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Hydrogen is a promising energy vector, especially for hard-to-abate sectors such as heavy-duty transport. However, 
establishing a robust and safe hydrogen infrastructure, including hydrogen refueling stations (HRS), is crucial to 
realize this potential. Risk assessment plays a pivotal role in identifying and mitigating potential hazards to ensure 
the safe and reliable operation of HRS. 
Traditional risk assessments for new technologies like hydrogen often face challenges due to insufficient data and 
uncertainties. Bayesian Networks (BNs) offer a flexible framework to address these challenges by incorporating 
probabilistic reasoning and expert knowledge, enabling decision-making even with incomplete information. 
In this study, BNs were applied to analyze an HRS, focusing on quantifying uncertainty using the concept of total 
probability bias. The methodology involved several key steps: First, an FMEA (Failure Modes and Effects Analysis) 
was employed for hazard identification, while a Bow-Tie (BT) diagram was used to model worst-case scenarios. 
Second, the BT was transformed into a BN to represent event connections and identify potential failure points 
visually. Third, Relevant reliability data for components and systems were integrated into the BN to provide 
estimates of failure probabilities. Finally, the BN was dynamically updated with new operational data, allowing for 
continuous refinement of risk assessments, improved risk mitigation strategies, and more informed decision-making 
processes. 
Using Bayesian network modeling, this dynamic risk assessment method enables faster and more accurate risk 
evaluations, enhancing risk management and decision-making. The approach offers a flexible framework that 
incorporates uncertainty quantification, supporting the safe integration of hydrogen into the energy landscape. 
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1. Introduction 

The rapid expansion of the hydrogen economy 
necessitates a robust and evolving risk assessment 
framework for hydrogen refueling stations (HRS) 
(Bartolucci et al. 2021). As these stations 
transition from remote locations to densely 
populated urban areas, the potential for accidents 
and their associated impacts significantly 
increase. This necessitates a shift from traditional, 
static risk assessment methods towards more 
dynamic and data-driven approaches that can 

effectively capture the evolving nature of risks 
within these complex systems. 
Most hydrogen refueling stations rely on off-site 
production. They transport hydrogen to the 
stations using tube trailers. Once the hydrogen 
arrives, it is compressed and stored in different 
pressure bundles. This compression process 
generates a lot of heat. If this heat isn’t managed 
properly, it can raise the storage temperature, 
increasing the risk of leaks and explosions. 
Hydrogen refueling stations face more safety 
challenges than regular gas stations due to 
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hydrogen's properties and the complexity of their 
systems. Serious accidents, like the 2019 
explosion in Gangwon Province, South Korea 
(Alcock, Shirvill, and Cracknel 2001), and a fire 
at a station near Oslo, Norway (Cristina Galassi et 
al. 2012), highlight how dangerous hydrogen-
related incidents can be for people and property. 
Earlier, hydrogen refueling stations were placed 
in remote areas, and their safety was mostly 
evaluated using traditional methods. Techniques 
like Failure Mode and Effects Analysis (FMEA), 
Hazard and Operability Study (HAZOP), and 
Fault Tree Analysis (FTA) were used to identify 
risks and ensure the designs were safe. However, 
as these stations spread to urban areas, the focus 
shifted to quantitative risk assessments (QRA) 
(Suzuki et al. 2021). These methods combine 
qualitative techniques with probability analysis to 
evaluate how likely accidents are and how severe 
they could be. 
Modern risk assessments use various methods. 
Risk identification utilizes methods like Event 
Tree Analysis (ETA) and Hazard Identification 
(HAZID) (Cristina Galassi et al. 2012) to find key 
factors that could lead to accidents. For accident 
probability analysis, tools like Bayesian Networks 
(BN), Bow-tie (BT) analysis, and Dynamic 
Bayesian Networks (DBN) are becoming more 
common (Wang and Gao 2023). These tools help 
researchers model relationships and address 
uncertainties in hydrogen system risks. 
Specialized tools and models are now widely used 
to evaluate the impact of hydrogen-related 
accidents. Models like PHAST from DNV and 
HyRAM from Sandia National Laboratories 
assess potential damages and effects in specific 
scenarios.(Gye et al. 2019; Zhiyong, Xiangmin, 
and Jianxin 2010; Kwon, Choi, and Yu 2022). 
These tools help measure how severe accidents 
could be, leading to better risk management and 
risk reduction strategies. 
Traditionally, risk assessments have been static, 
focusing on fixed probabilities and single 
scenarios. However, hydrogen refueling stations 
deal with dynamic and changing risks that require 
adaptable methods. Dynamic Bayesian Networks 
(DBNs) have emerged as a valuable tool for real-
time risk modeling  (Wang, Zhang, and Gao 2022) 
as they continuously update probabilities based on 
new data, offering a clearer picture of evolving 
risks. For instance, research has demonstrated 
how DBNs can assess risks in offshore drilling 

