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As it happened with basic software algorithms in 80s, Artificial Intelligence (AI) powered algorithms are slowly but 
surely becoming integral part of control systems in safety critical industries, including the risk averse nuclear field. 
The level of control will surely vary across different domains, and given the conservatism of the nuclear industry, 
we should not expect in a Nuclear Power Plant (NPP) fully autonomous control systems soon. However, the 
introduction of higher levels of automation is likely, where AI-based automation is given more responsibility, with 
the human still being able to take control when necessary. We argue that the essential criterion for high level 
automation is the assurance that the control transition between AI and human (in either direction) is achieved with 
acceptable risk. The paper attempts to explain what this risk is and how to make it acceptable in the nuclear settings, 
and beyond. 
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1. Introduction 
Although energy generation by nuclear processes 
is well-established, it is constantly subject to 
innovation within strict regulatory regime. At its 
heart, innovation aims to improve the business 
model of energy production, making it more 
competitive vis-à-vis conventional carbon 
intensive energy sources, including higher social 
responsibility through safer and environmentally 
conscious designs. The Small Modular Reactor 
(SMR) [Rowinski et al., 2015] is the relatively 
new outcome of such innovation that is 
inherently safer, not least due to effective use of 
passive safety measures relying on fundamental 
physical phenomena. However, the passive 
safety measures, although highly preferable, are 
insufficient to deal with all accident scenarios. 
To fill the gaps, active measures, which rely on 
electrical power and/or human action, are also 
used. Nowadays, the automation of safety 

control functions in NPPs is standard, mainly 
limited to basic functions [Huang et al., 2023] as a 
decision support system processing the large 
amount of available data (e.g., looking for 
anomalies, managing alarms, and others). More 
advanced forms of automation, where the control 
of some hazardous processes (e.g., criticality 
control) is shared between the human and the 
machine (computer) or is solely controlled by 
machine is yet to be seen. However, this is the 
direction of travel, in the long term, despite the 
inherent conservativism of the nuclear domain 
(risk and uncertainty aversion, suspicion of the 
new and trust in the old, the use of high levels of 
redundancy, etc.) that has kept the human in/on 
the loop and as the fallback (i.e. “the big red 
button”). To advance to higher levels of 
automation, technological, social, legal, and 
other barriers must be lifted. Thus, the practice 
shows automation can lead to unintended 
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consequences, some of them ironically due to the 
very presence of the human [Bainbridge, 1983]. 
The human presence introduces a precarious 
phase when the control is transferred from the 
machine to the human, or vice versa. This 
transient phase (control takeover) is considered 
highly risky [Baum, 2024], and, as such, is one 
of the main barriers to safe automation. The 
automation challenge is further exacerbated with 
the use of Artificial Intelligence (AI), and in 
particular the Narrow Artificial Intelligence 
(NAI) a, for doing ‘thinking’. The NAI is a 
relatively new technology which offers several 
advantages, albeit at the cost of its limitations 
that are yet to be fully discovered and 
understood. Due to these limitations, the trust in 
adequately controlling radiological release and 
other hazards solely by the machine is low.  
In the nuclear settings, the controlled physical 
processes (e.g., reactivity, coolant temperature, 
rate of coolant circulation, positioning of control 
rods) are highly dynamic, volatile, and 
unforgiving – precise timing and the accuracy of 
control are of the essence. A few examples are: 
Chernobyl Disaster (1986, Ukraine), Three Mile 
Island Accident (1979, USA) and SL-1 Accident 
(1961, USA). Hence, the inadequate takeover 
(prolonged, spontaneous, incorrect, incomplete) 
is a major hazard associated with automation. An 
example incident happened at Arkansas Nuclear 
One (2010, USA) when the control transfer over 
the control rod from automatic to manual was 
not duly completed, leading to excessive power 
(rapidly increased within some 40 seconds) and 
coolant pressure [NRC Information Notice 2011-
02].    
We argue that the key criterion (possibly there 
are others) of getting to high levels of 
automation—where the control over hazardous 
processes is shared between the human and the 
machine or done by the machine alone under 

