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In this paper, we present a methodology for estimating the parameters of a system of ordinary differential equations
(ODEs) for the SIR model, a critical tool for understanding the dynamics of infectious diseases. The SIR model
is essential for predicting outbreak patterns and informing public health interventions, playing a pivotal role in
safety analysis. The parameters of the model are estimated from measured data while simultaneously solving the
corresponding system of ODEs numerically. Our approach is based on the collocation method, where the solution is
expressed as a linear combination of B-spline basis functions and fitted to the data through regression. The square
Euclidean measure is used for both regression fitting and minimizing the ODE error. This problem is formulated as a
multicriteria optimization task, balancing errors in the model fit and the numerical solution of the ODE system. The
entire methodology is implemented in the MATLAB environment. We present numerical results and demonstrate
the effectiveness of the approach for parameter estimation in epidemiological models using artificial benchmark
datasets.
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1. Introduction

In this paper, we address a regression problem
over given data, where the considered model is
SIR (Susceptible-Infected-Recovered), see Ker-
mack and McKendrick (1927). This model is
a fundamental epidemiological model that de-
scribes the spread of an infectious disease in a
population.

Additionally, this model is used not only in epi-
demiology but also in cybersecurity and physical
security. It helps model the spread of computer
viruses, malware, or disinformation in network
systems. In security analysis, the SIR model can
predict how quickly a threat may spread among
vulnerable systems and what strategies can effec-
tively stop or slow its propagation, such as patch-
ing vulnerabilities or isolating infected nodes. For
more details see, e.g., Zimeras and Diomidous
(2018).

The model is based on the division of the
population into three groups: S (Susceptible), I
(Infected), and R (Recovered). The relationships
between the numbers of individuals in each group
are formulated as a system of ordinary differen-
tial equations (ODEs). Unfortunately, this system
does not have an explicit analytical solution for
general cases, so this solution cannot be substi-
tuted into the cost function of the regression prob-
lem, thus making it impossible to solve a sim-
ple nonlinear optimization problem with unknown
model parameters. Due to this difficulty, the ODEs
must be solved numerically, simultaneously solv-
ing the regression optimization problem.

In this work, we formulate the problem as a
multi-criteria optimization problem. The first cri-
terion represents the regression error with respect
to the given data, measured in the least squares
sense (see Section 2), which we aim to minimize.
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The second criterion corresponds to the error of
the numerical solution of the ODEs (see Section
3), and we minimize this error as well. By ag-
gregating these two optimization problems, we
obtain the final multicriteria optimization problem
(see Section 4), which we solve using subspace
iterations (Section 5). The unknowns in this case
are the model parameters (i.e., the parameters of
the ODEs) and the coefficients in the chosen basis
of the corresponding solution with optimal param-
eters. This section also discusses the numerical
solution of individual subproblems. In Section 6,
we present results of our implementation in the
MATLAB programming environment and discuss
the applicability of the proposed solution. The
final Section 7 concludes the paper.

2. Least-square regression

Suppose we have measured time-series data, de-
noted as x̂t ∈ R

M , for t = 0, . . . , T , where
M ∈ N represents the dimensionality of the data
(i.e., the number of features), and T + 1 ∈ N in-
dicates the total number of time steps. The goal is
to construct a model that captures the underlying
process responsible for generating the observed
data. In other words, we aim to identify a function
that characterizes the data generation mechanism.
Regression methods are among the most funda-
mental modeling techniques used for this purpose.

In this context, we assume a parametric model
mθ(t) with K ∈ N parameters θ ∈ R

K . This
model describes the dependency between time
t and the generated state x̂(t), i.e., we assume
the approximation x̂(t) ≈ mθ(t). The regression
process involves identifying the parameters of the
model, that best fit the observed data in optimal
way. The discrepancy between the observed out-
puts and the theoretical values predicted by the
model with parameters θ is quantified using a dis-
tance function ρ. The corresponding optimization
problem can be formulated as:

θ∗ = argmin
θ

T∑
t=0

ρ(x̂t,mθ(t)). (1)

To evaluate the magnitude of individual local
errors (x̂t−mθ(t)), a common choice is the Mean

Square Error (MSE)

ρ(x̂t,mθ(t)) = (x̂t −mθ(t))
2 (2)

and the corresponding regression problem is said
to be solved in least-square sense.