and analyze domino effects in chemical processes, 
highlighting their ability to predict cascading 
impacts and visualize interactions between 
different accident factors. These capabilities make 
DBNs particularly well-suited for addressing the 
complex and dynamic nature of risks in hydrogen 
refueling stations. 
The expansion of hydrogen refueling stations 
offers both opportunities and challenges for the 
hydrogen energy sector. While traditional and 
quantitative risk assessment methods have proven 
useful, the move toward dynamic models like 
DBNs marks a significant advancement. These 
models effectively address the complex and 
evolving nature of hydrogen-related risks, 
allowing for more accurate and real-time risk 
assessments. By enhancing the ability to predict 
and mitigate risks, DBNs improve the safety, 
reliability, and sustainability of hydrogen 
infrastructure, facilitating the broader adoption of 
hydrogen as a clean energy source. 
Therefore, the present study focused on 
addressing uncertainties and minimizing total 
probability bias inherent in emerging hydrogen 
technologies utilizing the Bayesian Network (BN) 
framework for dynamic risk assessment of 
hydrogen refueling stations (HRS). By leveraging 
probabilistic reasoning and expert knowledge, 
this research aims to quantify uncertainties and 
evaluate potential biases, enabling informed 
decision-making despite incomplete or uncertain 
data. The study integrates reliability data into the 
BN model to provide accurate failure probability 
estimates while minimizing bias, dynamically 
updating the model with operational data for 
continuous risk refinement. Finally, the 
implications of uncertainty quantification and 
bias reduction on risk mitigation strategies are 
explored, aiming to enhance risk management and 
support the safe integration of hydrogen into the 
energy landscape 

2. Methodology:  
2.1. Framework for Risk Assessment   
This study presents a Comprehensive Risk 
Assessment and Uncertainty Quantification 
Framework for Hydrogen Refueling Stations 
(HRS), developed as part of the DNV HySafe 
project within DNV's Low Carbon Research group 
(DNV, n.d.). This framework leverages Bayesian 
Networks (BNs) to dynamically assess risks and 
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quantify uncertainties associated with various 
operational scenarios. This methodology allows for 
the identification and analysis of various risk 
factors associated with HRS and aids in 
determining the probabilistic relationships  
between different variables that influence safety 
and operational outcomes. The flowchart of the 
developed Bayesian network is presented in Fig 1 

  

