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Autonomous trains must operate in highly dynamic environments where ensuring safety remains a significant
challenge. Unlike human operators who can intuitively assess and respond to potential risks, autonomous systems
require continuous, real-time evaluation of their surroundings in order to make safe decisions. In this paper, we
present an approach for obstacle avoidance and environment monitoring for autonomous trains using Partially
Observable Markov Decision Processes (POMDPs). The proposed approach models and assesses the risks while
take into account the uncertainties associated with the train status and the various operational and environmental
conditions; then outputs the adequate control action to maintain the train in safe state. To evaluate its efficiency, the
approach is applied to the anti-collision function of autonomous trains in hazardous scenarios.
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1. Introduction

Autonomous trains are poised to revolutionize the
rail industry, offering significant advancements
in efficiency, reliability, and operational flexi-
bility (Singh et al., 2021). However, these sys-
tems must operate in highly dynamic and unpre-
dictable environments, where ensuring safety re-
mains the main challenge (Chelouati et al., 2022).
Unlike human operators who possess intuitive
capabilities to assess and respond to hazardous
situations in real-time, autonomous systems rely
on advanced algorithms to continuously evaluate
their surroundings and make informed, safe deci-
sions (Endsley, 2018). This necessitates a robust
and adaptive tool for risk evaluation to enable
these systems to navigate complex and unpre-
dictable conditions.

Dynamic risk assessment forms the foundation
of safety assurance in autonomous systems, al-
lowing them to identify, evaluate, and mitigate
risks as operational and environmental condi-
tions evolve (Chelouati et al., 2023; Patel et al.,
2024). In railways, autonomous trains face mul-
tiple challenges due to their operating environ-
ments, including varying track conditions, chang-
ing weather, and potential obstacles. In this con-
text, the embedded decision-making processes
must balance among between accuracy, compu-

tational efficiency, and real-time responsiveness
to maintain system safety without compromising
performance.

To partially address these challenges, we pre-
viously proposed in (Chelouati et al., 2023) a
novel risk-based decision-making approach for
autonomous trains, using Partially Observable
Markov Decision Processes (POMDPs) for con-
tinuous monitoring and evaluation of environmen-
tal collision risks. The present paper extends our
early work by establishing an enhanced POMDP
model designed to handle more complex opera-
tional driving scenarios with improved efficiency
and scalability. Notably, by significantly increas-
ing the state-space in the POMDP model, this
approach enhances the risk evaluation, allowing
for more precise estimations of potential hazards.
Additionally, this increased model complexity is
managed to maintain computational efficiency,
ensuring its suitability for real-time applications.
The approach is illustrated on the obstacle colli-
sion avoidance function in autonomous trains.

The rest of this paper is organized as follows:
Section 2 presents preliminary concepts of dy-
namic risk assessment and POMDP. Section 3 de-
tails the integration of a POMDP-based risk model
into the autonomous driving system of trains. In
Section 4, the proposed model is further simulated
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through its application to the anti-collision func-
tion. Finally, concluding remarks and directions
for future work are presented in Section 5.

2. Background

In this section, we present the main concepts of
the proposed approach, namely dynamic risk as-
sessment (DRA) and POMDPs.

2.1. Dynamic risk assessment

DRA addresses the challenges arising from the
complexity and unpredictability of operational
conditions in autonomous systems (Reich and
Trapp, 2020). In contrast to traditional systems,
where human operators rely on intuition, experi-
ence, and situational awareness to manage oper-
ational hazardous situations, autonomous systems
employ advanced algorithms to continuously de-
tect, assess, and respond to hazards in real time (Li
et al., 2022). This requirement is particularly crit-
ical in autonomous train operations, where dy-
namic elements such as moving obstacles, mul-
tiple track conditions, and sudden environmental
changes create hazardous scenarios that require
constant adaptation. Static risk assessment meth-
ods, which rely on predefined (worst case) con-
ditions, fall short in addressing these challenges,
underscoring the need for a more flexible and
responsive approach (Chelouati et al., 2023). For
this purpose, the process of DRA is considered as
a robust solution enabling continuous risk evalua-
tion and estimation based on real-time perception
information.