Common regression models include linear re-
gression, logistic regression, polynomial regres-
sion, ridge regression, lasso regression, elastic net
regression, and autoregressive models (see, e.g.,
Abraham and Ledolter (2006)). These models are
widely used across various fields due to their sim-
plicity and effectiveness in modeling relationships
within data. The choice of a suitable model in
each case depends on the assumptions made about
the data under examination and the process that
generates this data.

In our research, we focus on processes that
can be described by ODEs. Such models are par-
ticularly common in physical processes and are
widely used in various engineering applications.
In this paper, we are interested in a specific ap-
plication - compartmental models in epidemiol-
ogy. One of the simplest example could be SI
model. It is a basic framework in epidemiology
that describes how infectious diseases spread in a
population. It divides individuals into two groups:
those who are susceptible to infection s(t) and
those who are infectious i(t) and can transmit the
disease. The system is given by

ṡ(t) = −βs(t)i(t),
i̇(t) = βs(t)i(t),

(3)

where ṡ(t) and i̇(t) represent the time derivatives
of s(t) and i(t), respectively.

The model assumes that once an individual be-
comes infectious, they remain in that state indefi-
nitely, without recovery or immunity. The spread
of the disease depends on contact between sus-
ceptible and infectious individuals, and the en-
tire population is eventually expected to become
infectious. The transmission rate β, representing
the likelihood of disease spread per contact, is
denoted by the sole parameter of the system, i.e.,
K = 1 and θ = β. To eliminate the influence
of population size, it is assumed that s(t) and
i(t) represent the proportions of the population
rather than absolute numbers. This assumption is
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expressed by the condition

∀t : s(t) + i(t) = 1. (4)

In the case of this simple model, it is easy to derive
the analytical solution

s(t) =
1− î0

1− î0 + î0eβt
, i(t) =

î0e
βt

1− î0 + î0eβt
,

(5)
where î0 is the initial proportion of infectious
individuals at t = 0.

To apply this model to regression problem, we
substitute the explicit solution (5) to regression
fitting problem (1) with MSE (2). We get opti-
mization problem

β∗ = argmin
β

T∑
t=0

⎛
⎝(

ŝt − 1− î0

1− î0 + î0eβt

)2

+

(
ît − î0e

βt

1− î0 + î0eβt

)2
⎞
⎠ ,

(6)
where x̂t = [ŝt, ît] ∈ R

2 are given measured data
in t = 0, . . . , T . The problem (6) can be solved
by suitable numerical method. In our case, we are
using Matlab and we can solve the problem using
fmincon optimizer.

Although the previously described approach
yields the desired results, its application heavily
relies on the existence of an explicit solution, i.e.,
an explicit model, which allows for the determi-
nation of the objective function with the unknown
parameters. In the case of more complex mod-
els without a known explicit solution, one must
solve the ODEs numerically. In such cases, it is
not possible to directly establish a relationship
between the model and its parameters. Therefore,
we cannot directly substitute this solution into the
regression problem to obtain the objective func-
tion with the unknown model parameters. For a
review of methods addressing such problems, see
Brewer et al. (2007).

The example is SIR model. It is an extension of
the SI model (3) that incorporates an additional
state, recovered r(t), to account for individuals
who have either recovered from the infection or
gained immunity. An infectious individual even-
tually recovers, and is no longer able to spread the

disease. This transition is governed by a recovery
rate γ. The ODE system is given by

ṡ(t) = −βs(t)i(t),
i̇(t) = βs(t)i(t)− γ i(t),

ṙ(t) = γ i(t)

(7)

and assumption (4) has a form

∀t : s(t) + i(t) + r(t) = 1. (8)

In practice, the SIR model is typically solved
numerically using methods such as Runge-Kutta
or similar approaches, as discussed in Rafei et al.
(2007). In such cases, the parameters θ = [β, γ] ∈
R

2 must be known and fixed beforehand. While
an analytical solution to the SIR model exists, it is
limited to specific cases; see, for example, Kröger
and Schlickeiser (2020).

However, even when the model parameters are
not known, the numerical solution of ODEs can be
incorporated into the so-called shooting method.
The method begins by guessing initial values for
the unknown parameters and solving the corre-
sponding system (7) numerically. The resulting
solution is then compared with the observed data
by evaluating the objective function of the regres-
sion problem (1), and the parameters are adjusted
to minimize the discrepancy between the model
and the data. This process is repeated iteratively,
adjusting the parameters each time to improve
the model’s fit to the data. This approach can be
interpreted as 0-order optimization, where only
the values of the objective function are used in the
minimization process.

In our paper, we present an alternative method,
which uses collocation method.