Fig1:Flowchart for Bayesian network framework  

The framework for the Bayesian Network (BN)-
based risk assessment is designed to systematically 
address uncertainties and enhance risk evaluations 
through iterative learning and analysis. The process 
begins by converting an existing Bow-Tie (BT) 
diagram into a BN, if one is available, to create an 
initial representation of event connections and 
failure points. The BN is then trained using 
available data, with its structure and probabilities 
adjusted based on domain knowledge to ensure 
alignment with real-world scenarios. If sufficient 
data is available, the BN structure is further refined, 
and its probabilities are trained using this data. The 
trained BN is analyzed with domain expertise to 
verify its reasonableness and accuracy. If the BN 
performs well, the process continues; otherwise, 
the training and adjustment steps are repeated, 
incorporating insights gained from previous 
iterations. 
Once the Bayesian Network (BN) is validated, it 
analyzes the system through advanced analytical 
algorithms, such as Gradient Sensitivity, Value of 
Information, and Sobol Indices. These tools assist 
in identifying critical variables, evaluating the 
impact of uncertainties, and prioritizing risk 
mitigation strategies. The outputs from the BN 
analysis are then employed to assess the system's 
risk profile and guide decision-making processes. 
Ultimately, the BN is used for real-time risk 

assessment by incorporating system-specific data 
and real-time measurements. The updated posterior 
probability distributions generated by the BN 
facilitate dynamic and precise risk evaluations, 
promoting proactive risk management and 
ensuring the safe operation of the system. This 
iterative and data-driven framework guarantees 
ongoing improvement and adaptability in risk 
assessment processes. 

2.1. System Definition and Scope 
The first step in constructing the Bayesian Network 
for HRS risk assessment is defining the boundaries 
of the system. This involves identifying the major 
subsystems that make up the HRS, such as storage 
tanks, compressors, dispensers, pipelines, and 
sensors. Each subsystem may have its own set of 
risks and interactions, making it essential to 
delineate their roles in the broader system clearly. 
Key risk scenarios, including hydrogen leaks, over-
pressurization, fire, and explosions, are identified. 
These events have significant safety implications 
and must be modeled accurately to provide 
meaningful risk assessments. The system’s scope 
should balance comprehensiveness with 
manageability, as including too many variables can 
render the model computationally intensive and 
difficult to interpret, while too few variables may 
fail to capture critical risk factors. 

2.2. Variable Identification 
Once the system boundaries and key risk scenarios 
are defined, the next task is to identify the critical 
variables, or nodes, that influence the risk 
landscape. A careful selection process is necessary 
to ensure the model is both computationally 
feasible and capable of providing useful 
predictions. If too many variables are included, the 
resulting Bayesian Network may become overly 
complex, computationally intensive, and 
challenging to interpret. Conversely, excluding 
important variables may limit the model’s 
predictive power. When selecting variables to 
include, it is important to consider the availability 
of relevant data or models. Variables should only 
be included if their influence on the system is 
known and quantifiable, either through 
experimental data, mathematical models, or expert 
opinion. If the influence of a variable is not well 
understood but is deemed critical, efforts should be 
made to find or develop a suitable model to 
represent its effect on the system. For example, in 
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the case of equipment leaks, it is necessary to 
define what types of equipment can leak, how 
many instances exist, the likelihood of such leaks, 
and the characteristics of a leak once it occurs. 
Additionally, factors such as whether a leak is 
contained and the layout of the HRS, which may 
significantly influence the risk, must also be 
considered. However, detailed modeling of certain 
aspects, such as the exact layout of the station or 
complex simulations, may be outside the scope of 
this initial modeling framework 
2.3. Causal Relationships 
A crucial aspect of building a Bayesian Network is 
establishing the causal relationships between 
variables. These relationships often emerge from 
expert opinion and domain knowledge, though 
they can also be inferred from data, especially 
where correlations between variables can be 
observed. However, distinguishing causality from 
mere correlation can be challenging, and expert 
judgment is often required to interpret the system 
dynamics accurately. For example, the impact of an 
explosion or fire can depend on a number of 
variables, such as the location and number of 
people in proximity to the event, the weather 
conditions (e.g., wind), and the characteristics of 
the leak (e.g., leak rate and whether it is contained). 
It is also essential to model the ignition process, as 
ignition cannot occur without a preceding leak, and 
a leak itself may occur randomly based on certain 
frequencies. These causal dependencies must be 
carefully defined to ensure the network accurately 
reflects the underlying processes and interactions. 

