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Supervisory risk control (SRC) is a concept for risk-aware operational decision-making, enhancing the safety and
intelligence of autonomous systems. Autonomous systems may support and exceed human performance, but new
types of risks are introduced, for example, related to mission complexity and challenges with situation awareness.
There are many types of autonomous systems, both crewed and uncrewed, operating in low to high degrees of
autonomy, and systems may also switch in between these. The foundation of SRC is constituted by risk assessment
and control system design, as well as artificial intelligence (Al). One or more risk models are integrated with the
mission planning and/or guidance layer of the autonomous control system. A challenge is, however, how to measure
the risk in a way that represents both safe systems and operations, and that can be utilized by the control system,
e.g., for path planning. Furthermore, the human supervisor also needs information about the risks to support situation
awareness. Hence, risk metrics that sufficiently integrate spatial and temporal information, evaluate “instantaneous”
and “long-term” risk, as well as the consider the effect of uncertainty are needed. Therefore, the objective of this
paper is to provide an overview of existing metrics for measuring risk and evaluate their usefulness for autonomous
systems operating in unstructured environments. The paper also suggests potential directions for further research
and development in the area.

Keywords: Risk metrics, Autonomous systems, Robotics, Artificial intelligence, Supervisory risk control, Decision-
support.

1. Introduction Successful ~ missions  with  highly
. . L. autonomous systems in unstructured
Autonomy is increasingly being implementedasa o, vironm ents, such as the ocean, require

functionality in land-based and maritime
transportation, in aerospace, robotics, and in the
marine industry. There are both crewed and
uncrewed autonomous systems operating in a high
to low degree of autonomy (DoA), impacting
mission risks. Systems may also vary between
different DoA, i.e., dynamic autonomy, which
requires shared control between the system and
the human. For systems in low DoA, capabilities
such as situation awareness (SA), mission
planning and replanning may be limited, whereas
the opposite is the case for systems in high DoA,
although human supervisors will still be “in the
loop”, e.g., in control centers. Research on
human-autonomy collaboration has increased
recently (e.g., Veitch & Alsos, 2022). Systems
with dynamic autonomy must have risk-based

improved safety, intelligence, and operational
capabilities, supported by supervisory risk control
(SRC) (Utne et al.,, 2020). SRC is a novel
framework that enables an autonomous system to
make risk-informed decisions. Advanced online
risk assessment and monitoring capabilities are
implemented into control algorithms. The term
“risk” is often mentioned in current works on
robotics and autonomy, but hardly use a
systematic and holistic hazard identification, risk
assessment and online risk models to provide risk-
informed information to the control algorithms in
operation, such as the SRC.

A challenge with integrating systematic risk
assessment into robotic decision — making, such
as for SRC, is related to available risk metrics. A
risk metric can be defined as a “quantity — and a

decision support that give the human supervisors
sufficient time and information to be able to take
over control in emergencies (Hogenboom et al.,
2020).

measurement procedure and a method for
determining the quantity — that provide
information about the level of risk related to the
study object in a specified future context”
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(Rausand & Haugen, 2020). Hence, the choice of
risk metric is crucial as it impacts the information
communicated from risk analysis (Edwin et al.,
2016). Generally, risk is measured as the average
or expected loss over a time period, such as a year.
The reason is that risk analysis often is applied in
the system design phase. How to measure risk in
operation, in a shorter time frame, however, and
determine when the system performance drops
below the acceptable threshold or boundaries,
remains a challenge.

Johansen & Rausand (2014) present an
overview several risk metrics, but these are not
feasible for operational decision-making (Yang &
Haugen, 2015). In SRC, risk metrics need to be
transformed into quantitative criteria and
constraints for control systems to make decisions.
Existing “risk metrics” in robotics typically use
the expected cost and worst-case metrics
(Majumdar & Pavone, 2020). Measuring the risk
level of systems and operations, however, is
challenging to capture by a single number as there
is a need to consider a broader risk spectrum and
potentially also ethical decision dilemmas.

