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A major challenge in AI is that models are sometimes confidently wrong, which can have severe consequences in
critical decision-making. One way to address this issue is through interpretable models or explainability methods
that provide reasons for predictions. These reasons can be scrutinized by humans to determine trust in the model;
however, explanations can be convincing yet incorrect. Another approach is uncertainty quantification, which
provides a measure of confidence in predictions. However, uncertainty alone is of limited value unless we understand
its basis.
In this paper, we recognize that explanations of predictions and confidence measures are useful for decision-
makers. However, we hypothesize that decision-makers could benefit even more from explanations of uncertainty.
This paper introduces an approach based on the Tsetlin Machine that provides predictions, confidence measures,
and explanations for both predictions and their uncertainty to assess how confidence explanations add value.
Additionally, we propose incorporating uncertainty explanations with “human-in-the-loop” feedback in a continuous
cycle to improve the model. This approach enhances both the technical and practical aspects of AI, making it more
reliable and trustworthy in high-stakes applications such as healthcare, energy, transport, and finance. Using real-
world data, we explore the importance of local interpretability—ensuring decision-makers gain relevant insights for
individual predictions and uncertainty—and global interpretability, which provides a comprehensive understanding
of the model’s decision process. This global understanding, enriched by expert feedback, enables further model
refinement.
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1. Introduction

The rapid advancement of AI has transformed
healthcare, finance, transportation, and energy,
aiding in diagnosis, market prediction, traffic op-
timization, and energy management. However, AI
models often function as ”black boxes,” lacking
transparency. This opacity hinders trust and adop-
tion, especially in high-stakes scenarios where
errors can have severe consequence (Kaminski,
2021).

AI models, particularly deep neural networks,
have achieved remarkable accuracy in various
tasks, yet they can still produce incorrect predic-
tions with a high degree of confidence (Nguyen
et al., 2015). This phenomenon underscores a crit-
ical challenge in AI: ensuring that model predic-
tions are not only accurate but also trustworthy.
Models that make confident but wrong decisions
can erode trust and reduce the willingness of users

to rely on automated systems (Ovadia et al., 2019).
To address the challenge of trust in AI, the field

has seen a growing interest in interpretable and
explainable AI (XAI). XAI aims to render AI deci-
sions more transparent by elucidating the logic be-
hind model predictions. By providing comprehen-
sible reasons for decisions, stakeholders can better
understand the model’s strengths and limitations
(Molnar, 2020). This understanding is crucial for
high-stakes decisions where the rationale for a
prediction is as important as the prediction itself.

While interpretability helps, it’s not enough on
its own. Explanations can be convincing but still
wrong, so it’s important to also measure a model’s
confidence (Lakkaraju et al., 2016). Uncertainty
Quantification (UQ) tackles this by showing how
confident a model is in its predictions, helping
spot cases where it lacks enough training data or
might be unreliable (Hüllermeier and Waegeman,
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2021).
Although UQ offers valuable insight, a static

measure of uncertainty is limited in its utility. To
fully exploit the benefits of UQ, decision-makers
must understand the basis of the uncertainty. In
most existing AI models, explanations are pro-
vided for predictions but not for the uncertainties
associated with them (Pearce et al., 2020). This
gap leaves decision-makers with half the picture:
they know the model is uncertain but lack insights
into why.

This paper hypothesizes that by providing ex-
planations for both predictions and the uncertain-
ties associated with them, decision-makers are
better equipped to make informed decisions. We
propose an innovative approach that leverages
the Tsetlin Machine, a transparent, logic-based
learning model Granmo (2018), to explain not
only model predictions but also the uncertain-
ties inherent to them. By categorizing predictions
into four groups—confidently correct, unconfi-
dently correct, confidently wrong, and unconfi-
dently wrong—we explore how a comprehensive
explanation of model outputs and their uncer-
tainties can significantly enhance the quality of
decision-making.

Furthermore, we expand the approach by inte-
grating “human-in-the-loop” feedback, creating a
continuous improvement cycle for the model. This
feedback loop not only heightens AI reliability
but also promotes an iterative dialogue between
the model and domain experts, ultimately refining
the decision-making process (Bansal et al., 2021).
We demonstrate the effectiveness of our method-
ology through empirical evaluations using real-
world data, emphasizing both local and global in-
terpretability, and underscore its potential impact
across various critical sectors.