2.4. Bayesian Network Construction 
The Bayesian Network is constructed by 
systematically representing the risk landscape of 
hydrogen refueling stations through the 
identification and interconnection of causal 
relationships among variables. In this 
methodology, we restrict the nodes to discrete 
values, which greatly enhances computational 
efficiency. Continuous variables can be 
approximated through discretization, simplifying 
the model without sacrificing significant detail. 
While some aspects of this approach may not be 
applicable to BNs that use continuous random 
variables (RVs), discretization offers a practical 
solution for most applications involving discrete 
risk events and probabilities. 

2.5. Node Definition and Variable Representation 

Each node in the Bayesian Network represents a 
random variable that corresponds to a specific 
aspect of the system, such as a physical value (e.g., 
pressure, temperature), an event (e.g., leak 
occurrence), or a characteristic influencing other 
nodes. When defining nodes, it is important to 
consider their role in the analysis. If a particular 
variable is not critical for the analysis or does not 
contribute to understanding the risk, it may be 
appropriate to merge multiple nodes into a single 
aggregate node. However, there may also be cases 
where seemingly less important nodes should be 
included due to the specific analysis being 
conducted. 
In practice, Bayesian Networks often represent 
only scalar values for simplicity and efficiency. If 
a variable is distributed over time or space, the 
focus of the analysis might be on specific values or 
intervals rather than the entire distribution. For 
example, one might be interested in predicting the 
temperature at specific times or locations, rather 
than modeling the temperature function across the 
entire system. In such cases, parameters describing 
the function (e.g., time or location) can be treated 
as nodes, and the function itself can be evaluated 
only when necessary. This approach allows for 
more focused analysis, optimizing the network’s 
efficiency while retaining sufficient detail for 
meaningful risk assessments. 

3. Data Requirements and Assumptions 

3.1. Data Requirements 
The construction and validation of a Bayesian 
network (BN) for risk assessment requires 
accurate data to ensure model reliability. The data 
can be categorized as follows
� Failure Data: Historical records of equipment 

failures and their frequencies are essential for 
understanding potential risks. 

� Operational Data: Information on system 
conditions like pressure, temperature, and 
maintenance schedules, which influence the 
likelihood of failures. 

� Environmental Data: Details on 
environmental factors such as weather and 
external hazards that can impact failures. 

� Other Data: Includes human error 
probabilities, safety system performance, and 
material properties, which are important for 
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addressing specific risks and validating the 
BN’s robustness. 

3.2. Assumptions 
In the absence of comprehensive and detailed 
data, assumptions are necessary to fill data gaps 
and enable the development of the Bayesian 
Network. These assumptions are primarily 
informed by literature and expert judgment and 
are outlined below. 

3.2.1. Leak Rates per Unit of Equipment 
(i) It is assumed that the probability of leaks 

occurring in different equipment units is 
independent. 

(ii) Although intuitive reasoning suggests some 
degree of dependency between leak 
probabilities—for instance, similar 
operational or environmental conditions 
affecting multiple units—quantifying this 
dependency is challenging. As a result, 
independence is assumed for simplicity. 

iii) Future iterations of the model could include 
this dependency as an uncertain random 
variable or derive estimates of dependence 
from the literature to improve accuracy. 

(iv) Leak rates for individual units are based on 
values reported in DNV Guideline 
Hydrogen QRA. 