Narrow AI (NAI) can be defined as the production 
of systems displaying intelligence regarding specific, 

human’s supervision—is the acceptability of risk 
of the transient phase of control takeover. The 
non-trivial question is how to achieve the 
takeover risk acceptability? This paper aims to 
answer this question.   
Note, the paper falls outside any research on AI 
per se, including on its suitability in safety 
critical settings. The paper merely assumes that 
AI is in principle suitable.  In this way, our work 
contributes towards a better understanding of the 
risks involved in the use of AI to co-control 
safety critical processes.  
2. Methodology 
The purpose is to explain the pathway towards 
the acceptability of the takeover risk. First, we 
define the adopted notions of risk, uncertainty, 
and hazard. Then we define the risk acceptability 
criteria in the nuclear settings (mainly, but not 
exclusively, in the UK) and beyond. Following 
that, we elaborate how the risk acceptability can 
be achieved. 
2.1. Definitions 
In this paper, the definition of risk conforms to 
ISO 31000:  
Definition 1: Risk is uncertainty in (achieving) 
hazard control. 
This definition is equivalent to the one used by 
the functional safety standard IEC 63187 [Inge et 
al., 2023]. The Society of Risk Analysis (SRA) 
Glossary defines uncertainty as “imperfect or 
incomplete information/knowledge …” [Aven et 
al., 2018]. The adopted definition of the hazard 
is as follows [Levenson, 2004]: 
Definition 2: A hazard is a system state or set of 
conditions that, together with a particular set of  
worst-case environmental conditions, will lead to 
a loss. 
The reference to worst-case assumptions is 
native in the nuclear settings. The use of 
conservative, precautionary principles, and 

highly constrained tasks, like playing chess, facial 
recognition, autonomous navigation, or locomotion. 
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methodologies to address uncertainties and risks 
is a must in this domain. The principle of 
Defence in Depth (DiD) is a case in point. DiD 
implies the use of multiple defences against 
operational anomalies, faults, and hazards, 
making sure the issues are avoided in the first 
place, then controlled and effectively mitigated if 
it comes it [ONR SAP, 2020].  
Following from the assertion that the inadequate 
takeover is a major hazard associated with 
automation, we can assume the definition of 
automation hazard: 
Definition 3: Automation hazard is inadequate 
transfer of responsibilities between the machine 
and human (or vice versa) that leads to the loss 
(temporal or permanent) of control over 
radiological hazards.  
The radiological hazards in question are 
essentially these (see IAEA Fundamental Safety 
Principles and Safety Standards):  
� Inadequate control of radiation exposure. 
� Inadequate confinement of radioactive 

material. 
� Inadequate control of radioactive waste. 
The underlying assumption adopted in this paper 
is that all reasonably practical Automation 
Levels (ALs) in the nuclear domain will involve 
the human in (co-controlling) or on (supervising) 
the loop, i.e. the case of fully autonomous 
operations is ruled out.  
 2.2. Risk Acceptability 
‘So Far As Is Reasonably Practicable’ 
(SFAIRP), also known as ‘As Low As 
Reasonably Practicable’ (ALARP), is a statutory 
requirement for risk acceptance in the UK. The 
principle makes no reference to the risk 
definition, its metric/mathematical construct, its 
magnitude, nor requires it the risk to be 
quantified. To declare the risk ALARP, one must 
demonstrate, by providing compelling and 
cogent argument supported by robust evidence, 
that all reasonably practicable risk controls are in 
place and that the risk is demonstrably reduced 
to the point when any further attempt to reduce it 

would be grossly disproportional to the benefits 
gained (i.e., further reduction in risk). The risk 
reduction to ALARP involves the application of 
Relevant Good Practice (RGP) to reduce such 
risks, if such practice is available, and/or the 
introduction of various safety features (design 
and/or operational) to address known 
weaknesses (i.e., potential causal factors) in the 
given design and implement precautionary 
measures (safety margins, DiD etc.) against the 
uncertainty in successful hazard control 
(recalling the risk definition in Section 2.1).   
In addition to reducing the risk to ALARP, it 
must be acceptably low (or at least tolerable), 
considering that the ALARP can also be 
achieved for relatively high risks. The risk 
tolerability is normally demonstrated through 
probabilistic (quantitative) safety analysis (PSA) 
against the numerical targets (limits) [ONR SAP, 
2020].  
In summary, the takeover risk acceptability (or at 
least tolerability) can be achieved by: 

I. Identifying and addressing the potential 
causal factors behind the automation hazard 
(as defined in Section 2.1) for a given plant 
design. The causal factors can be identified 
via a hazard analysis (see Section 2.3).  