Therefore, the objective of this paper is to
provide an overview of existing metrics for
measuring risk and evaluating their usefulness for
autonomous systems and operations. The paper
also suggests potential directions for further
research and development in the area. To the
author’s knowledge this is the first paper
attempting to “bridge” risk metrics and risk
characterizations from the risk science domain
with robotics, with a particular focus on path
planning of relevance for autonomy. Artificial
intelligence (Al) in this context is related to SRC,
i.e., intersecting with high level mission planning
for an autonomous system.

The paper is structured as follows: Section 2
presents the SRC concept, Section 3 gives an
overview of typical risk metrics related to risk
assessments and path planning (robotics). Section
4 presents an evaluation of these metrics, Section 5
discusses the implications and future research
needs, whereas Section 6 states the conclusions.

2. Autonomous systems and supervisory risk
control

Autonomous systems contain sensors which

provide information for sensing, perception,

modelling and decision making. Such data is used
for SRC (Utne et al., 2020).
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Figure 1. Overview of the SRC concept. See Utne et al.
(2025) for more details.

A main difference between the SRC framework,
shown in Figure 1, and existing approaches, e.g.,
for autonomous vehicles, is that the latter often
are focused on collision risk and motion models
(Katrakazas et al., 2019). The review by
Raveendran et al,. (2022) mostly addresses the
processing industry, and none include online
sensor data and modelling for autonomous
systems explicitly. Vagale et al. (2021) reviews
collision risk algorithms for path planning of
autonomous surface vessels (ASV) and states that
collision risk assessment typically is based on only
one or two “risk factors”. To achieve safe and
intelligent systems, however, the risk spectrum
must be covered through more extensive risk
analysis and modeling, which is included in SRC
(Utne et al., 2020).

Thieme et al. (2021) suggest that a control
system may use risk information: (i) directly from
a risk model (e.g., a Bayesian network); (ii) as
decision or optimization criteria; (iii) as a
constraint or for modifying a constraint in the
control algorithm; or (iv) in risk maps for path
planning. (e.g., graph search, etc). Currently, some
of these alternatives have been implemented and
tested in control system (Utne et al., 2025). These
studies revealed that that the traditional risk
metrics are challenging to implement, since most
were developed for risk measurements in the
system design phase, and not for supporting
operational decisions.

3. Measuring risk
3.1. Expressing risk

There are different definitions of risk, but
commonly a risk triplet is used (Kaplan & Garrick,
1981):
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R = (s,p,c). @))]
where s is scenario, p and c are the probability and
consequence of that scenario respectively.

Generally, the main focus is on risk to people, i.e.,
fatalities and injuries, but risk to the environment
and material assets are also considered. Different
risk metrics have different properties, and this may
lead to different risk estimations and needs for risk
reduction (Haugen & Kiristiansen, 2023).

3.2. Risk metrics for autonomous systems

Average values over time may be representative
for long-term operations but may not be relevant
for autonomous systems making decisions within
seconds to minutes. The expected cost and worst-
case metrics correspond to a risk neutral
perspective (former) and a risk conservative
perspective (latter). Such perspectives are related
to the willingness by humans for risk acceptance
depending on potential benefits, controllability,
and consequences (Haugen & Kristiansen, 2023).

In Al, utility functions are applied and these
may include risk-reward aspects (Russel & Norvig,
2014). A utility function transforms costs into real
values, or “utilities”, e.g., the maximizing expected
utility. Benrabah et al. (2024) review traversability
risk assessments for autonomous ground vehicles
and classify navigation algorithms into sensor-
based and map-based based on a characterization
of risk. The sensor-based approaches follow the
obstacle boundary, and then the risk is most often
included as the minimum distance to the obstacle.
The map-based approaches use an environmental
map as input, developed from vehicle and terrain
data. Generally, the map characterizes risk as the
probability of occupancy, probability of
traversability, slope, curvature and roughness,
object density, elevation, speed, gaussian
distribution, deformation of wheels, and cost.
Occupancy grids are specifically focused on
collision risk, and as an example, the risk of
crossing a path can be formulated as:

R(Ppo) = 1-TTf.,(1 = P) )

where P; is the probability of occupation of the jth
cell. Benrabah et al. (2024) present several variants
of similar probabilistic definitions.