3.2.2. Consequence Triggering Assumptions 
A hazardous consequence is possible only if a 
leak is both uncontained and ignited. Ignition may 
occur before the system shutdown is fully 
complete in some cases. Thus, the model's 
shutdown probability must account for the 
likelihood that shutdown happens early enough to 
avoid ignition consequences. The shutdown 
probability estimates are derived from literature 
but may not reflect real-world variations. 
Uncertainty is included in the shutdown 
probabilities, with the highest likelihood values 
aligning with literature estimates while also 
considering the potential for higher failure 
probabilities. 
By explicitly acknowledging these data 
requirements and assumptions, the Bayesian 
Network development is made transparent, with a 
clear roadmap for future refinements. This 
approach ensures a balanced trade-off between 
the model's current utility and its potential for 
improvement as better data becomes available 

3.3.3. Individual risk and definition 
In the present study, the results are presented in 
terms of individual risk. Hazardous situations at a 
hydrogen refueling station may affect three 
categories of individuals. These categories are 
defined as follows: (1) station operators and 
maintenance personnel, (2) station customers, and 
(3) third parties, such as nearby residents. Each 
group has unique exposure patterns, requiring 
specific risk evaluations. 
Station operators and maintenance personnel are 
exposed to significant risks due to their time spent 
in high-risk areas like hydrogen storage and 
dispensing zones. Despite their familiarity with 
operations, they remain vulnerable to hydrogen 
leaks, ignition events, and high-pressure system 
failures, especially during maintenance tasks 
involving pressurization and repairs. 
Comprehensive risk assessments must consider 
both the likelihood and consequences of 
incidents. 
Station customers, including drivers and 
passengers, face shorter exposure times while 
refueling, making them more susceptible to risks 
despite their limited knowledge of hydrogen 
safety. Key risks include leaks or ignitions during 
refueling and exposure to potential fires or 
explosions. 
Third parties, such as nearby residents and 
pedestrians, also face risks depending on the 
station's layout and surrounding population 
density. Hazards include blast overpressures and 
thermal radiation from fires or explosions. 
Probabilistic models help estimate risk based on 
local infrastructure. 
Common risk factors for all groups include 
proximity to high-risk areas, exposure duration, 
and the effectiveness of safety measures like 
barriers and emergency protocols, with 
population density playing a crucial role for third 
parties. 

4. Results and Discussion 

4.1. Estimating Individual Risk Using the 
Bayesian Network Model 
The Bayesian Network (BN) model provides a 
sophisticated approach for estimating 
individual risks associated with various 
stakeholders within a hydrogen refueling 
station, including workers, customers, and 
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residents. Individual risk is assessed by 
introducing different types of evidence into the 
model, such as operational failures (e.g., leaks), 
safety barrier status, or real-time sensor data. 
The incorporation of such evidence enables the 
model to simulate different risk scenarios and 
calculate the associated probabilities of harm 
for each stakeholder group. This dynamic 
capability of the BN model is crucial for 
effective risk management in complex, safety-
critical systems. 
As illustrated in Table 1, the individual risks 
(IR) for each stakeholder group are calculated 
under a variety of operational scenarios. These 
risks are influenced by factors such as the 
likelihood of presence in the facility during an 
incident, the severity of the hazard, and the 
distance from the potential source of the 
incident. 
Workers are identified as facing the highest 
individual risks, which is consistent with the 
assumption that their proximity to operational 
areas increases their likelihood of encountering 
a hazardous event. This observation 
underscores the importance of strict safety 
protocols for workers who operate in or near 
high-risk zones. 
Customers, conversely, exhibit significantly 
lower individual risks. The lower probability of 
their presence in the hazardous area (coupled 
with the transient nature of their visit) results in 
a much-reduced likelihood of being affected by 
an incident. 
Residents, due to their distance from the 
facility, face relatively low risks, though their 
risk is higher compared to customers, primarily 
due to potential exposure to larger-scale 
incidents such as explosions. 

Table 1. Individual risks (IR) for the three categories 
under different scenarios. 