II. Identifying and applying the RGP (incl. 
industrial standards) to those causal factors 
and beyond. 

III. Introducing precautionary measures (safety 
margins, DiD etc.) against the uncertainty 
(associated, inter alia, with the incomplete 
knowledge of causal factors) in successful 
hazard control. 

IV. If required, modelling the safety control 
function towards the application of PSA to 
demonstrate risk tolerability.    

The above criteria for risk acceptability have 
chiefly been informed by the engineering 
practice in the nuclear domain. However, it is 
quite universal and would apply more widely. 
Given that the identification of causal factors in 
the lead up to the automation hazard is not 
trivial, the paper further elaborates this point in 
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the subsequent sections, listing generic scenarios 
for inadequate takeover of control.   
2.3. Hazard analysis 
We believe, the Systems-Theoretic Process 
Analysis (STPA) [Levenson, 2004] is a ‘made to 
measure’ method for hazard analysis (HA) of 
control functions that may give rise to the 
automation hazard (Section 3.1). We do not 
explain the STPA per se in this paper, for the 
reader should refer to the amply available 
information on STPA (e.g., [STPA Handbook, 
2018]). With the help of STPA, we have 
identified unsafe control actions (UCAs), and 
their common causal factors, during the control 
takeover between the human and the NAI-
powered machine, as summarised in Section 
2.3.3. Note, the HA took cognisance of 
fundamental limitations of both NAI and humans 
in the context of control takeover (Section 2.3.1). 
Other input to the HA was: 
� The automation hazard as a system-level 

hazard that the UCAs are identified against. 
� Automation levels (AL) relevant to the 

nuclear domain, and their requirements 
along with derived responsibilities for the 
controllers (Section 2.3.2). 

� Safety control diagrams for ALs, showing 
how the co-control is implemented at 
various ALs; only the diagrams for AL3 and 
AL4 are shown in this paper (Section 2.3.3).  

� Generic control actions—on the part of the 
human and the machine—subjected to 
analysis (Section 2.3.4).  

2.3.1. Limitations 
Both NAI and humans have known abilities 
(cognitive capacities) and limitations. The 
abilities are used to inform the design of various 
functions, whereas the limitations guide the 
hazard analysis. This section lists the relevant 
limitations of NAI known to date. The relevant 
NAI limitations are [Sabry, 2023]:  
� Lack of Generalisation: NAI are highly 

specialised and cannot transfer knowledge 
from one domain to another.  

� Data Dependence: The performance of NAI 
heavily relies on the quality and quantity of 
the training data.  

� Limited Understanding: These systems lack 
human-like understanding, empathy, and 
common-sense reasoning. They can process 
and analyse data but do not comprehend 
context or make nuanced decisions. 

� Inflexibility: NAI cannot adapt to new or 
unforeseen situations without explicit 
reprogramming or retraining. This 
inflexibility limits its usefulness in dynamic 
or complex environments. 

� Interpretability: It can be challenging to 
understand and explain how NAI systems 
arrive at their decisions, making it difficult 
to trust and validate their outputs. 

� Resource Intensive: Developing and 
maintaining NAI systems can be resource-
intensive, requiring significant 
computational power and expertise. 

To these more obvious limits, we should add 
others such as the legal and regulatory barriers, 
the ethical and social concerns and the 
integration challenges. 
The limitations associated with human 
controllers are numerous and relatively well 
known, hence not furthered in this section (see 
for example [Reason, 1995]). Anyway, we can 
mention the most relevant such as cognitive 
limitations (as limited attention, information 
overload, biases and memory constraints), 
physical limitations (as fatigue, stress and 
reaction time), performance variability (unlike 
machines human performance can vary 
significantly based on several factors as health 
and motivation) and subjectivity to emotional 
and psychological factors. 
2.3.2. Automation Levels 
According to NUREG, automation refers to the 
use of technology to perform tasks that were 
previously carried out by human operators. 
Building on NUREG definition and other works 
[NUREG-0700, Alberti et al., 2023], where there 
is a description of the possible Als involving 
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incremental responsibility and relevance to 
automation, we adopt a definition of AL focused 
on functional process control:  
� Level 1- Manual Control: the human 

controller is fully responsible for 
monitoring, decision-making and control 
actions.  

� Level 2 – Basic Automation (Decision 
Support): the human controller is still the 
primary decision-maker but supported by 
tools such as alarms, displays or trend 
analysis - processed information by the 
machine. 

