czech Republic, this method demonstrates its potential to
improve resource allocation and decision-making in crime prevention. The NSMA method contributes to advancing
the fields of spatiotemporal analysis and risk evaluation, offering a versatile tool for addressing complex urban safety
challenges.
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1. Introduction

Security is one of the most important pillars of
a functioning modern society. In an environment
where criminal activities are constantly evolving,
it is crucial to have tools that not only help un-
derstand current threats but also enable their pre-
vention. Spatiotemporal analysis, which combines
spatial and temporal data, represents a modern
approach to identifying high-risk areas and un-
derstanding the dynamics of crime. This analyt-
ical framework contributes to effective decision-
making in deploying security forces, preventing
crime, and developing long-term public safety
strategies.

The dataset used for this analysis contains in-
formation about criminal incidents in the Czech
Republic for the year 2024. It includes precise

timestamps of reports made by witnesses or the
police, exact geographic coordinates, and the
types of criminal activities. These data offer a
detailed view of the spatial and temporal char-
acteristics of crime, enabling the identification
of patterns and the dynamics of its occurrence.
Additionally, the dataset provides information on
the investigative stages of each incident, offering
a comprehensive overview from the moment of
reporting to the current status.

The inherently multifaceted nature of crime
requires the integration of traditional methods
with innovative technologies to effectively address
emerging threats. By combining advanced analyt-
ical techniques with spatial and temporal data, it
becomes possible not only to allocate resources
more effectively but also to strengthen society’s

3346



3347Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

overall capacity to respond to security challenges.
The inherently multifaceted nature of crime

requires the integration of traditional methods
with innovative technologies to effectively address
emerging threats. By combining advanced analyt-
ical techniques with spatial and temporal data, it
becomes possible not only to allocate resources
more effectively but also to strengthen society’s
overall capacity to respond to security challenges.

Spatiotemporal crime analysis is crucial for
understanding and predicting criminal activities
across different areas and times. By employing
clustering methods, this approach can help iden-
tify areas with varying levels of criminal activity,
which is essential for crime prevention and the ef-
ficient allocation of resources in law enforcement.
Recognizing locations with higher concentrations
of crime allows security forces to be strategically
deployed, enabling faster and more effective re-
sponses to emerging threats.

Additionally, clustering analysis offers the po-
tential to tailor preventive measures to the unique
needs of specific regions. Strategies such as en-
hanced surveillance, the installation of advanced
security systems, or community-focused crime
prevention programs can be developed based on
these insights. Beyond immediate tactical advan-
tages, this methodology provides a robust founda-
tion for long-term planning and improving public
safety. By integrating spatial and temporal pat-
terns, spatiotemporal crime analysis contributes
to creating safer environments while equipping
society with the tools needed to address evolving
security challenges.

As a standard method for spatio-temporal anal-
ysis, STARMA (Spatio-Temporal Autoregressive,
Pfeifer and Deutsch (1980)) models can be men-
tioned. These models analyze the autocorrelation
(i.e., the linear dependency) between the temporal
component (consecutive time steps) and, simulta-
neously, the spatial component (data in neighbor-
ing regions).

However, this approach has certain limitations,
including the necessity of time discretization,
which can be performed, for example, on a daily
basis, as well as fixed spatial discretization, such
as box discretization with a predefined box size

parameter.
In the novel method presented in this paper,

we address spatial discretization by introducing
adaptive clustering methods based on a more gen-
eral centroid-based approach. The assumption of
linear dependency between consecutive time steps
is removed and replaced with an assumption based
on the smoothness of the data. This is achieved by
generalizing the moving average method.

Traditional methods, such as the Moving Av-
erage (MA), provide a simple tool for analyzing
data but lack the flexibility needed for dynamic
environments where crime patterns can change
rapidly. The extension of this method presented
in this paper, called the Non-Stationary Moving
Average (NSMA) method, offers an advanced
cluster-based approach that dynamically separates
records into groups and applies the moving aver-
age to individual clusters. This model is better at
describing the data and provides deeper insights
into underlying patterns.

2. Mathematical aspect of modelling
process

Our approach builds on a standard, well-
established regression technique where we fit a
parametric model to the given data. To enhance
this, we integrate spatial clustering using the K-
means method with a modified version of the
widely used moving average technique, which
smooths data over time. This modification incor-
porates an indicator function, allowing us to intro-
duce piecewise non-stationarity.