2. Tsetlin Machines

The basic Tsetlin Machine (TM), discussed in this
section, is the foundation for other variants of
TMs, including the Probabilistic TM. TMs consist
of clauses that capture patterns in data in the form
of conjunctions of input binary variables or their
negation (together called literals). The number
of clauses, m, is set by the user and affects the

learning process.
Each clause, cj , is defined as:

cj = 1 ∧
⎛
⎝ ∧

k∈II
j

xk

⎞
⎠ ∧

⎛
⎝ ∧

k∈ĪI
j

¬xk

⎞
⎠ ,

where xk and ¬xk refer to the literals chosen for
clause j. The set IIj stores the indices of non-
negated literals, while ĪIj stores the indices of
negated literals.

Inclusion or exclusion of literals in clauses
are decided by Tsetlin Automata (TAs), with 2N

memory states, correspond to each literal in each
clause. The clause outputs 1 if all included literals
are true; otherwise, it outputs 0. The clauses are
divided into two groups. Clauses with odd indices
are given positive polarity, c+ are responsible for
learning patterns for class 1, while even-indexed
clauses are assigned negative polarity c− and learn
the patterns for class 0. The final output of the TM
is based on the majority of the clause outputs.

Learning in a TM involves guiding TAs in
clauses to correctly classify inputs using two types
of feedback: Type I and Type II (Granmo, 2018).
Type I feedback reinforces the patterns learned
when clauses output 1 when they should output
1, while erasing incorrectly recognized patterns.
Type II feedback combats false positive clause
outputs by systematically turning the clause out-
put from 1 to 0.

3. The Probabilistic Tsetlin Machine

The Probabilistic Tsetlin Machine (PTM) (Dar-
shana Abeyrathna et al., 2024) extends the stan-
dard TM by modeling the states of the TAs as
probability distributions rather than fixed states.
States of TA which represents kth literal in jth

clause in the PTM are represented by state prob-
ability vector SPVj,k, SPVj,k ∈ [0, 1]2N , repre-
senting the likelihood of the automaton being in
any of its 2N possible states. This allows the PTM
to more flexibly update its knowledge.

The clause output in the PTM is calculated in
the same way as in the TM, but with the states of
the TAs sampled from their SPVs. Type I and Type
II feedback are used in the same manner as in the
TM, but now, instead of updating states directly,
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Informed decision

making capacity

Stage 1

Stage 2

Stage 3

Stage 4

Accuracy of the model

Stage 1 + Explanation to predictions

Stage 2 + Confidence of the prediction

Stage 3 + Explanation to lower/higher confidence

Fig. 1. Increasing the information for the decision
maker in order to make informed decisions.

feedback is incorporated into Transition Proba-
bility Matrices (TPMs), which update the SPVs.
This process eliminates the need for explicit state
transitions and simplifies the learning process.

The PTM is also probabilistic during infer-
ence. When making predictions on new data, the
states of the TAs are sampled from their SPVs,
and the clause outputs are determined based on
these sampled states. This introduces variability in
the output, similar to Bayesian Neural Networks,
where multiple predictions may be generated for
the same input sample.

The PTM thus enhances the TM by providing
a probabilistic framework that allows for better
handling of uncertainty during both training and
inference, making it more suitable for tasks where
uncertainty quantification is important.

4. Methodology

The primary objective of this work is to enhance
the information available to decision-makers be-
yond traditional approaches. Model performance,
commonly evaluated on a validation set in terms
of validation accuracy, is a widely used met-
ric to assess the reliability of an AI model.
With advancements in explainable and inter-
pretable AI, decision-makers are now provided
with insights into model behavior, either at a
global level (global interpretability/explainability)
or for specific predictions (local interpretabil-
ity/explainability). Providing reasons for predic-
tions in a comprehensible format has been shown
to improve trust in decision-making processes.

Uncertainty quantification (UQ) is another criti-
cal aspect, offering a measure of the model’s con-
fidence in its individual predictions. When com-

bined with validation accuracy and interpretabil-
ity, uncertainty measures further enhance trust in
the decision-making process.

This work proposes an additional layer of infor-
mation by offering explanations for the observed
levels of uncertainty (low or high) in predictions.
By providing decision-makers not only with the
prediction, the rationale behind the prediction, and
the model’s confidence, but also the reasons for
varying levels of confidence, this approach aims
to significantly improve decision-making capac-
ity, flexibility, and trust in AI systems. We try to
illustrate this in Fig. 1.