� Level 3 - Intermediate Automation (Shared 
Control): the human controller shares 
control with the machine but retains 
authority to override and/or intervene upon 
defined fallback triggers (e.g., exceedance 
of safety margins, automation faults, 
departure from design envelope). This AL 
can allow the implementation of control 
transfer in both directions, albeit the human 
is always the fallback. 

� Level 4 - High Automation (Supervisory 
Control): The machine is in control under 
constant human supervision (locally or 
remotely), who can intervene in emergency 
or upon request from the machine.  

� Level 5 – Full Automation (Autonomous): 
The machine is in full autonomous mode of 
control—the sole decision-maker. The 
human is only involved in strategic, high-
level decisions (e.g., maintenance).  

 2.3.3. Safety Control Diagrams 
These are functional models of how the co-
control at various ALs can be implemented. 
derived from the generic control model 
published in Figure G-2 (179p) of the STPA 
Handbook [STPA Handbook, 2018]. We assume 
that the automation is realised as a closed loop 
control system, analogous to the one assumed in 
functional safety standards (e.g., the IEC 61508 
family).  
As explained in Section 2.3, the co-control only 
really happens at AL3 and AL4, and hence the 

issue of control takeover is only relevant there. 
Below, the AL3 and AL4 diagrams are outlined 
and briefly explained.  

 
Figure 1: Level 3 Control Diagram 
 

 
Figure 2: Level 4 Control Diagram 
In Level 3 (Figure 1) the machine performs 
routine tasks and informs the human of 
significant events. AI augments automation by 
enabling adaptive decision-making (e.g. real-
time optimization) and identifying precursors to 
abnormal conditions. Human and machine in this 
Level have a comparable level of responsibility, 
nevertheless the human must monitor automation 
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behaviour and intervene during abnormal 
situations and oversee AI-driven 
recommendations maintaining situational 
awareness and avoiding over-reliance on 
automation. Note that in this Level human and 
automation have similar levels of responsibilities 
(the placement of the tiles shows them one under 
the other for size issues). 
In Level 4 (Figure 2) the human supervises 
automation, intervening only in emergencies or 
when it is requested. Machine controls most 
routine operations independently, relying on 
predefined logic and algorithms. AI acts as a 
decision-making agent, performing predictive 
control, real-time anomaly detection and 
complex optimization. Moreover, it must provide 
summaries of its actions and status updates to the 
human and rise alerts when human intervention 
is necessary. On the other hand, automation still 
relies on human input for highly 
ambiguous/critical situations or regulatory 
compliance. The human agent monitors 
performance metrics and system health, approve 
and can override AI decisions and conduct 
periodic reviews of automated actions to ensure 
compliance with safety protocols. The main 
challenge for the human is to ensure readiness to 
intervene during emergencies and understanding 
complex AI-driven decisions, especially under 
time pressure. 
2.3.4.  Generic control actions 
The following high-level, generic (design 
agnostic) control actions (derived from the AL 
descriptions) can be assumed for the human and 
the machine for AL3 and/or AL4: 
� Human to watch for fallback triggers; 
� Machine to watch / self-diagnose for 

fallback triggers; 
� Machine requests takeover by human; 
� Human requests from machine to give back 

control; 
� Human takes over control from machine 

(i.e., overrides the machine); 
� Human passes control to machine; 

� Machine takes over control from human (ie, 
overrides human). 

2.3.5. Hazardous scenarios (results) 
The generic control actions may lead to the 
following unsafe behaviours (only a fragment is 
shown) on the part of the human and machine at 
either AL3 or AL4:  
� Human not watching for fallback triggers 

when machine is in control or continues 
watching for already appeared fallback 
triggers rather than taking action of 
immediate takeover. 

� Machine does not watch / self-diagnose for 
fallback triggers or miss self-diagnoses or 
miss interprets fallback triggers.  

� Machine watches for wrong fallback triggers 
or stops watching / self-diagnose for 
fallback triggers too earlier, before the 
takeover has started or finished. 

� Machine does not request takeover by 
human when fallback triggers are showing 
or requests takeover by human too late when 
fallback triggers are already showing, or the 
control process is already in its critical phase 
that is supposed to be controlled by human.  

� Human does not request from machine to 
give back control when fallback triggers are 
showing or requests from machine to give 
back control when no fallback triggers are 
showing and the control process is in its 
critical phase that is supposed to be 
controlled by machine.  