Lefebvre et al. (2016) integrates collision risk
in path planning by defining the consequence as a
constant cost Cc , meaning that only the first

collision is the focus. The risk associated with path
psgcorresponds to the product of the cost C¢ with

the probability that; either (i) the collision occurs
during transition from the first state p; g(l) to the
second state p, (2) of the path, or (ii) that a
collision occurs during the transition from state
Ps, () to Ps, (i+1)where2 <i < Psy| — 1and
has not occurred during previous transitions. A
conservative approach would be to calculate the
cumulative risk along the path.

According to Vagale et al. (2021), the most
common risk metrics for ASVs are time to closest
point of approach (TCPA) and distance to CPA
(DCPA), but also distance of the last-minute
avoidance, distance to target vessel, relative
bearing, safe passage circle etc. are mentioned.

3.3. Existing SRC studies and risk metrics

Bremnes et al. (2020) calculates risk by defining a
risk index:

. _ E[Risk|o,ev]-E[Risk]p.
T = T E[Risklye—E[Risklpe @)

where E[Risk|o, ev] is the expected risk of loss of
an autonomous underwater vehicle (AUV) given
evidence ev of the observable variables (in a
Bayesian network) and the decision d. E[Risk],,.
and E[Risk],, are the worst and best case expected
loss, respectively. The SRC then balances mission
utility and risk, using the maximum expected
utility (MEU) principle subject to a risk bound.
Maidana et al. (2023) calculates the risk of an ASV
using the cumulative risk along the path but also
includes risk acceptance thresholds that needs to be
satisfied. Johansen et al. (2023) uses cost
optimization for SRC where the probabilities are
calculated in an online risk model with the
expected cost of the consequences for an
autonomous cargo ship:
R(d) = Pr(severe) Csepere +

Pr(significant) Csignificant + Pr(minor) Cpinor +
Pr(none) Cpone 4)

Blindheim et al. (2022) wuses safety
inequalities based on results from a hazard
analysis, which are transformed into risk cost terms
in a model predictive control algorithm
contributing to accumulated system risk levels at
any point in time. Rothmund et al. (2023) suggest
a heuristic policy to evaluate three decision action
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strategies for an industrial drone inspecting
confined areas. Each strategy has a consequence,
i.e., a cost, if the goal of the task is not achieved.
Bremnes et al. (2025) use a risk model for
developing risk maps for path planning for an
AUV. Here the risk metric is the total mean loss

Ry (x, ) 2 XL, E[L; (x, 1)] %)

which expresses the total expected loss (probability
times consequence) at state x at time t per unit
length, summed over all identified hazardous
events. This metric is risk-neutral, as it is equally
sensitive to low-probability high-consequence
events as to high-probability low-consequence
events. If more risk-adversement is desirable, an
alternative may be the conditional value at risk
(CVAR) but this has not been implemented.

The existing SRC studies have mainly
focused on using cost as a risk metric, without
investigating its feasibility as a risk metric, nor on
their advantages and disadvantages.

4. Criteria for evaluation of the risk metrics

Table 1 presents an overview of existing risk metrics
used in risk assessments and risk monitoring for
human fatalities, injuries, damage to the
environment, and material assets. The table also
includes typical risk metrics used in robotics. The
choice of risk metric impacts the estimation of risk
and should be considered thoroughly with respect to
effects on the decision-making. It is desirable to
avoid using risk metrics that underestimate the risk,
but being overly conservative may also hinder
efficient missions for autonomous systems. To
evaluate the risk metrics with respect to feasibility in
operation, eight criteria (1-8) have been identified,
based on Johansen & Rausand (2014), and the
simulation — based testing and experiments with

SRC (Utne et al., 2025; Bremnes et al., 2025):

1 Allows for including spatial (e.g., extent) and
temporal (e.g., duration) aspects, which are
important to be able to reflect dynamic
properties of a system in operation.

2 Must allow for continuous or frequent
updates based on new data/information.

3  Must be able to distinguish between, or
aggregate, different hazardous events.

4  Must be valid, i.e., that the risk metric
““measures’’ risk (cf. Eq. 1), i.e., the metric
has a clear verbal and mathematical
definition.