By combining these two methods through
multi-objective minimization, we develop a spa-
tiotemporal approach. In the final formulation, the
temporal clustering effectively acts as a regular-
ization mechanism for the spatial clustering.

This paper examines a dataset consisting of
ordered pairs:

{[τi, Xi] , i ∈ N} , τi ∈ R, Xi ∈ R
2, (1)

where N := {1, . . . , N} ⊂ N is the index set, and
N ∈ N represents the total number of data points.
Here, τi denotes the time associated with the event
of interest, while Xi corresponds to its geographic
location.
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In this work, we focus on crime incidents re-
ported in the official statistics provided by The
Police of the Czech Republic (2024). Specifically,
we analyze offenses categorized as general crim-
inal activity for the year 2024. Each crime record
includes details of the date and time of occurrence,
along with the corresponding location described
by latitude and longitude coordinates.

2.1. Spatial clustering: K-means

In this section, we focus on finding groups of data
with similar spatial characteristics. We adopt the
standard K-means method (see, e.g., MacQueen
(1967)), which cluster the given spatial part of
data Xi (1) into K ∈ N clusters by solving the
optimization problem

[C∗,Γ∗] := arg min
Γ∈ΩΓ

N∑
i=1

K∑
k=1

Γk,i · ‖X:,i − C:,k‖22︸ ︷︷ ︸
=:f(C,Γ)

,

(2)
where C ∈ R

2,K is a matrix of so-called centroids
and Γ ∈ R

K,N ,Γk,i = γk(i), γk : {1, . . . , N} →
{0, 1} are cluster indicator functions defined by

γk(i) =

{
1 if Xi belongs to k-th cluster,
0 elsewhere.

(3)

We suppose that every datapoint Xi belongs to
exactly one cluster. This condition defines the
feasible set of problem (2) as

ΩΓ :=

{
Γ ∈ {0, 1}K,N | ∀i :

K∑
k=1

Γk,i = 1

}
.

(4)
The problem (2) is solved using subspace algo-
rithm, see Alg. 1. The problem is addressed by
alternately fixing one variable and minimizing the
objective function with respect to the other. Begin-
ning with an initial guess, the method iteratively
updates each variable until convergence. This ap-
proach simplifies the optimization by breaking it
into a series of single-variable subproblems. The
algorithm ensures a sequence of objective func-
tion values that do not increase.

Both inner problems have analytical solutions.
In the case of the C-problem (when the affilia-
tion to clusters Γ is fixed), the new mean value

Alg. 1: Subspace algorithm: K-means

Choose initial approximation Γ〈0〉 ∈ ΩΓ

Set initial f 〈0〉
α = ∞

Set iteration counter it = 0

repeat
C〈it+1〉 = arg min

C∈R2,K
f(C,Γ〈it〉)

Γ〈it+1〉 = arg min
Γ∈ΩΓ

f(C〈it+1〉,Γ)

f 〈it+1〉 = f(C〈it+1〉,Γ〈it+1〉)

it = it + 1

until |f 〈it〉 − f 〈it−1〉| < ε;

is computed as the average of points affiliated
with the given clusters. For the Γ-problem (when
cluster mean values C are fixed), the points are
assigned to the clusters with the smallest distance.
It can be easily proven that the sequence con-
verges to a locally optimal point depending on
the initial approximation. In practice, a technique
called annealing is applied: the algorithm is run
from several random initial guesses, and the best
solution, i.e., the one with the smallest objective
function value, is selected.

Horenko (2010) introduced a relaxed version of
the K-means algorithm with regularization. The
key idea is to relax the binarity of the affilia-
tion functions Γ by interpreting them as proba-
bilities of a point’s affiliation to clusters. Addi-
tionally, to handle time-series data and incorpo-
rate the assumption of cluster affiliation persis-
tence, the author introduced, among other ideas,
the H1 regularization, which involves minimiz-
ing the Euclidean norm of the discrete derivative.
This approach is further analyzed and extended in
Pospı́šil et al. (2018).

In the following section of the paper, we adapt
this idea and introduce regularization using the
Moving Average (MA) method.