3. Collocation method

The collocation method involves approximating
the solution of the ODE by a function from a cho-
sen set of basis functions and ensuring that the ap-
proximated solution satisfies the ODE at specific
points called collocation points. Each component
of x(t) ∈ R

M is approximated by

xm(t) ≈
T+1∑
i=−1

φi(t)Ci,m, (9)
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where C ∈ R
T+3,M are coefficients of approx-

imated functions in used basis and φi are basis
functions. In our analysis, we employ cubic B-
spline functions, see Fig. 1. Such an approach
is common in the numerical solution of differen-
tial equations, widely employed in methods like
the Finite Element Method, see Reddy (2006),
or in the application of cubic splines for solving
mechanical problems, see Bobková and Pospı́šil
(2021).

Since the derivative is linear mapping, the
derivative of the solution is approximated by

ẋm(t) ≈
T+1∑
i=−1

φ̇i(t)Ci,m. (10)

Let us denote the collocation points as n =

0, . . . , N , where N + 1 ∈ N is a number of
collocation points. For simplicity, we arrange the
basis functions at the collocation points into a
matrix Q ∈ R

N+1,T+3 and the derivatives of basis
functions into Q̇ ∈ R

N+1,T+3. We require that the
ODE equations are satisfied at these collocation
points.

In the case of the SIR model, we have data
dimension M = 3, i.e., x(t) = [s(t), i(t), r(t)] ∈
R

3. We denote the unknown coefficients of the
approximated functions s(t), i(t), and r(t) by cS,
cI, and cR ∈ R

T+3, respectively and introduce
a matrix of all coefficient by C = [cS, cI, cR] ∈
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Fig. 1. Cubic B-spline functions and derivatives.

R
T+3,M . The corresponding discretization of the

system (7) is given (for all collocation points n =

0, . . . , N ) as:

〈Q̇n,:, c
S〉 = −β〈Qn,:, c

S〉.〈Qn,:, c
I〉,

〈Q̇n,:, c
I〉 = β〈Qn,:, c

S〉.〈Qn,:, c
I〉 − γ〈Qn,:, c

I〉,
〈Q̇n,:, c

R〉 = γ〈Qn,:, c
I〉,

(11)
where 〈 . , . 〉 denotes the standard dot product and
Qn,: denotes the n-th row of matrix Q.

If we solve this system in the least-squares
sense, we obtain a problem that always has a so-
lution, unlike the original system (11), which may
lack a solution because it is only an approximation
(9) and does not necessarily satisfy the system
exactly at the collocation nodes.

This least-square solution is formulated as a
minimization problem

C∗ = arg min
C∈ΩC

ψ(C) (12)

with objective function

ψ(C) =
N∑

n=0

(
〈Q̇n,:, c

S〉+ β〈Qn,:, c
S〉.〈Qn,:, c

I〉
)2

+
(
〈Q̇n,:, c

I〉 − β〈Qn,:, c
S〉.〈Qn,:, c

I〉
+γ〈Qn,:, c

I〉)2 + (
〈Q̇n,:, c

R〉 − γ〈Qn,:, c
I〉
)2

(13)
and the feasible set (which represents condition
(8)) is given by

ΩC = {cS, cI, cR ∈ R
T+3 |QcS+QcI+QcR = 1},

(14)
where 1 ∈ R

N+1 is a vector of ones. The initial
condition at t = 0 can be easily enforced by
additional equality conditions

Q0,:c
S = ŝ0, Q0,:c

I = î0, Q0,:c
R = r̂0. (15)

With known parameters β, γ, one can obtain an
approximated solution of the discretized system
(7) solving the optimization problem (12).

4. Multicriteria aggregation

Let us return to the original regression problem
(1). The model mθ(t) is now given by the numeri-
cal solution of ODEs given by approximation (9).
In this case, we compare the approximation of the
solution in the measured t = 0, . . . , T with the
given data and minimize the MSE error.
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We define a matrix Q̂ ∈ R
T+3,T+3, constructed

from the basis functions evaluated at the data
points. The cost function of the regression prob-
lem (1) then takes the form

ϕ(C) =
T∑

t=0

(
ŝt − 〈Q̂t,:, c

S〉
)2

+
(
ît − 〈Q̂t,:, c

I〉
)2

+
(
r̂t − 〈Q̂t,:, c

R〉
)2

.

(16)
The goal is to minimize both function (13) and
(16) simultaneously. For this purpose, we will
use multicriteria optimization, see, e.g., Ehrgott
(2013).

