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Robotic systems are becoming increasingly complex in both structure and behavior, integrating multiple components to provide advanced
services. As this complexity grows, so does the likelihood of faults, making resilience essential for maintaining dependable functionality.
This paper proposes a novel framework to enhance the resilience of robotic systems by enabling self-awareness and self-recovery in
response to errors. To manage this complexity, we introduce the concept of a “Skill Chain, a set of components that collaboratively deliver
specific services required for the system to transition through its states and achieve its mission goals. By continuously monitoring its
internal state, the system detects errors before they propagate beyond the skill chain level. Upon detection, the system evaluates its current
state and available resources. If spare components or other fault tolerance mechanisms exist, it reconfigures itself by forming a new skill
chain capable of maintaining service delivery. Recovery strategies, such as backward recovery to return to a previously successful state or
forward recovery to adapt service delivery, are dynamically applied to ensure minimal disruption.
The paper introduces the approach concept and demonstrates its applicability on exemplar robotic systems.
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1. Introduction

Robotic systems are advancing rapidly, requiring the inte-
gration of diverse hardware and software components to
achieve complex tasks. However, as their structure and
behavior grow in complexity, so does the risk of faults,
which can disrupt functionality. Morozov and Janschek
(2014). Therefore, ensuring fault tolerance, adaptability,
and scalability are critical for maintaining dependable op-
erations. Hancher and Hornby (2006); Jaekel et al. (2014);
Zhang et al. (2017). Addressing these demands requires a
structured approach to managing robotic systems, partic-
ularly in how tasks are executed and how faults are han-
dled. Heuss et al. (2019); Murray (2013).

A key challenge in robotics lies in achieving modular,
adaptable task execution while ensuring robust fault con-
tainment and enabling flexible error recovery. Existing solu-
tions often address these issues independently, focusing ei-
ther on task-specific solutions or static fault recovery mech-
anisms, which limits their applicability across different plat-
forms and environments. Jacobsson et al. (2016); Vonásek

et al. (2015); Ahmadzadeh et al. (2015). Few approaches
provide a cohesive framework that integrates fault detection,
system reconfiguration, and recovery strategies, and they
fail to provide a unified framework that supports both mod-
ular task execution and dynamic fault handling across het-
erogeneous robotic platforms. Such limitations prompt the
research question: How can a framework support modular
task execution, facilitate platform-independent operation,
and ensure dynamic fault handling in a unified architecture?

Contribution: This paper presents a novel framework
designed to provide robotic systems with self-awareness
and self-recovery capabilities, enhancing their resilience.
The framework introduces the concept of Skill Chains,
which are a set of software components that collaborate
to deliver specific services. These services enable a robotic
system to transition between states and accomplish mission
objectives. By continuously monitoring its internal state, the
system detects faults before they propagate, evaluates the
status of skill chains, and apply appropriate recovery strate-
gies. These include backward recovery (reverting to a prior
successful state) and leveraging redundant components to
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maintain service continuity. The proposed approach bridges
the gap between modular task execution and system-wide
fault tolerance, paving the way for more reliable and adapt-
able robotic systems in dynamic environments.

2. Related Work

Achieving resilience in robotic systems requires addressing
fault tolerance, modularity, and adaptability. While existing
approaches have made significant advancements in these
areas, they often work in isolation, leading to limitations in
system-wide resilience. There is still a need for an overarch-
ing framework that integrates these components and fosters
robust, adaptable robotic systems.

2.1. Modular Robotic Architectures

Modern robotic architectures increasingly emphasize mod-
ularity. It enhances the manageability and scalability of
robotic systems by dividing them into smaller, more man-
ageable subsystems. Frameworks such as ROS (Robot Op-
erating System) provide a foundation for developing modu-
lar robotic components by abstracting hardware interfaces
and facilitating integration. Quigley et al. (2009). Based
on ROS, researchers develop frameworks to address di-
verse operational requirements through reusable compo-
nents. Ahmadzadeh et al. (2015) and scalable fulfillment
systems. Wang et al. (2020). Domain-specific languages
are proposed to enhance reliability and safety in robotics
through modular programming approaches. Wigand et al.
(2017); Beaulieu et al. (2018); Hammoudeh Garcia et al.
(2019); Rizwan (2024). Additional work focuses on plug-
and-play modularity to enhance dynamic adaptability in
robotic platforms. Sell et al. (2019). These modular ap-
proaches reduce development time and improve overall
system dependability. Our work advances these concepts by
embedding fault detection and recovery solutions directly
into the architecture.