2.2. Temporal clustering: Nonstationary
moving average method

In this part, we focus on temporal part of the
data τi (1). The first step of our analysis involves
time discretization. We calculate the daily number
of crime records and represent it as ϕ(t), where
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t = 1, . . . , 365. This time series displays fluctua-
tions, making it suitable for smoothing using the
standard MA method, as demonstrated in Fig. 1.

The MA method (see, e.g., Frost (2024)) is a
statistical technique that smooths short-term fluc-
tuations in a dataset, emphasizing longer-term
trends by calculating the average of a specified
number of consecutive data points. Let us call the
number of consecutive data points by P ∈ N and
define a new function MA by averaging previous
P function values, i.e.,

ϕ̂(t) :=
1

P

P∑
p=1

ϕ(t− p). (5)

See Fig. 1 for an example for various values of
parameter P .

The Non-Stationary Moving Average (NSMA)
extends the standard MA method by accounting
for non-stationarity, which assumes the existence
of regimes between which the analyzed process
alternates. This extension is achieved by introduc-
ing the affiliation of individual records to specific
groups, referred to as clusters or regimes. Let K ∈
N denote the number of clusters, and define the
regime indicator functions Γ as specified in (3).

The number of events in time t in cluster k

can be easily computed as a sum of values of
corresponding indicator functions of records in
given day and we can define the moving average
function of the cluster (a simple modification of
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Fig. 1. Moving average: number of events labeled
as General Criminal Activity in 2024. The data is
smoothed using the MA method with various window
sizes P .

(5))

ϕk(t) :=
∑
i∈N

γk(i), ϕ̂k(t) :=
1

P

P∑
p=1

ϕk(t− p).

(6)
The optimal values of the indicator functions

can be obtained by solving a regression problem.
In this case, we aim to minimize the error of the
NSMA by finding the best partition of events into
clusters, such that the smoothing error is min-
imized. By using a squared Euclidean distance
function, the optimization problem can be formu-
lated as follows:

Γ∗ = arg min
Γ∈ΩΓ

∑
t

(ϕ(t)− ϕ̂(t))2

︸ ︷︷ ︸
=:g(Γ)

, (7)

where we substitute the property

ϕ̂(t) =
K∑

k=1

ϕ̂k(t). (8)

This method allows for the identification of groups
of events with similar smooth characteristics in
time.

It can be shown that the optimization problem
(7) is a convex quadratic optimization problem.
However, due to the binary nature of the feasible
set, the problem becomes practically unsolvable
when dealing with large datasets. To overcome
this challenge, we relax the problem by replacing
the binary cluster affiliation with probabilistic af-
filiation. We relax the feasible set (4) to the form

Ω̂Γ :=

{
Γ ∈ [0, 1]K,N | ∀i :

K∑
k=1

Γk,i = 1

}
.

(9)
This modification allows the problem (7) to be
solved using methods like the Spectral Projected
Gradient (SPG) method introduced by Birgin et al.
(2000). For further details regarding its applica-
tion to quadratic programming (QP), see Pospı́šil
et al. (2018).

2.3. Spatio-temporal clustering:
multicriteria optimization

The objective of the proposed methodology is to
simultaneously cluster events both in time and
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space. To achieve this, we combine the minimiza-
tion problems (7) and (2) into a single multicriteria
optimization problem

[C∗,Γ∗] := arg min
Γ∈Ω̂Γ

1

N
f(C,Γ) +

ε

T
g(Γ)︸ ︷︷ ︸

:=Lε(C,Γ)

,

(10)
where ε ≥ 0 is the aggregation parameter that
balances the importance of time regularization via
NSMA and spatial clustering via K-means, en-
abling a unified spatiotemporal solution approach.

We address the numerical solution of (10) by
combining the numerical methods for both K-
means and NSMA. The subspace algorithm sim-
plifies the problem into a sequence of C-problems
and Γ-problems. The C-problems yield the same
solution as the K-means algorithm since the addi-
tional term remains constant when Γ is fixed and
does not affect the minimizer. The Γ-problems,
on the other hand, are still QP problems, as the
first term introduces only a new linear component,
which can be solved efficiently using the SPG
method.

3. Results and Discussion

The proposed methodology was implemented in a
MATLAB environment and applied to the official
crime statistics for the year 2024. A moving av-
erage window size of P = 7, corresponding to
a weekly average, was selected. The number of
clusters was set to K = 30.