Scenario IR 
(Worker) 

IR 
(Customer) 

IR 
(Residence) 

Without 
evidence 

0.0019 <1e-5 0.0003 

Storage 
Tank 
Leak 

0.0049 <1e-5 0.0004 

Dispenser 
Failure 

0.0019 <1e-5 0.0004 

Leak + 
No 
Shutdown 

0.0524 0.0002 0.1091 

Ignition 
and 
Explosion 

0.1507 0.0007 0.0151 

Interestingly, the introduction of a leak by itself 
does not substantially elevate the individual risks 
for all categories. This can be attributed to the fact 
that most hydrogen leaks are non-igniting and are 
typically mitigated before reaching catastrophic 
levels. However, when the scenario involves a 
leak with no system shutdown, there is a notable 
increase in risk, particularly for workers and 
residents. Workers’ individual risk increases 
significantly to 0.0524, reflecting their closer 
proximity to operational areas, while residents 
experience an even more pronounced risk 
escalation (0.1091), as the propagation of a leak 
could affect a larger area, including residential 
zones. 
In extreme cases, such as ignition and explosions, 
the individual risks for both workers and residents 
rise dramatically, emphasizing the catastrophic 
consequences of such events. The risk for workers 
increases to 0.1507, while for residents, the risk is 
lower at 0.0151, yet still elevated compared to 
baseline conditions. This result further highlights 
the need for effective mitigation strategies, 
particularly in high-consequence scenarios. 
The ability to dynamically adjust risk assessments 
using real-time evidence, such as data from 
sensors or operational conditions, is one of the 
key strengths of the BN model. In scenarios where 
there is no prior evidence (i.e., under normal 
conditions), risks for all categories remain low. 
However, once specific evidence is introduced 
(e.g., a leak or failure of safety barriers), the BN 
model recalculates the individual risks, enabling 
immediate and informed decision-making. Such 
real-time risk assessments allow operators to 
implement proactive safety measures, such as 
triggering emergency shutdown systems or 
activating additional safety barriers, thereby 
mitigating the potential impact on the most 
vulnerable groups. 

4.2. Identifying Sub-System Leak Sources 
An additional strength of the BN model is its 
capacity to identify the most likely sub-system 
responsible for a leak under different operational 
conditions. This is achieved by introducing 
evidence of a leak (either ignited or non-ignited) 
into the model and assessing the likelihood of 
each sub-system being the source of the incident. 
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The results, as presented in Table 2, indicate the 
relative probabilities for each sub-system 
contributing to a leak event. 
Under normal leak conditions, the compression 
system emerges as the most likely source of a 
leak, with a probability of 0.4717, closely 
followed by the storage system at 0.4061. This 
suggests that the compression system, which 
typically operates under high pressure, is 
particularly vulnerable to failures, and its integrity 
requires close monitoring. 
When the leak is ignited, the storage system 
becomes the most probable source, with a 
probability of 0.4670, slightly exceeding the 
compression system at 0.4447. This shift in 
probabilities is significant, as it indicates that the 
ignition of a leak may be more likely to originate 
from the storage system, which typically contains 
large volumes of hydrogen under high pressure. 
The increased risk associated with ignited leaks 
highlights the critical importance of fire detection 
systems and the rapid response mechanisms 
designed to mitigate ignition. 

Table 2 Relative probabilities for each sub-system 
contributing to a leak event 

Scen-
ario 

Tube 
Trailer 
Leak 

Sto-
rage 
Leak 

Dispen-
ser Leak 

Compre-
ssion 
System 
Leak 

Leak 0.1319 0.4061 0.0584 0.4717 
Igni-
ted 
Leak 

0.1630 0.4670 0.1116 0.4447 

Moreover, the analysis reveals that the 
probabilities for all sub-systems increase in the 
case of an ignited leak, suggesting a higher 
likelihood of simultaneous failures across 
multiple components. This outcome is consistent 
with the nature of catastrophic incidents, where 
the failure of one component may trigger a chain 
reaction, leading to the failure of other connected 
systems. This emphasizes the importance of 
integrated safety measures across the entire 
infrastructure rather than focusing on individual 
components in isolation. 
The tube trailer and dispenser systems, while 
contributing to a lesser extent, still represent 
potential sources of leaks. Their lower 
probabilities suggest that while these components 
are generally less likely to fail, their failure can 
still have significant consequences, mainly if they 
are part of a larger incident involving multiple 
system failures. 