2.2. Fault-Tolerant Frameworks

Robotic systems require effective fault tolerance to op-
erate reliably in dynamic and unpredictable settings. Re-
cent work addresses this need through fault diagnosis, dy-
namic recovery, and adaptive control strategies. Prorok et al.
(2021). Dynamic reconfiguration methods, such as using
declarative models, allow systems to adapt to faults in real
time, improving fault tolerance and operational continu-
ity. Nordmann et al. (2021). Despite these approaches, neu-
ral network-based fault diagnosis combined with reinforce-
ment learning for dynamic fault compensation enables more

precise and context-aware fault handling. Yan et al. (2022).
Deep learning-based approaches allow robots to response
adaptively to diverse failures, such as in navigation systems
where they maintain operations despite hardware or soft-
ware disruptions. Gültekin et al. (2022) Meanwhile, unbi-
ased active inference controllers leverage sensory prediction
errors and probabilistically robust thresholds to improve
state estimation accuracy and reduce false positives in fault
detection. Baioumy et al. (2021). Additional, robust control
techniques, such as fixed-time sliding mode control, have
demonstrated improved fault recovery for robotic manipula-
tors. Van and Ceglarek (2021); Milecki and Nowak (2023).
Architectural advancements also play a key role in fault tol-
erance. Self-maintenance architectures, such as ReFrESH,
enable robots to autonomously mitigate faults in multi-robot
systems. Cui et al. (2014). Hierarchical architectures inte-
grate fault detection and recovery across multiple system
levels, providing a more structured approach to managing
errors. Ahn et al. (2010). While these methods improve fault
handling, they often target specific subsystems rather than
addressing system-wide fault resilience.

2.3. Behavior-Tree-Based Control for Resilience

Behavior trees (BTs) are a modular and hierarchical frame-
work, originating from the gaming industry. BTs provide a
structured representation of robot behaviors using nodes to
represent actions, conditions, and sequences. They improve
scalability and reusability compared to finite state machines
(FSMs). Colledanchise and Ögren (2018). Current studies
showcase the versatility of BTs in robotic control. Iovino
et al. (2022). Dynamic adaptation of BTs enables robots
to modify their behavior at runtime, responding to environ-
mental changes and maintaining operational continuity. BTs
have been effectively used in safety supervision systems to
ensure functional safety in autonomous robots. Conejo et al.
(2024). In addition, combining BTs with reinforcement
learning enhances decision-making and execution. Pezzato
et al. (2023). Collaborative robotic tasks benefit from BTs,
where fault-tolerant behaviors ensure task completion de-
spite disruptions. Akkaladevi et al. (2024). Despite these
advances, current implementations of BTs often focus on
specific domains or tasks, lacking a generalized framework
for system-wide behavior control and error recovery. BT
integration with advanced diagnostic systems and modular
architectures is still underexplored. Our work aims to ad-
dress these gaps by developing a comprehensive behavior-
tree-based framework that integrates fault diagnosis, adap-
tive recovery, and modularity to improve resilience across
robotic systems.
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3. Framework Architecture for Modular and

Fault-Tolerant Robotic Systems

Robotic systems require the integration of diverse hardware
and software components to deliver advanced services. For
instance, a robotic system designed for simple assembly
tasks involves hardware components like a camera, a ma-
nipulator, and a gripper, alongside software components
such as a camera driver, a manipulator driver, a gripper
driver, and algorithms for object detection, collision-free
motion planning, inverse kinematics (IK), and trajectory
execution. The interaction between these components leads
to a complex system that demands a modular and structured
approach.

To address these challenges, we propose a framework that
decomposes robotic systems into manageable subsystems
using Skill Chains, Skill Clients, a Control Flow Operator
and a Behavior Tree-based Control Flow as shown in Fig. 1.
This layered structure simplifies the integration of new
components. It also enables real-time error detection and
localized recovery strategies. As a result, the robotic system
maintains its overall functionality, even when certain parts
fail or require updates.

Fig. 1. Framework architecture for modular and fault-tolerant
robotic systems, including Skill Chains, Skill Clients, Control
Flow Operator, and Behavior Tree-based Control Flows.