5 Must provide comparability to other
decision-aspects, to allow for trade-offs and
optimization.

6 Must be transparent related to value

judgments in terms of aversion factors or
monetary evaluation of  different
consequence dimensions.

7 Must have a clear location in the bow-tie
(proactive vs. reactive).

5. Discussion
5.1. Feasibility of existing risk metrics

According to Johansen & Rausand (2012), the
relevant above-mentioned metrics for the
operational phase are IRPA, FAR, IR, PER, PEF.
Still, IRPA, PLL and FAR focuses on averages over
a year, which is insufficient for operational (real-
time) decision-making. Still, they have a clear
definition and purpose.

Some metrics include risk aversion factors,
such as total risk and CVAR. SRI includes location
and affected people, which is desirable in an
operational context. Still, none of the metrics include
both a temporal and spatial information, except
expected loss, in the manner used by Bremnes et al.
(2025). PEF may be seen as a way of including
injuries in addition to fatalities in the risk
calculations (or other consequence aspects).
Recovery time may be associated with resilience of
systems, which is a desirable characteristic of
autonomous systems.

Some of the risk measures or metrics are not
defined quantitatively, which makes them
challenging to use for SRC and robotic decision-
making. The risk matrix has some limitations in this
respect but might potentially be used as a “lookup”
table for simple rule based systems. Expected
losses/costs is the most commonly used way of
translating risk into a quantitative measure. The
operational risk metrics defined by Yang & Haugen
(2015;16) are interesting, but they have not been
fully quantified in practice. Risk indicators may be a
desirable way to quantify different hazards or risk
influencing factors (RIFs), that may be updated
regularly in operation. A challenge, however, may
be to aggregate the information from indicators into
robotic  decision-making (SRC). For human
operators, this could be done through risk
visualization tools. In general, the current risk
metrics used in robotics gives a limited view on risk,
since only one or a few RIFs are included.
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Table 1. Risk metrics. representations, references, and evaluation criteria (Haugen & Kiristiansen, 2023; Johansen & Rausand,

2012; Bremnes et al., 2025; Rockafellar & Uryasev, 2000; Leveson and Thomas, 2018; @ienet al, 2001; Qien et al , 2011;

Yang and Haugen, 2015; 2016; Mehlhomn et al., 2023; Rodseth et al., 2022; Edwin et al., 2016).
Risk metric Representation Description Evaluation criteria
1 |2 3[(4(5 7
Risk matrix Matrix defined by a pre- A risk matrix is a widely used semi- + |+ +
deﬁned set :ﬁgategons for quantitative way of measuring risk.
Individual nisk IRPA = E‘ LAy - PrEp) - The probability that an average person + |+ |+
(IRPA) Pr (F|E,), A, is probability of a | is killed during a period of one year
hazardous event i, E; is due to exposure to the hazardous
exposure to i, F is fatality. eventi.
Localized LIRA (x,y) = Zr Ay The probability that an average person | (+) + |+ |+
individual risk Pr (F|HE)), A; is the present at a location, is killed during a
(LIRA) probability of a hazardous year due to a hazardous event HE;.
event HE;, F is fatality at
location (x.y).
Potential loss of | PLL =n-IRPA The expected number of fatalities in a + | +
life (PLL) specific population n per year.
Fatal accident FAR = 2£. 108 _where | The expected no. fatalities ina (&) + |+
e (FAR) AHis ﬁ:;"aoamtﬂated no.of | Popelstion per 100 mill. hows
hours the specific population is | SXPOSWe (~1000 people work 2000
exposed to risk. hours per year for 50 years).
Weighted nisk | Rlgopay = Zim f(n)nk, The expected number of fatalities +|+ +
integral where f{n) is frequency of corrected for nsk aversion with respect
(RICOMAH) accidents with exactly n to a high number of fatalities.
fatalities per year and kis a
nsk aversion factor.
Scaled nisk 531=# _where P | The group risk per surface area (A) (&) + | ®
miegal GRD | population factor ), T is peryestr
share of occupancy, A is area,
and n is number of persons in
the area.
Total nsk (TR) TR = PLL + ao , where The expected number fatalities + | + +
a is risk aversion factorand ¢ | comrected for nisk aversion for extreme
is standard deviation events.
Potential PEF = PLL+ 0.1M + 0.01N | Human injuries and fatalities per year + |+ [5)
equivalent can also be combined into the
fatality (PEF) potential equivalent fatality (PEF)
measure, where a major (M) and a
minor injury (N) are expressed as
1/10 and 1/100 fatality.
Potential f =24-Pr(E|S) - Pr (C|E), The frequency of a defined H|® + | +
environmental where 4 is the frequency of e category for a certain
nsk (PER) spill S, E is exposure to spill organism, population, habitat or
for area A and C is defined ecosystem within an area.
consequence.
Recovery time | f =A-Pr(Dd > R, where 1 The probability per year of having an (&) + |+
®D is frequency of spill, Dd is accident that exceeds the time needed
damage duration and RT is by the ecosystem to recover from
ired recovery time. damage
Expected E(D) = LI, x4, - Pr(4S)), Bremnes et al (2025) extended thisto | + | + + |+
economic loss | where x4, is economic loss Ryp(x,t) £ T, E[Ly(x, t)], which
ED related to accident scenario includes state x at time t per unit length
A sl (Sect. 33).
Monetary =Y. piCo(Clw; . The expected total monetary loss per + |+ +
collective risk whele w; 1s willingness to pay | year, aggregated and weighted across
(MCR) for averting consequence C; , | different damage dimensions (such as
Ciis consequence dimensioni, fatalities, injuries, disruption of service).
P is probability of consequence
C; and ¢, 1s nisk aversion factor
for C;.
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Table 1 (cont.). Risk metrics, representations, references, and evaluation criteria (Haugen & Kristiansen, 2023; Johansen &
Rausand, 2012; Bremnes et al., 2025; Rockafellar & Uryasev, 2000; Leveson and Thomas, 2018; @ien et al., 2001; Qien et