The accuracy of AI models, the explainable
and interpretable AI, and the UQ are well-studied
areas of research. This paper explains how the
reasons for different levels of uncertainties can be
obtained with TMs.

In this study, a TM and a PTM are trained in
parallel. Specifically, the PTM updates its state
probability vectors using the same feedback pro-
vided during the TM training. This approach en-
ables the extraction of rules from the trained
TM for direct classification while obtaining un-
certainty measures from the trained PTM. Using
PTM, we predict each test sample a predefined
number of times, d. In a binary classification sce-
nario, if we divide the number of times a specific
test sample outputs 1 by d, we get the probability
that that sample is classified into class 1, p(ŷ = 1).
This probability can also be used to measure the
prediction entropy as follows:

H = −
1∑

i=0

p(ŷ = i) · log2(p(ŷ = i)) (1)

where p(ŷ = 0) = 1− p(ŷ = 1).
During inference, the probability of assigning

each sample to class 1, p(ŷ = 1), is computed.
Based on a user-defined threshold q, these proba-
bilities are used to categorize samples into high-
uncertainty and low-uncertainty classes. This pro-
cess results in a new dataset that retains the orig-
inal features but incorporates these uncertainty-
based labels. The newly labeled dataset is subse-
quently used to train another TM, which learns the
patterns associated with high and low uncertain-
ties. The complete process is illustrated in Fig. 2.
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Fig. 2. The proposed approach to explain uncertainties.

The information related to Stage 1, Stage 2, and
Stage 3 in Fig. 1 can be obtained after the first
round of training and inference. From the second
TM trained on the newly generated dataset, we
learn the reasons behind the higher or lower uncer-
tainties associated with individual samples needed
in Stage 4.

5. Experiments, Results, and Discussion

In this section, we present the experiments con-
ducted to evaluate the proposed approach, analyze
the results to assess its effectiveness, and discuss
the implications of the findings.

5.1. Experiments

In the context of finance, accurately predicting
bankruptcy is crucial for mitigating economic
losses. For this reason, interpretable machine
learning algorithms are often preferred over black-
box methods to enhance transparency and trust in
predictions (Kim and Han, 2003).

The bankruptcy dataset, which contains histor-
ical records of 250 companies, is used to evaluate
our approach. Each record includes six categorical
features relevant to bankruptcy prediction: Indus-

trial Risk, Management Risk, Financial Flex-

ibility, Credibility, Competitiveness, and Op-

eration Risk. Each feature is classified into one
of three states: Negative (N), Average (A), or
Positive (P). The target variable consists of two
classes: Bankruptcy and Non-bankruptcy. For
this study, we focus on the three most influential
features—Management Risk, Financial Flexi-

bility, and Competitiveness—selected through a
secondary analysis. To align with our method, the
ternary features are binarized using the threshold-
ing approach outlined in (Darshana Abeyrathna
et al., 2019), resulting in a dataset with 9 binary
features used for prediction.

A TM with merely four clauses is constructed to
classify companies into the Bankruptcy and Non-

bankruptcy classes. Each TA within each clause
is configured with 100 memory states per action
(N = 100). The Probabilistic TM, which learns
the state probabilities in parallel, is of the same
size as the regular TM. The precision parameter,
s, and the target parameter, T , are set to 2.

At the end of training, the PTM predicts each
sample 100 times (d = 100), providing the oppor-
tunity to measure both the probability of assign-
ing each sample to class 1 and the corresponding
prediction entropy. In this experiment, we set the
threshold q to 0.8, which defines the level of un-
certainty in classification. Specifically:

• Samples classified into class 1 with a
probability ≥ 0.8 are considered low-

uncertainty classifications for class 1.
• For samples classified into class 0, we use

the threshold 1 − q = 0.2. That is, if
the probability of a sample belonging to
class 1 is ≤ 0.2, we safely classify the
sample as class 0, marking it as a low-

uncertainty classification for class 0.
• All samples with a probability of being in

class 1 between 0.2 and 0.8 are catego-
rized as high-uncertainty samples.
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The newly generated dataset retains the original
features but now includes updated labels. These
labels correspond to the two new classes: low-

uncertainty and high-uncertainty. We train a
second TM to identify the factors associated with
these new classes. For this task, a TM similar to
the one used previously is deployed.

5.2. Results

We organize the results according to the different
stages illustrated in Fig. 1.

Stage 1: In the first stage, we evaluate the
classification accuracy of the TM. Despite using
merely four clauses, the TM achieves an accuracy
of 98.4%.