We introduce aggregation, which combines
these objectives into a single scalar function using
a weighted sum, with normalization applied for
comparability. The resulting aggregated problem
is formulated as

[θ∗, C∗] = arg min
C∈ΩC

fα(C, θ) (17)

with objective function fα given by

fα(C, θ) =
α

3(N + 1)
ψ(C, θ) +

1− α

3(T + 1)
ϕ(C)

(18)
and the feasible set given by (14). The introduced
weighting accounts for the number of squared
terms in the functions, and the parameter α ∈
(0, 1) controls the trade-off between the two ob-
jective functions, defining their relative impor-
tance. By varying α, different compromises can
be explored, ranging from fully prioritizing one
function to balancing both.

5. Numerical solution

To solve the proposed optimization problem (17),
we employ the subspace algorithm. The problem
is solved by alternately fixing one variable and
minimizing the objective function with respect
to the other. Starting with an initial guess, the
method iteratively updates each variable until con-
vergence, simplifying the optimization process by
reducing it to a series of problems with one vari-
able, see Alg. 1. It can be easily shown that the al-
gorithm generates a sequence with non-increasing
objective function values, see, e.g., Gerber et al.
(2020).

Alg. 1: Subspace algorithm

Choose initial approximation θ〈0〉 ∈ R
2

Set algorithm tolerance tol ≥ 0

Set initial f 〈0〉
α =∞

Set iteration counter it = 0

repeat
C〈it+1〉 = arg min

C∈ΩC

fα(C, θ
〈it〉)

θ〈it+1〉 = arg min
θ∈R2

fα(C
〈it+1〉, θ)

f 〈it+1〉
α = fα(C

〈it+1〉, θ〈it+1〉)

it = it + 1

until |f 〈it〉
α − f

〈it−1〉
α | < tol;

In the case of the θ-problem, when the variable
C is fixed, the system of ordinary differential
equations (7) becomes linear in the parameters,
making the corresponding objective function (18)
quadratic in variable θ, see theory of least-square
solution of the system of linear equations, e.g.,
Nocedal and Wright (2003) or Boyd and Vanden-
berghe (2004). By applying the necessary opti-
mality conditions, we derive a system of linear
equations Aθ = b with the symmetric positive
definite system matrix

A =

⎡
⎢⎢⎣
2

N∑
n=0

s2ni
2
n −

N∑
n=0

sni
2
n

−
N∑

n=0
sni

2
n 2

N∑
n=0

i2n

⎤
⎥⎥⎦ (19)

and right hand-side vector from the image of A

given by

b =

⎡
⎢⎢⎣

N∑
n=0

(i̇n − ṡn)snin

N∑
n=0

(i̇n + ṙn)in

⎤
⎥⎥⎦ (20)

and consequently, the solution of θ problem is
reduced to the solution of this system of linear
equations. This system has always solution.

In the case of the C-problem, when the variable
θ is fixed, the situation is more complex because
the ODE system is nonlinear in the functions
s(t), i(t), r(t), and consequently, the system (11)
exhibits additional nonlinearities in C.

Since we are using MATLAB, we solve the
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problem with the fmincon optimizer. To enhance
convergence, we supply the algorithm with a vec-
torized implementation of the derived gradient.

6. Results

We implemented the presented methodology in a
MATLAB environment and applied it to synthetic
data. Specifically, we began by selecting a set
of true parameters θtrue for the system and used
them to numerically solve the ODEs using the
Runge-Kutta method, generating a clean dataset
Xtrue that accurately represents the underlying
dynamics. To simulate real-world measurements,
we added random noise to the numerical solu-
tion, mimicking measurement inaccuracies typi-
cally encountered in practice. The noisy dataset
was then used as input for our parameter esti-
mation framework. The objective was to recon-
struct the original parameters by minimizing the
discrepancies between the noisy measurements
and the modeled data. This process not only tests
the robustness of our approach in handling noisy
inputs but also provides a realistic evaluation of its
effectiveness in practical scenarios.

In the benchmark, we consider a hypothetical
disease with parameters βtrue = 0.6 and γtrue =

0.05, with the initial condition [ŝ0, î0, r̂0] =

[0.99, 0.01, 0] over the interval t ∈ [0, 100]. Mea-
surements are taken at an equidistant time grid
t = 0, 1, . . . , 100, and the problem is solved using
the Runge-Kutta method. This solution is treated
as the exact solution Xtrue.