al.. 2011; Yang and H.

augen 2015; 2016; Mehlhom et al..

2023; Rodseth et al., 202

2; Edwin et al., 2016).

Risk metric Representation Description Evaluation criteria
1 213 (4 5 6 |7 8
Conditional L = E[X|X < x,] The conditional - + [+ + [+
damage (CED) L, =E[X|x; <X < x,] expected value given
ly = E[X|X >x,], where X is | that the consequence
damage variable, x; is low level | seventy is above a
sevaitv:ndxzislllgl_l‘ seventy. specified level
Conditional value at A risk metric which |+ + + + (6]
risk (CVAR) Revar(x,t) & z CVaRa[Ly(x,t)] | may be used for
ing and
where £;(x, t)xsthelossatstamxat ing the risk of
time t per unit length. and VaR, isthe | stock portfolios in
cost corresponding to boundary of the | finance, sensitive to
(1 — a)-quantile of the probability more severe
distribution.
Safety constraint “If a hazard occurs, then what needs May be &ﬁned by |+ @+ + (&)
to be done to prevent or minimize a intervals or single
loss.” metrics. An example is
closest point of
approach (CPA) and
CED.
Risk indicator “A measurable/operational definition | The nsk level m + + |+ |+
of a nisk influencing factor.” (Safety | operation may be
indicators are not necessanly measured by using risk
quantitative and linked to risk indicators, which are
models.) updated regularly.
Activity performance | A selection of critical safety An expression of risk + HIH®H &)
nisk parameters influencing risk. level associated with
performing a specific
activity.
Activity consequence | Frequency of occurrence of a An expression of the @[+ [+ +
nsk specific catastrophic failure scenanio | effect that completing
an activity will have on
the risk level after the
activity has been
Time-dependent Indicators derived from operating An expression of short- | (+) | + H|®|+ (&)
action nisk parameters against operating limits. term risk vaniation
while performing one
or several activities.
Period nisk Activity performance + interactions. An expression of risk (&) (6]
for a plant or facility
over a (normally short)
Operational design The ODD defines the limits within The ODD may be @[+ ®H|+ [
domain which the dnvmg automation system | specified bya
(ODD)/Operational is designed to operate, and as such, taxonomy that includes
envelope (OE) will only operate when the scenery (e.g., zones),
parameters described within the environmental
ODD are satisfied The OE may be conditions (e.g.,
defined as “The specific conditions weather) and dynamic
and scenarios under which a given elements (e.g.. traffic).
autonomous ship system is designed | The OE must cover
to function ™ ;gzage and operation
Risk visualization An example is the «risk barometer”, Both the barometer and + H®H |+ (&)
which translates nisk expressed by nisk maps involve
means of metrics above into a defined risk levels
relative percentage value indicated expressed through
by a “needle”. Another example are colors reflecting
the risk maps used for path planning. | “acceptability” or
different aspects of
nisk. Trends may also
be visualized.
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Risk maps (see Bremnes et al., 2025) have a
potential to include a lot more risk information
than the traditional “risk maps” in robotics.