Stage 2: The second stage focuses on providing
explanations for the predictions. To accomplish
this with the TM, we analyze the patterns learned
by the clauses for their respective classes. At the
end of training, the clauses have converged to the
following patterns:

• Clause 1: Always outputs 0.
• Clause 2: Competitiveness is Average.
• Clause 3: Management Risk is NOT Pos-

itive AND Financial Flexibility is NOT

Positive AND Competitiveness is NOT

Positive.
• Clause 4: Competitiveness is Positive.

As we discussed in Section 2, Clause 1 and
Clause 3 learn patterns for class 1 (Bankruptcy),
while Clause 2 and Clause 4 learn patterns for
class 0 (Non-bankruptcy). After a careful analy-
sis of these patterns, we can derive a single global
rule that the TM has effectively learned for its
classifications, as follows:

Class =

⎧⎪⎪⎨
⎪⎪⎩

Bankruptcy IF Competitiveness

is Negative

Non-bankruptcy OTHERWISE.

(2)
Stage 3: Now, it is time to measure the confi-

dence of the predictions. First, we analyze the pre-
dictions of the training samples. We measure how
many of the predictions are confidently correct,
unconfidently correct, confidently wrong, and un-
confidently wrong, as we know the correct labels

Fig. 3. Prediction probabilities of different validation
points.

Fig. 4. Prediction Entropies of different validation
points.

and also using the threshold q = 0.8. The results
are summarized in Table 1.

Additionally, we created a new set of tests with-
out labels, covering all possible test cases that
can be generated using the three selected features,
each with three categories of values. The probabil-
ities and entropies associated with classifying all
27 samples into the Bankruptcy class were mea-
sured. Fig. 3 and Fig. 4 display these probabilities
and entropies, respectively. These measurements
can be used to determine which class label should
be predicted for each test case and with what level
of confidence.

Stage 4: This stage is dedicated to uncovering
the factors contributing to higher and lower un-
certainties. The final TM trained at this stage was
fed with 198 samples from the low-uncertainty
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Table 1. Predictions and their confidence captured with the PTM.

Group Percentage
Actual class

Bankruptcy Non-Bankruptcy
Confidently correct 78.4% 107 89

Unconfidently correct 0% 0 0
Confidently wrong 0.8% 0 2

Unconfidently wrong 20.8% 0 52

category (class 0) and 52 samples from the high-
uncertainty category (class 1). After training, the
TM achieved a training accuracy of 98.4%.

To gain insights into the patterns associated
with lower and higher uncertainties, we analyze
the clauses learned by the TM:

• Clause 1: Financial Flexibility is Positive
AND Competitiveness is Average.

• Clause 2: Competitiveness is NOT Average.
• Clause 3: Financial Flexibility is Average

AND Competitiveness is Average.
• Clause 4: Competitiveness is NOT Average.

Through a detailed analysis of the patterns
learned by the aforementioned clauses, we derive
the following global rule for classifying samples
into low-uncertainty and high-uncertainty cate-
gories:

Uncertainty =

⎧⎪⎪⎨
⎪⎪⎩

Low IF Competitiveness is

NOT Average

High OTHERWISE.

(3)
These findings are elaborated upon in the sub-

sequent section.

5.3. Discussion

To ensure reliable classification explanations, it is
crucial to calibrate the machine learning model
during Stage 1. In our study, the TM achieves a
robust accuracy of 98.4% at this stage. Provided
with this measure of accuracy, the decision maker
can trust the explanation obtained at Stage 2.

At Stage 3, the results summarized in Ta-
ble 1 reveal that the model demonstrates high
confidence when its predictions are correct. Un-
certainty arises primarily in instances of incor-
rect predictions. However, there are only two

cases where the TM confidently predicts Non-
Bankruptcy when the correct label should have
been Bankruptcy.

Interestingly, the predictions that can be made
from the probabilities in Fig. 3 do not align with
the rule found in Eq. (2). This is more evident
from the plot, which shows that when ‘Compet-
itiveness is Average OR Negative, THEN it is a
Bankruptcy’. This discrepancy arises due to the
way TAs in TM and PTM learn their include and
exclude actions differently. At the end of training,
the clauses in PTM output 1 as follows:

• Clause 1 outputs 1 around 99% of the time.
• Clause 2 outputs 1 when Competitiveness

is Average and still outputs 1 around
98% of the time when Competitiveness
is NOT Average.

• Clause 3 outputs 1 when Competitiveness is
Negative.