3.1. Skill Chains and Skill Clients

A Skill Chain Sj is a modular group of software com-
ponents {Cj1, Cj2, . . . , Cjm} that collaboratively deliver a
specific service Qj . Formally, it is defined as:

Sj = {Cj1, Cj2, . . . , Cjm},where Qj = F (Cj , Qinput).

Here:

• Cj = {Cj1, Cj2, . . . , Cjm} is the set of compo-
nents within the skill chain Sj .

• Qinput and Qoutput = Qj represent the quality of
input and output data, respectively.

• F is a function that represents the collaborative

processing performed by the components to trans-
form Qinput into the desired service Qj .

Each component Cji performs a specific function and pro-
vides outputs required as inputs for the next. This concept
keeps the system modular and allows developers to adapt
or replace individual parts without disrupting the entire
architecture.

At the end of each skill chain is a Skill Server, which
acts as the final processing entity. This server provides the
requested service Qj through a Skill Interface and confirms
that performance metrics meet a preset quality threshold.
These metrics might involve execution time or accuracy, and
each metric carries a weight. The Skill Server aggregates
these metrics into a single quality measure:

Qservice =
n∑

i=1

wi · f(Mi),

where Mi represents the i-th quality metric being moni-
tored, wi is the weight assigned to the i-th metric, reflect-
ing its importance, and f(Mi) is a function that evaluates
whether the i-th metric is satisfied. The function f(Mi) is
defined as:

f(Mi) =

{
1, if the metric is satisfied,

0, otherwise.

The Skill Server ensures that the quality of service (QoS)
satisfies a predefined threshold:

Qservice ≥ Qthreshold.

If the QoS falls below this threshold, the Skill Server noti-
fies the Skill Client of the failure and the control flow will
be halted.

The Skill Client sends service requests to the Skill Server
with parameters specifying the desired service and any task-
specific configurations. It acts as the link between the high-
level application flow (the control flow) and the Skill Chain.
This design makes each request more dynamic because the
system can adjust parameters or switch to alternative Skill
Chains when tasks or conditions change.

3.2. Behavior Tree-based Control Flow

The Control Flow represents the application logic of the
robotic system and is implemented using a Behavior Tree.
BTs are a hierarchical model that can organize tasks into
a tree-like structure, where each node represents an action,
condition, or controller (e.g., sequence, fallback). This ap-
proach offers several advantages: it encapsulates each task
or behavior as a modular node, enabling reusability and
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easier reorganization; it allows complex tasks to be decom-
posed into subtasks, improving scalability and manageabil-
ity; moreover, it evaluates conditions at runtime, allowing
the robot to react or adapt if an error arises. The control
flow operator parses the control flow and orchestrates the
execution of skill chains by determining the sequence of
service requests based on the application logic. When an
application is running, the framework operates as follows:

(1) The control flow determines the sequence of tasks
to execute based on the application’s requirements.

(2) Parameterized skill client nodes in the control
flow send service requests to their respective skill
servers, triggering the execution of associated skill
chains.

(3) Each skill chain processes the request, orchestrat-
ing its components to deliver the required service
via the Skill Server. During execution, the server
checks that the results meet the required standards.
If a service fails, the Skill Server notifies the Skill
Client, which updates its state and informs the
control flow operator; the control flow operator
halts the current control flow.

(4) The control flow resumes once the issue is resolved
or an appropriate recovery mechanism is executed.

4. Fault Containment and Recovery Mechanisms

The proposed framework handles these faults by limiting
their propagation and offering multiple recovery methods.
In doing so, it preserves overall system reliability and sup-
ports flexible adaptation.

4.1. Error Propagation and Containment

Error propagation is an inherent phenomenon in software
systems, where faults within a component can lead to errors
that propagate to other interconnected components. Avizie-
nis et al. (2004). If errors are not contained, this can result
in cascading failures that affect the overall functionality of
the system. The proposed framework is designed to contain
error propagation strictly within the Skill Chain, ensuring
that errors do not escalate into the higher-level control flow.

As shown in Fig. 2, error propagation in the framework
occurs in two stages. Internal propagation takes place when
a fault within a component, such as a software bug or
unexpected input, leads to an incorrect internal state. This
incorrect state then manifests as an error in the component’s
output. External propagation happens when the erroneous
output from one component is received as an external fault
by the next component, potentially causing further errors if

the fault is not detected or addressed.