These findings underscore the need for a 
comprehensive safety approach that addresses 
potential vulnerabilities across all subsystems. 
Identifying the compression and storage systems 
as primary sources of leaks calls for targeted 
interventions to strengthen these components. In 
particular, maintenance and monitoring protocols 
should be enhanced for these systems, including 
regular inspection of pressure containment 
structures and implementation of advanced leak 
detection and shutdown mechanisms. 

4.2. Insights of dynamic risk assessment 
This study illustrates the demonstration of 
dynamic updates to risk probabilities. For 
instance, under normal operating conditions, the 
Bayes Network (BN) model calculates a baseline 
of individual risks for stakeholders (workers, 
customers, and residents) as relatively low. 
However, when specific evidence, such as a 
hydrogen leak or dispenser failure, is introduced, 
the model recalculates risks using forward 
analysis. This process updates the probabilities of 
harm for each stakeholder group based on new 
evidence, providing a clear picture of how the risk 
landscape evolves. In scenarios like a leak 
without a system shutdown, the individual risk for 
workers significantly increases (from 0.0019 to 
0.0524), while residents experience an even 
greater rise (from 0.0003 to 0.1091) due to the 
potential for larger-scale impacts.  The backward 
analysis further enhances the model’s utility by 
identifying the most likely sources of incidents. 
For example, when a leak is detected, the BN 
model assesses the probabilities of different 
subsystems (e.g., storage, compression, 
dispenser) being the source. Under normal leak 
conditions, the compression system is identified 
as the most probable source (0.4717), while in the 
case of an ignited leak, the storage system 
becomes the primary suspect (0.4670). This 
ability to pinpoint likely failure sources allows for 
targeted interventions, such as improving 
maintenance protocols or activating specific 
safety measures. The BN model also supports 
scenario-based risk analysis, simulating various 
operational conditions to assess their impact on 
individual risks. For example, in extreme 
scenarios like ignition and explosions, the 
individual risk for workers rises dramatically to 
0.1507, while residents face a lower but still 
significant risk of 0.0151. These insights 
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highlight the catastrophic consequences of such 
events and emphasize the need for robust 
mitigation strategies. By dynamically updating 
probabilities and providing actionable insights, 
the BN model empowers operators to implement 
proactive safety measures, such as emergency 
shutdowns or additional safety barriers, in 
response to evolving risks. This real-time 
adaptability ensures that risk assessments remain 
accurate and relevant, enhancing hydrogen 
refueling stations' overall safety and reliability.  

5. Conclusion 
 
This study highlights the effectiveness of a 
Bayesian Network (BN) approach for dynamic 
risk assessment and uncertainty quantification in 
hydrogen refueling stations (HRS). The BN 
model’s ability to incorporate real-time data and 
dynamically update risk probabilities enables 
proactive risk management, even under rapidly 
changing conditions. The model quantifies 
uncertainties by integrating probabilistic 
reasoning and expert knowledge, providing a 
comprehensive understanding of potential 
hazards and their impacts on stakeholders such as 
workers, customers, and residents.   
The BN framework supports scenario-based 
analysis, identifying high-consequence events 
like ignited leaks or explosions and evaluating 
their associated risks. It also identifies likely 
sources of failure, enabling targeted safety 
improvements. In conclusion, this study 
demonstrates that the BN approach enhances the 
accuracy and reliability of risk assessments while 
facilitating real-time decision-making. By 
addressing operational complexities and 
uncertainties, the framework contributes to safer 
and more resilient hydrogen infrastructure, 
supporting the broader adoption of hydrogen as a 
clean energy source. 
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