DRA has been widely applied in transportation
sectors. In the automotive sector, DRA has been
incorporated into advanced driver assistance sys-
tems (ADAS) and autonomous vehicles to manage
collision risks and adapt driving strategies in real-
time (Reich and Trapp, 2020). In aviation, it is
used for air traffic management and onboard col-
lision avoidance systems, enabling aircraft to re-
spond dynamically to changing traffic and weather
conditions (Mendes et al., 2022). Similarly, in the
maritime sector, DRA supports navigation safety
in congested waterways and adverse weather con-
ditions through real-time sensor data and predic-
tive models (Fan et al., 2024). These examples

illustrate the versatility of DRA in managing risks
across diverse operational contexts, reinforcing its
importance for autonomous train operations.

DRA process can be integrated within the func-
tional architecture of autonomous driving sys-
tems. The process begins with the perception of
the environment, which gathers and processes ex-
ternal data. This is followed by the understand-
ing and prediction stage, where insights into the
current state and potential future scenarios are
derived. Decision-making then uses this informa-
tion to evaluate risks and determine appropriate
actions. Finally, execution implements these de-
cisions while considering the system’s state of
health and capabilities, ensuring safe and effective
operation in dynamic conditions (Chelouati et al.,
2022). This DRA framework is depicted in Fig-
ure 1, illustrating its iterative nature and role in
enabling adaptive and informed decision-making.

Fig. 1. An illustration of the DRA process for au-
tonomous trains (Chelouati et al., 2023)

The implementation of DRA within a decision-
making process relies on the use of robust risk
models capable of representing and quantifying
uncertainties in the system’s operational environ-
ment. These models form the foundation for eval-
uating potential hazards and guiding decision-
making processes in real time. Among the var-
ious models from the literature, POMDPs stand
out as a particularly suitable method for estab-
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lishing a risk-based decision-making process for
autonomous systems. One of the key strength of
POMDPs lies in their ability to operate effec-
tively under conditions of partial observability,
where the system does not have complete or ac-
curate knowledge of its surroundings. This is the
case with autonomous trains which frequently en-
counter situations where sensor data may be noisy,
incomplete, or subject to occlusions, such as when
detecting obstacles in complex environments. Ad-
ditionally,

2.2. Partially Observable Decision
Making Processes (POMDPs)

POMDPs extend the Markov Decision Processes
to model the sequential process of a system under
uncertainty. A POMDP is formally defined by a
tuple< S,A,O, T,R, Z, γ >, where S represents
the set of possible states, A denotes the set of
actions, and O is the set of observations the agent
can make. The transition function T (s, a, s′) de-
scribes the probability of transitioning from state
s to state s′ after taking action a, while the reward
function R(s, a, s′) quantifies the benefit of such
transitions. The observation function Z(o | s′, a)
models the likelihood of making observation o

given the resulting state s′ after an action a. Fi-
nally, γ is the discount factor that balances imme-
diate and future rewards.

In this framework, the true state of the environ-
ment is not directly observable. Instead, a belief
b(s), represented as a probability distribution over
all possible states, is maintained to estimate the
system’s current condition. This belief is updated
iteratively using Bayes’ rule based on the agent’s
actions and observations, enabling reasoning un-
der uncertainty.

The policies π, which map belief states to ac-
tions, define the strategy the agent follows to
maximize expected cumulative rewards. The re-
ward structure is carefully designed to align the
system’s objectives with operational goals, such
as minimizing collision risks or optimizing op-
erational efficiency. Additionally, the observation
model captures the stochastic nature of percep-
tion, which is particularly important for handling
noisy sensor data in autonomous systems.

The POMDP model is well-suited for au-
tonomous train operations due to its ability
to manage uncertainty and support risk-based
decision-making. In this context, the states S rep-
resent the conditions of the environment and the
system, such as the train’s position, obstacle loca-
tions, and track status. The actions A correspond
to possible maneuvers, including braking, accel-
erating, or maintaining speed, while the observa-
tions O are derived from perception systems, such
as LiDAR, cameras, and GPS. The belief state
b(s) provides the train with a probabilistic under-
standing of its surroundings, accounting for sen-
sor inaccuracies and environmental variability. By
deriving policies through the POMDP framework,
the train can select optimal actions to minimize
risks while maintaining operational constraints.