Fig. 2. Stages of error propagation and containment within the
proposed framework. Errors originating within a component are
either contained at the skill chain level or detected by the Skill
Server before they escalate into the control flow. Avizienis et al.
(2004).

Error propagation continues until the error reaches the
Skill Server, which monitors QoS. If the QoS falls short
of set standards, the Skill Server halts the skill chain and
notifies the Skill Client. This localized response stops the
error before it can disrupt the entire system.

4.2. Recovery Mechanisms in the Framework

The modular structure of this framework supports multiple
recovery strategies. By breaking the system into skill chains,
each with its own service interface, the framework allows
both localized fixes and broader system-level adaptations.
The conceptual recovery mechanisms include the following:

Reforming Skill Chains The modularity of skill chains
enables the framework to reform a skill chain when a com-
ponent fails. If spare components capable of producing the
same type of output are available, the skill chain can dy-
namically replace the faulty component with an alternative.
This capability ensures that the service provided by the skill
chain continues without requiring a complete system halt.
Reforming skill chains focuses on leveraging redundancy
within the system to recover locally from faults.

Switching to Alternate Skill Chains The framework al-
lows a skill client to switch to a different skill chain if
the current skill chain fails to deliver the required service.
Alternate skill chains providing the same service through
the same skill interface can be utilized seamlessly. This
mechanism leverages pre-existing redundancy and avoids
halting the control flow. It also safeguards the system from
single points of failure.

Backward Recovery In this approach, the framework rolls
back to a previous checkpoint. These checkpoints act as
intermediate recovery points that the system can roll back to
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in the event of a failure. When a fault surfaces, the system
reverts to the most recent stable state and resumes execution
from there. This method minimizes the impact of faults and
prevents errors from propagating beyond the checkpoint.

Forward Recovery Forward recovery focuses on adapting
the system to bypass faults and continue operation. Unlike
backward recovery, which reverts to a previous state, for-
ward recovery dynamically reconfigures the control flow to
ensure task completion. The framework supports this strat-
egy through Recovery Control Flow Generation. When
the existing control flow cannot accommodate a fault, the
framework generates a recovery control flow composed of
skill chains or recovery-specific actions. This new control
flow addresses the fault by replacing faulty components
with alternatives, adjusting task parameters to work around
the fault, or executing alternative strategies to achieve the
desired outcome. Recovery Control Flow Generation lever-
ages existing skill chains and resources to execute forward
recovery strategies dynamically and flexibly.

By offering these complementary techniques, the frame-
work ensures that robotic systems can withstand a range of
failures. Each mechanism targets faults at different levels of
severity or scope. Consequently, the overall system remains
operational and retains the flexibility to evolve with chang-
ing requirements.

5. Experimental Setup and Results

The experiments are conducted to validate the framework’s
capability to handle modular and reusable skill chains,
demonstrate fault containment and recovery, and accom-
modates different robotic platforms under shared control
flows. For these tests, we selected two industrial robotic
arms: the PILZ PRBT 6 (PRBT) and the Universal Robots
UR5e (UR5e). Each robot is configured to perform a Pick
and Place task using the proposed framework. The two
robotic setups used in the experiments are depicted in Fig. 3
and Fig. 4.

For the Pick and Place task, the system receives the
object position and the place position as inputs. With this
information, the system plans and executes a collision-free
trajectory to pick the object from its provided position.
Once the object is grasped, the system replans and executes
another trajectory to place the object at the target location.
Although the robots differ in hardware, they both rely on
the same shared control flow and parameterized skill chains
which adjust to each robots kinematic properties.

Fig. 3. PRBT Robot Setup:
PRBT robot with Schunk
EGP 50 gripper

Fig. 4. UR5e Robot Setup:
UR5e robot with Robotiq
gripper.

5.1. Modular Design of Skill Chains

The concept of skill chains is exemplified in the Trajectory
Execution Skill Chain for the UR5e robot, shown in Fig. 6.
This skill chain consists of modular components that collab-
oratively deliver the trajectory execution service. This chain
includes components from ROS a open-source community
such as the Planning Scene Monitor and Robot State Pub-
lisher (light blue circles in Fig. 6) and a custom Skill Server
(dark blue circle in Fig. 6). The Trajectory Execution Skill
Server is a custom component which not only delivers the
trajectory execution service but also monitors QoS, and han-
dles specific tasks like monitoring execution time, collision
detection, trajectory validation, and stop signal handling.