� Human requests from machine to give back 
control with undue delay, after the fallback 
triggers started showing or does not 
complete the takeover.  

� Human does not take over control from 
machine (on machine request) when critical 
fallback triggers are showing (eg indicating 
machine faults) or takes over control when 
no fallback triggers are showing, when not 
being ready to do so (i.e. not fully cognisant 
of the current state of controlled process or 
environment).  



2562 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

� Human does not pass control to machine 
during critical phases of control when only 
machine can control safely or passes control 
to machine when/despite fallback triggers 
are showing.  

� Machine does not take over control from 
human during critical phases of control 
when only machine can control safely or 
does not take over control from human when 
the human is inactive / showing incapacity.  

� Machine takes over control from human too 
late (with undue delay) when critical phases 
of control have already started or when the 
human has been inactive / showing 
incapacity for safe control. 

The summary of causal factors behind these 
unsafe scenarios is as follows.   
NAI related causal factors: 
� Feedback: feedback regarding critical 

process information can be wrong, wrongly 
delivered, or not delivered, due signal 
transmission/sensor failures, etc. 

� Controller hardware: powering issues (no 
power, brownouts), random hardware 
failures, overheating (due to poor control of 
ambient temperature), or damage by 
excessive radiation.   

� Controller software: wrong assumptions / 
wrong software requirements, other software 
glitches, incomplete coverage in NAI 
training data. etc., controller can be 
overwhelmed with the intensity of input data 
or tasks or make wrong priorities (e.g., 
focusing on less safety critical tasks), can 
misinterpret (buy in) the noise in feedback / 
sensor data.  

Human related causal factors: 
� Trust and confidence: the human can suffer 

from both the lack and excess of trust in 
automation.   

� Training and skills: lack of proper training 
or experience can prevent the human from 
correctly interpreting fallback triggers and 
other critical information.  

� External and Physical Factors: human is 
subject to external and internal stimuli 
(physical, cognitive etc.) that can cause 
hook / steal the attention from the controlled 
process and/or degrade performance to the 
point of inability to respond efficiently and 
effectively.  

Finally, there can be causal factors related to the 
human machine interface (HMI) when the 
feedback information on fallback triggers, 
controlled process or the automation is not 
properly presented (visually or audibly) to the 
human, due to dashboard design or other issues 
(e.g., dashboard can be obstructed or switched 
off).  
3. Results discussion 
The hazard analysis has identified multiple 
scenarios in which control takeover failures can 
compromise the safety of nuclear processes. 
These failures stem from unsafe control actions, 
which may result from human errors, AI 
limitations, or inadequate interface design. Key 
risks include Human Factors, AI limitations and 
Human Machine Interface issues. These findings 
emphasize the need for a rigorous design phase 
that proactively addresses automation hazards. 
Specifically, future automation systems should 
incorporate countermeasures as: 
Resilient Control Handover Mechanisms: 
Ensuring smooth transitions between human and 
machine control through redundancy, fail-safes, 
and structured takeover protocols. 
Enhanced Operator Training and Decision 
Support: Designing automation to support 
human oversight, with real-time adaptive 
assistance and intuitive HMI feedback. 
AI Trust Calibration: Preventing over-reliance 
on AI by ensuring system transparency, 
interpretability, and alignment with established 
nuclear safety principles. 
Despite these insights, limitations exist. The 
analysis relies on current knowledge of AI 
capabilities, which are evolving, and does not 
account for unforeseen emergent behaviours. 
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Additionally, the uncertainty in identifying all 
potential causal factors remains a challenge, 
reinforcing the need for conservative design 
principles such as Defense in Depth (DiD). 
4. Conclusions and possible future 
developments 
This study highlights control takeover as a 
critical automation hazard in nuclear settings, 
where failures in transition between human and 
AI control can lead to loss of oversight over 
radiological risks.  
A primary takeaway is that automation in 
nuclear control systems should not seek to 
replace human judgment but rather augment it 
with well-structured supervisory mechanisms. 
To achieve risk acceptability, design efforts 
should prioritize the organization of control 
transfer protocols, develop AI systems with 
verifiable safety margins and transparent 
decision-making and ensuring human operators 
remain actively engaged, avoiding over-reliance 
on automation. 
A logical next step would be to apply this 
methodology to a real-world case study. One 
particularly relevant application is the automated 
initiation of reactor startup sequences, a process 
requiring both automation and human oversight 
due to its complexity and safety implications. 
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