Although POMDPs provide a robust theoret-
ical foundation, their practical implementation
in real-time systems presents challenges. Solv-
ing POMDPs exactly is computationally infeasi-
ble for large state and action spaces. To address
this issue, approximate solution methods, such as
point-based value iteration, are employed to com-
pute near-optimal policies efficiently. Advances in
computational power and algorithmic techniques,
including hierarchical POMDPs, further reduce
the complexity by breaking decision-making into
smaller, manageable sub-problems. Adaptive rep-
resentations also enhance efficiency by dynami-
cally discretizing the state space, improving both
accuracy and computational feasibility.

3. Proposed approach

This section introduces the POMDP model for
collision avoidance in autonomous trains.

3.1. State space

The state space in the proposed POMDP model is
specifically structured to encapsulate the variables
influencing collision risk. It is defined as follows,
where each variable reflects a key operational or
environmental factor:

s = (α, β, φ, ψ, ω) (1)

The component α represents the relative dis-
tance to an obstacle. It is discretized into four
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levels: Far, Medium, Close, and Critical (α =

{0; 1; 2; 3} with 0 being Far and 3 being Criti-
cal). β denotes the relative speed of an obstacle,
categorized as Moving Away, Stable/Approaching
Slowly, or Approaching Quickly, to account for
how rapidly the train is closing to detected hazards
(β = {0; 1; 2} with 0 being Moving Away and 2

being Approaching Quickly). The obstacle type,
denoted by φ, is classified into Stationary/Static
Object, Dynamic Object and another Train (φ =

{0; 1; 2} with 0 being Static Object and 2 being
(another) Train). The track condition, represented
by ψ, is included to model how external factors
such as Normal and Slippery impact braking effi-
ciency and maneuverability (ψ = {0; 1} with 0

being Normal and 1 being Slippery). Finally, ω
represents the braking system status, which can be
Normal or Degraded, acknowledging that system
health directly influences the train’s capabilities
(ω = {0; 1} with 0 being Normal and 1 being
Degraded). Hence, the (theoretical) state space
contains 4 ∗ 3 ∗ 3 ∗ 2 ∗ 2 = 144 possible states.

3.2. Actions space

The action space in the model is intentionally lim-
ited to three essential train control actions to bal-
ance model simplicity with operational realism.
The action space is defined as A = {a1, a2, a3},
where a1 is Maintain Speed, ensuring that the train
continues at its current speed when no immedi-
ate action is necessary; a2, is Nominal Braking,
which applies service braking to gradually reduce
speed in response to emerging risks. Finally, a3
is Emergency Braking, engaging the train’s maxi-
mum braking capacity to stop the train.

3.3. Transition function

The transition function T (s, a, s′) = P (s′ | s, a)
models the system’s evolution from one state to
another based on the chosen action. It is grounded
in the kinematic dynamics of train movement,
which are crucial for accurately predicting how
the system responds to control actions. The evolu-
tion of the train’s velocity and position is governed

by the following dynamic model:

[
vT (t+ δt)

xT (t+ δt)

]
=

[
1 0

δt 1

] [
vT (t)

xT (t)

]
+

[
δt
δt2

2

]
aTcc(t)

(2)
In this formulation, vT (t) and xT (t) represent

the train’s current speed and position, respectively,
while δt is the time step. The term aTcc(t) is the
action-dependent acceleration command, defined
by:

aTcc(t) =

⎧⎪⎨
⎪⎩

0 if a = a1 (Maintain Speed)
−anominal if a = a2 (Nominal Braking)
−aemergency if a = a3 (Emergency Braking)

(3)

This dynamic model ensures that the transition
function realistically simulates how actions im-
pact the train’s behavior over time, accounting for
both control inputs and environmental influences.

Moreover, the transition dynamics are designed
to capture the dependencies among the state vari-
ables. For instance, the evolution of the distance
to obstacle is modeled using a simple kinematic
relationship, described as:

α(t+ δt) = α(t)− β(t).δt (4)

where the subtraction represents the fact that a
higher closing speed leads to a faster decrease in
safe distance.