5.2. Reusable Skill Chains Across Robots

The same skill chain structure was adapted for the PRBT
arm (Fig. 7). While the overall structure of the skill chain
is the same, differences arise in the software components
due to hardware-specific requirements. For instance, PRBT
uses a unique driver and robot description to match its
kinematics and dynamics, shown as orange circles in Fig. 7.
Despite these variations, the ROS components (light blue
circles) remain consistent across setups, demonstrating that
the framework can easily switch between different robot
models without redesigning the entire skill chain.

5.3. Redundant Skill Chains

The framework supports redundant skill chains to ensure
flexibility and fault tolerance during task execution. For
instance, the Motion Planning Skill Chain includes multi-
ple planners, such as the Rapidly-exploring Random Tree*
(RRT*) planner from the Open Motion Planning Library
(OMPL)b and the Point-to-Point Planner (PTP) from Pilz

ahttps://docs.ros.org/en/jazzy/index.html
bhttps://ompl.kavrakilab.org/
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Fig. 5. Control flow with checkpoint-based backward recovery for the pick and place task.

Fig. 6. Trajectory Execution Skill Chain for the UR5e robot.
Light blue circles are ROS components; the dark blue circle is the
custom skill server.

Fig. 7. Trajectory Execution Skill Chain for the PRBT robot.
Light blue circles are ROS components; the dark blue circle is the
custom skill server.

Industrial Motion Planner c, as shown in Fig. 6.
In the UR5e’s control flow ( Fig. 8), the skill client “Com-

putePathtoPose” of the Motion Planning Skill Chain sends
a request to the Skill Server with target pose and execution

chttps://github.com/PilzDE/pilz_industrial_motion

parameters. The control flow operator monitors the state of
this skill client. If the primary planner fails, the fallback
mechanism ensures that an alternate planner is invoked,
maintaining task execution without manual intervention.

Fig. 8. Behavior tree control flow using
redundant Motion Planning Skill Chain
for the UR5e robot.

Fig. 9. Parameterized
“ComputePath-
toPose” skill client for
PRBT robot.

5.4. Shared Control Flows with Parameterized
Skill Clients

Both the PRBT and UR5e executes the Pick and Place task
using the same control flow (Fig. 5), which was parameter-
ized to accommodate hardware-specific requirements. For
example, the PRBT robot uses a different IK frame name
due to its distinct kinematic model compared to the UR5e
robot(Fig. 9). This flexible parameterization confirms that
the system can reuse control flows across multiple robots,
streamlining deployment and maintenance.

5.5. Fault Containment Capability

The framework demonstrate fault containment by isolat-
ing errors within skill chains. For example, if the motion
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planner failed to compute a trajectory, the Skill Server
catches the error and prevents the error from affecting the
control flow. Then the system can trigger recovery mech-
anismpotentially switching to another planner, as outlined
in Sec. 5.3. This localized fault handling ensured that only
the Skill Chain in question required correction, preserving
the rest of the control flow.

5.6. Backward Recovery Capability

A checkpoint-based approach for rollback recovery is im-
plemented using a CheckPointControlNode. It is a cus-
tomized control node that reverts the control flow to the
last successful checkpoint and retry the task when failures
occur. The logic is detailed in algorithm 1. This mechanism
ensured robust recovery while adhering to predefined retry
limits. Fig. 5 illustrates the use of the CheckPointControlN-
ode in the control flow for the pick-and-place application.

6. Conclusion

This work presents a modular architecture that introduces
the Skill Chain, the Skill Client, the Control Flow Operator
and the Behavior Tree-based control flow to manage the
complexity of modern robotic applications, contain faults,
and enable robust recovery. By decomposing tasks into
smaller, reusable units, the framework helps to structure
robotic task, easy adapt to diverse hardware platforms. Ex-
periments on PRBT and UR5e robots demonstrate that the
proposed solution supports platform-independent deploy-
ment, recovers dynamically from faults, and maintains op-
erational efficiency. The system achieves fault containment
by isolating errors within each skill chain, preventing them
from affecting that high-level control flow. The integration
of backward recovery mechanisms, such as reverting to
previous checkpoints to restore functionality, ensures con-
tinuity of service even in the presence of failures. Future
work will focus on exploring forward recovery techniques
that dynamically adjust task execution in response to real-
time faults. This expansion aims to reinforce adaptability
of the robotic system and uphold consistent performance in
varied operational settings.
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