To simulate the data from real-world measure-
ments, we add additive noise with a normal dis-
tribution ε ∼ N (0, σ) and project the resulting
values onto the interval [0, 1], i.e.,

ŝt = P[0,1](strue,t + εs,t), εs,t ∼ N (0, σ)

ît = P[0,1](itrue,t + εi,t), εi,t ∼ N (0, σ)

r̂t = P[0,1](rtrue,t + εr,t), εr,t ∼ N (0, σ)
(21)

where the projection can be computed using

P[0,1](x) = max{0,min{1, x}}. (22)

We use 20 times more collocation points than
measurements; specifically, we include the same
collocation points as the measurement points,

0 20 40 60 80 100
0

0.5

1

0 20 40 60 80 100
0

0.5

1

0 20 40 60 80 100
0

0.5

1

Fig. 2. Solution of the benchmark with noise parame-
ter σ = 0.05 and aggregation parameter α = 0.5.

along with an additional 18 collocation points be-
tween each pair of measurement points. The final
solutions for the noise parameter σ = 0.05 and
the aggregation parameter α = 0.5 are presented
in Fig. 2. In this case, the solution for parameters
is β∗ = 0.6168 and γ∗ = 0.0518. The differ-
ence from original parameters is ‖θtrue − θ∗‖2 =

0.0169.

0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.005

0.01

0.015

0.02

Fig. 3. The L-curve for various values of the noise
parameter. The regression error is given by the value
ψ(C∗, θ∗)/(3(N +1)), and the ODE error is given by
the value ϕ(C∗, θ∗)/(3(T + 1)).

.

We solve the problem for various values of
the noise parameter σ and several values of the
aggregation parameter α ∈ [0, 1]. The resulting
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L-curves (see Hansen and O’Leary (1993)) are
presented in Fig. 3. Each point on a curve cor-
responds to a specific solution for a given noise
parameter and a particular value of the aggrega-
tion parameter. When the aggregation parameter is
small, the minimization process focuses primarily
on reducing the ODE error, with the influence of
the provided measured data being almost negligi-
ble. Conversely, for larger values of the aggrega-
tion parameter, the model relies more on the data,
effectively suppressing the numerical error of the
ODE solution.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Fig. 4. Distance between the original Runge-Kutta
solution and the optimization problem solution (18)
for various α. The highlighted solution minimizes the
distance and matches the one in Fig. 3 and Tab. 1.

.

The highlighted value (black circle) in Fig. 3
represents the optimal value, chosen to minimize
the distance between the Runge-Kutta solution
(without noise) Xexact and the reconstructed so-
lution X = Qc, as shown in Fig. 4. The optimal
parameters corresponding to these regularization
values are presented in Table 1.

In practical scenarios, the absolute error cannot
be utilized because the true solution is unknown.
However, the previous example demonstrates that
the L-curve and the Pareto-optimal point offer a
viable approach for estimating the optimal value.
An alternative approach, particularly when suf-
ficient data is available, is the cross-validation
method; see Stone (1974). Based on the provided
results, we recommend using the optimal value
α = 0.85. For this value, we solve the problem

Table 1. The values of optimal parameters correspond-
ing to highlighted solution presented in Fig. 3 and
Fig. 2.. The original values used to generate Xtrue are
βtrue = 0.6 and γtrue = 0.05.

σ α β∗ γ∗

0.05 0.85 0.6026 0.0484
0.1 0.825 0.6039 0.0512
0.15 0.875 0.4511 0.0473
0.2 0.875 0.3523 0.0516

with various noise parameters σ to evaluate the
denoising capability of the proposed method, as
shown in Fig. 5. In this analysis, data with 10

random additive noise realizations is used, and
we report the average error, minimal error, and
maximal error values.

7. Conclusion

In this paper, we introduced a methodology for
parameter estimation in the SIR model using a
collocation-based approach. By representing the
solution as a linear combination of B-spline basis
functions and employing regression techniques,
we simultaneously minimized the ODE error and
the regression fitting error, addressing the problem
as a multicriteria optimization problem. The im-
plementation in MATLAB demonstrated the feasi-
bility and effectiveness of this method, providing
accurate parameter estimates for epidemiological
models. Our results highlight the potential of this
approach for improving the understanding of dis-
ease dynamics and supporting public health inter-
ventions. Future work could extend this method-
ology to more complex models and real-world
datasets.

The MATLAB code reproducing the results
presented in this work will be shared upon rea-
sonable request.
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