Furthermore, the obstacle type directly influ-
ences how the relative speed evolves. Depending
on the current relative speed, the model defines the
following effects:

β(t+ δt) =

⎧⎪⎪⎨
⎪⎪⎩
β(t) if φ(t) = 1

β(t) + Δvobs + ε if φ(t) = 2

β(t) + Δvobs if φ(t) = 3

(5)
where ε ∼ N (0, σ2) is the Gaussian additional
noise and obs is the speed difference (between the
instant t and the instant t + δt) of the obstacle
(in the second case, the obstacle is an object,
while in the third case, the obstacle is another
train). Finally, we consider that the performance
of the braking system is sensitive to environmental
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conditions as follows:

ω(t+ δt) =

{
ω(t) ifψ = 1

ω(t) +Degradation ifψ = 2
(6)

3.4. Observation function

Given that the train operates in an environment
with incomplete and noisy information, the ob-
servation function is critical for modeling un-
certainty. The observation function is defined as
Z(o | s, a) = P (o | s, a), representing the proba-
bility of observing o given the current state s and
action a. To account for sensor inaccuracies, the
observation is modeled as a multivariate Gaussian
distribution centered around the true state with
covariance Σ:

Z(o | s, a) = N (o; s,Σ) (7)

Moreover, the observation vector is defined as

o = (α0, β0, φ0, ψ0, ω0) (8)

Each component is subject to observation error,
captured by the misperception probability εi:

P (oi | si) =
{
1− εi if oi = si

εi if oi �= si
(9)

This formulation ensures that the model realisti-
cally reflects perception uncertainty, allowing the
system to make informed and robust decisions in
dynamic and uncertain environments.

3.5. Reward function

The reward function R(s, a) is designed to pe-
nalize unsafe actions and highlight risk-reducing
behaviors. It is structured as follows:

R(s, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if R(s) = 1 and a ∈ {a1}
−5 if R(s) = 2 and a /∈ {a3}
−20 if R(s) = 3 and a /∈ {a2}
−100 if R(s) = 4 and a �= a3

(10)
This structure ensures that high-risk situations are
met with appropriate responses, heavily penaliz-
ing inaction or inadequate reactions when risks
escalate.

3.6. Policy and risk categorization

The optimal policy π∗ maps belief states to the
most effective action, guiding the train’s behavior
in minimizing risk. Risk levels are categorized
using the weighted scoring function:

ρ(s) = 3α+ 2β + 2φ+ 1ψ + 2ω (11)

Risk categories are defined as:

r(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ρ(s) ≤ 7 (Low Risk)

2 if 8 ≤ ρ(s) ≤ 11 (Moderate Risk)

3 if 12 ≤ ρ(s) ≤ 15 (High Risk)

4 if ρ(s) ≥ 16 (Critical Risk)
(12)

This method ensures every state is system-
atically evaluated, guiding effective, risk-based
decision-making.

It is important to note that the coefficients in
Equation 11 can be determined either by expert
judgment or by using historical data from the sys-
tem. In this study, we established the coefficients
based on our assessment of the importance of
each state variable in influencing collision risk.
For example, we assigned a higher weight to the
distance variable because it plays a critical role in
determining safety, while other variables received
lower weights. This method was chosen to ensure
that the risk score accurately reflects the system’s
behavior as understood by the authors.

4. Simulations and results

The simulation design was constructed to exhaus-
tively explore many combinations of the relevant
state variables, resulting in a series of episodes of
the state space. Each episode involved an initial
condition and was allowed to evolve for a fixed
number of steps, ensuring that the POMDP model
was tested under diverse scenarios. The plots (Fig-
ure 2and3) illustrate how the risk classification,
belief updates, and chosen braking actions evolve
over time, particularly during obstacle encounters.