Please note that some existing risk metrics
have not been included in the paper due to a high
uncertainty in relevance. FN/FE diagrams have
been excluded, as these represent societal risk and
may give inconsistent evaluations (Johansen &
Rausand, 2014). Individual risk of dangerous dose is
an environmental risk metric which is focused on
toxic chemicals (Johansen & Rausand, 2012).
Frequency of hazardous events, such as Loss of
main safety function in oil and gas and Core damage
frequency in nuclear power production, do not
include the consequences specifically (Johansen &
Rausand, 2014). QALY/DALY are metrics focused
on diseases and life expectancy (Haugen &
Kristiansen, 2023). Odds ratios are discussed for
airspace (Bati et al., 2021).

Hence, there is currently no risk metric that
captures all the criteria (1-8) in a desirable manner,
i.e., that is particularly advantageous for measuring
online risk in operation, neither for autonomous
systems” decision-making nor for human operators.

5.2. Future research needs

In the evaluation of the metrics in the paper, all
criteria are weighted equally. It may be
worthwhile investigating, whether some are more
important than others. Furthermore, since no
metric fulfils all criteria, it is necessary to
investigate different combinations of metrics, i.e.,
related to operational and instantaneous decision-
making (Yang & Haugen, 2015) and “long-term”
risk, e.g., further exploring the approach in
(Lefebvre et al., 2016). Furthermore, it is may be
feasible to investigate how risk metrics for
different DoA in terms of an ODD or operational
envelope for an autonomous system combined
with risk maps may be utilized and updated
regularly during operation representing  a
system’s current capabilities, uncertainty, and
system integrity. A challenge with Al systems,
when using machine learning is lack of
transparency and interpretability, as well as
uncertainty. Hence, development and choice of
risk metric becomes increasingly important for
such systems. For a human operator individual
and aggregated risk maps can be presented

through the human-machine-interface (HMI) to
represent different RIFs, potential hazardous
events, and the total risk level. Here, the spatial
and temporal aspects of the risk models are
important. How to aggregate different risks (and
rewards) into the total risk level for a safe and
efficient HMI is an unsolved issue, but risk
indicators related to the risk models, reflecting
changes in the risk model and the scenarios, could
be used as a foundation. These could, for
example, also be connected to the expected
response time from the human supervisor in case
intervention is needed.

6. Conclusions

This paper attempts to bridge risk metrics and risk
characterizations in the risk science domain,
robotics, and path planning. The paper presents
typical risk metrics used in conventional risk
assessments, as well as in path planning for
autonomous systems. The overall challenge with
the “traditional” risk metrics is that measuring
changes in operation (seconds-days) is difficult
since several measures averages over, €.g., a year.
The main challenge with the metrics used in
robotics is that these do not use a systematic risk
assessment as a basis for deriving RIFs that should
be quantified and integrated for risk-aware control
algorithms to cover a broader risk spectrum. An
important issue is also that the choice of risk
metric may impact safety, as all risk metrics have
different advantages and limitations.

The challenge of how to measure risk in
operation of autonomous systems has so far only
been addressed to a limited extent. Hence, further
research must particulary address the combined
used of risk metrics (“instantaneous” and “long-
term”, uncertainties, the development of new
metrics, and considering the risk information
needed for both the autonomous system and the
human operator to ensure sufficient situation
awareness and safe decision-making.
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