• Clause 4 outputs 1 when Competitiveness is
Positive.

From this, it is evident that when Competitive-
ness is Average, the Bankruptcy class is outputted
most of the time, while the Non-bankruptcy class
is outputted only occasionally, thereby behaving
differently from the rule in Eq. (2).

This is already a strong indication that ex-
planations of predictions and uncertainties alone
do not provide a satisfactory level of clarity re-
garding the predictions, rather they could create
confusions. Therefore, we proceed to analyze the
reasons behind the uncertainty. We already ob-
served that both TM and PTM agree on what
to output when the Competitiveness is Negative
(Bankruptcy) and when the Competitiveness is
Positive (Non-Bankruptcy). Hence the difference
resides on Competitiveness is Average. This has
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Fig. 5. Human-in-the-loop framework to improve the decision making and model performance.

been learned by the second TM as summarized in
Eq. (3).

To verify the above reasoning, we further ex-
amine the dataset. Here, we observe that when
Competitiveness is Negative, all samples belong
to the Bankruptcy class, and when Competitive-
ness is Positive, all samples belong to the Non-
Bankruptcy class. However, when Competitive-
ness is Average, 52 samples belong to the Non-
Bankruptcy class, while only 4 samples belong to
the Bankruptcy class. Given this distribution, it is
reasonable for the first TM to classify all samples
into the Non-Bankruptcy class when Competi-
tiveness is Average, as this occurs 92.8% of the
time in the training data. More importantly, this
confusion is recognized by the PTM in its rule in
Eq. (3), even though it is very easy to overlook.
This can be further connected to the numbers in
Table 1, where the 52 Unconfidently wrong classi-
fications of the Non-Bankruptcy class correspond
to the samples where Competitiveness is Average.

For this dataset, uncertain classifications have
mid-range probabilities, while confident ones are
distinctly high or low. Thus, varying q does not
impact results or decision rules, though exploring
different thresholds on other datasets could offer
insights.

5.4. A Framework to Further Enhance
the Performance

In this section, we explain how the information
we have gathered so far can be used to improve

decision-making and enhance the model’s per-
formance. Specifically, we propose incorporating
a human-in-the-loop (referred to as the decision
maker or domain expert) for decision-making, as
illustrated in Fig. 5. However, the workload of the
decision-making in this framework is significantly
reduced by involving them only in uncertain pre-
dictions, while certain predictions are directly for-
warded to the decision gate. The decision maker is
provided with reasoning for the classification, the
confidence of individual predictions (measured as
probabilities or entropies), and explanations for
higher or lower confidence levels.

For example, in the context of the above appli-
cation, the decision maker only needs to review
20.8% of the samples. When presented with a
sample of high uncertainty, the decision maker is
given the decision rule Eq. (2), the probabilities
for classification into each class, and the reasoning
for the high uncertainty. In this case, we expect
the classification probability to be between 0.2
and 0.8, with the reason for higher uncertainty
being “Competitiveness is Average”. Using their
expertise and domain knowledge, the decision
maker can then decide whether the sample should
be classified as Bankruptcy or Non-Bankruptcy
when Competitiveness is Average. This approach
is expected to yield more accurate decisions when
Competitiveness is Average compared to relying
solely on the class proportions in the training data.

Additionally, we propose leveraging the ex-
pert’s knowledge to enhance the model’s clas-
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sification accuracy. To test this, we assume the
expert’s classification for samples with “Competi-
tiveness is Average” is Non-Bankruptcy. Based on
this assumption, we augment the training set with
500 additional samples by manually correcting the
labels whenever a sample with “Competitiveness
is Average” was originally labeled as Bankruptcy.
With this updated training set, the TM achieves
a prediction accuracy of nearly 99.5%. This ap-
proach also significantly reduces the number of
uncertain classifications.

6. Conclusion

This paper introduces a novel approach for provid-
ing explanations of uncertainty in AI predictions
using Tsetlin Machines. By combining prediction
explanations with uncertainty quantification and
its explanations, we offer a tool for enhancing
decision-making in high-stakes scenarios. In the
broader context of safety and reliability science,
our idea of explaining uncertainty could be a way
to improve the reliability of AI enable systems,
because it provides a basis for deciding when to
trust such systems or not. Our experiments on the
Bankruptcy dataset validate the potential of the
proposed methodology for applications requiring
high reliability and interpretability. Future work
is required to refine the integration of uncertainty
explanations with human-in-the-loop systems.
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