To determine the optimal regularization param-
eter ε, the L-curve approach was employed, as
described in Hansen and O’Leary (1993) and il-
lustrated in Fig. 2. Based on the analysis, we
selected ε = 100.5, a value that achieves a balance
between sufficiently low temporal clustering error
and an acceptable level of spatial clustering error.

This analysis led to the emergence of sev-
eral empty clusters, which were subsequently re-
moved. Due to the limitations of the Euclidean
distance measure used in K-means for spatial clus-
tering - particularly its ineffectiveness in grouping
events that are not close to general centroids - we
reapplied K-means clustering. This second step
was designed to group clusters with similar mov-
ing averages. Through this process, the number

Fig. 2. L-curve: The highlighted value represents the
selected Pareto-optimal aggregation parameter ε =
100.5. The value Lspace corresponds to the spatial clus-
tering term in the cost function, f(C∗,Γ∗)/N , while
Ltime represents the error from the non-stationary mov-
ing average, g(Γ∗)/T , which is the second part of the
objective function in (10).
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Fig. 3. Reclustering: The error of clustering NSMA
of clusters; we aim to identify clusters of the NSMA to
define types of crime activity and simplify the catego-
rization of clusters identified in the previous analysis.
Based on this curve, the optimal number of cluster
classes was determined to be Ktype = 6.

of clusters was reduced to K = 5, as shown
in Fig. 3. The final results effectively identify
events with similar moving averages and highlight
regions characterized by comparable occurrences
of the crime activities of interest.

We present our final classification and typiza-
tion of crime activities in the Czech Republic,
based on the official data for the year 2024.
The optimal spatial clustering ensures that events
within each identified type are geographically
close to each other, while the temporal clustering
guarantees that the identified types exhibit simi-



3351Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

lar moving averages over time. This dual cluster-
ing approach allows us to simultaneously smooth
short-term fluctuations in the dataset and reduce
the dispersion of event locations.

By leveraging spatial clustering, we grouped
events into localized clusters, reflecting the as-
sumption that criminal activities tend to form spa-
tially cohesive patterns. Similarly, temporal clus-
tering captures the inherent dynamics of these
events, revealing distinct types of crime activi-
ties characterized by comparable temporal trends.
This methodology assumes the existence of under-
lying types of criminal activities and effectively
combines spatial and temporal dimensions to en-
hance the interpretability of the data.

Overall, this approach not only smooths tem-
poral noise but also enforces spatial consistency,
providing a comprehensive framework for under-
standing and categorizing crime activity patterns
in a way that aligns with real-world observations
of clustering and typization in criminal behavior.

Fig. 4. Map of crime activities: events have been
grouped into Ktype = 6 types based on the results of
NSMA analysis with optimal parameters.

The spatial classification of crime activities is
presented on the map in Fig. 4, where the iden-
tified clusters are visualized to highlight their ge-
ographical distribution. The corresponding mov-
ing averages for each crime activity type, reflect-
ing their temporal trends, are shown in Fig. 5.
Together, these figures provide a comprehensive
view of the spatial and temporal characteristics of
the classified crime activity types, illustrating the
effectiveness of the proposed clustering approach.
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Fig. 5. Moving averages of types: the value of mov-
ing averages for individual identified types of criminal
activities.

4. Conclusion

In this paper, we introduced a non-stationary ex-
tension of the popular Moving Average method,
combined with K-means clustering, to achieve a
unified spatiotemporal approach for event clus-
tering. This methodology integrates temporal
smoothing and spatial clustering into a single mul-
ticriteria optimization problem, balanced by a reg-
ularization parameter. By relaxing binary cluster
affiliations into probabilistic ones, we addressed
computational challenges..

The proposed approach was implemented in
MATLAB and applied to real-world data on gen-
eral criminal offenses. Using the L-curve method,
we identified an optimal regularization parameter
and demonstrated the method’s effectiveness in
capturing both spatial and temporal patterns while
maintaining computational feasibility.

Future work will focus on a more in-depth
analysis of the methodology, its application to
larger datasets, and evaluating its performance us-
ing standard tools such as cross-validation. Ad-
ditionally, we plan to extend the application of
this method to other areas of security, further
exploring its potential in data-driven solutions for
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complex systems.
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