Figure 2 (figure in top) illustrates the evolution
of key state variables throughout the simulation.
This composite figure plots the trajectories of the
five main variables: distance (α), relative speed
(β), obstacle type (φ), track condition (ψ), and
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Fig. 2. The evolution of states and risk levels over time

Fig. 3. The actions taken over time for two scenarios of the simulation

brake status (ω). Each variable is plotted with a
different color and line style, making it possible to
observe how these factors interact over time. The
evolution of these state variables under the influ-
ence of the braking actions and environmental dy-
namics confirms that the model reacts coherently
to sudden changes. This comprehensive view of
the state evolution supports the conclusion that the
model is robust and adaptive across a wide range
of scenarios.

In Figure 2 (figure in bottom), the overall mis-
sion performance is presented over the entire sim-
ulation duration. The horizontal axis represents
the simulation time, while the vertical axis shows

the risk level on a scale from 0 (no risk) to 4

(critical risk). The solid red curve depicts the true
risk, which is calculated directly from the current
state of the system, and the dashed blue curve
represents the risk estimated from the belief state
maintained by the POMDP model. The mission
history is segmented into portions corresponding
to different initial configurations. To avoid visual
clutter, only every 20th segment boundary is la-
beled. This figure illustrates how the model tracks
the evolution of risk over time and highlights the
consistency between the true and estimated risk
levels despite sensor noise and uncertainties.

Figure 3 zooms on two specific obstacle en-
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counter scenarios. Here, the red curve again rep-
resents the actual risk, which shows a moderate
increase as the obstacle is encountered. In par-
allel, the green dashed line indicates the braking
actions taken by the system, where the value 0

corresponds to maintaining speed, 1 to nominal
braking, and 2 to emergency braking. This de-
tailed view demonstrates that once the risk sur-
passes a certain threshold, the system initiates a
braking response. The figure clearly shows that
the model avoids unnecessary braking when the
risk remains low, thereby validating the decision-
making process under a moderate risk scenario.

Notice that only two obstacle encounter zones
are zoomed in Figure 3, despite the existence of
multiple obstacle segments in the full simulation.
This decision was made to maintain clarity in
the visualization. By selecting three representative
zones that capture a range of responses, from
moderate risk in Figure 2 (top) to highly dynamic
scenarios in Figure 2 (bottom), we provide fo-
cused insights into the model’s behavior without
overwhelming the viewer with redundant details
from every single obstacle encounter.

At the end of each simulation, three key metrics
are derived by analyzing all the recorded steps.
First, the fraction of time spent with obstacles is
determined by counting the total number of steps
during which an obstacle is present and dividing
by the overall number of steps in the simula-
tion, resulting in approximately 75.0%. Second,
the risk assessment accuracy is obtained by com-
paring the true and estimated risks at each step,
yielding about 96.3% of steps where both risks
match. Finally, the average reward is found by
summing the rewards over all steps and dividing
by the total number of steps, leading to a value of
about −3.19. These measures provide a concise
overview of how frequently obstacles arise, how
accurately the model assesses risk, and how the
system’s actions balance safety and performance
throughout the simulation.

5. Conclusion and future work

The development of autonomous train systems
that are able to function effectively and safely
in dynamic and uncertain environments demands

robust decision-making structures. In this work,
we proposed a POMDP-based safety assurance
model for real-time collision risk management of
autonomous trains. By an enlarged state space
and probabilistic structure, the model proposed
here captures more operational scenarios, allow-
ing precise risk computation while maintaining
computational feasibility.

Simulation results demonstrate the effective-
ness of this model in evaluating and responding
to various risk scenarios created by environmental
uncertainties and dynamic obstacle motion pat-
terns. The framework ensures adaptive control ac-
tions, including acceleration, speed keeping, nom-
inal braking, and emergency braking, that mini-
mize the risk of collision under various operation
scenarios. Importantly, the model achieves an op-
timal balance between computational complexity
and decision accuracy, rendering it feasible for
real-time high-risk scenario implementation.

Future work should focus on extending the
model to incorporate additional operational fac-
tors, such as energy efficiency and obstacle’s
movement predictions, and on validating the
approach in multi-train environments. Enhance-
ments in sensor fusion and online adaptation tech-
niques may further improve the system’s reliabil-
ity and responsiveness, paving the way for safer
and more robust autonomous railway operations
in real-world settings.
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