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Operational demands in industries, such as the energy sector, underscore the critical need for reliable equipment 
capable of withstanding long-term planning and unpredictable factors. Reliability assessment is important for 
maintaining productivity and optimizing maintenance strategies, especially in scenarios where data limitations 
challenge traditional assessment methods. In this context, Bayesian inference has emerged as a dynamic tool to 
update reliability estimates using data from various hierarchical levels. However, conventional simulation 
techniques may lack computational efficiency when dealing with the reliability estimation of complex systems, 
creating opportunities to explore alternative approaches such as quantum computation techniques. Quantum 
Computing leverages principles of quantum mechanics, such as superposition and entanglement, to try to address 
these computational challenges more effectively. Previous works have applied quantum Bayesian networks using 
amplitude amplification methods to the context of risk and reliability, focusing on nodes representing discrete 
probability distributions. This research aims to enhance this approach by incorporating continuous marginal and 
conditional probabilities into the analysis, which is particularly relevant for systems that rely on these distributions 
to model events. We explore the encoding of continuous probability distributions within the amplitude amplification 
framework, aiming to improve the efficiency and precision of probabilistic inference. Additionally, we apply this 
methodology to Bayesian networks, benchmarking the performance of quantum methods against classical 
simulation techniques like Monte Carlo to identify scenarios where quantum techniques demonstrate clear 
advantages. 
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1. Introduction 
Reliability Engineering encompasses a broad 

spectrum of applications, among which Bayesian 
networks stand out as a fundamental tool for 
reliability estimation. These networks, 
extensively explored in the literature, have been 
applied in diverse contexts such as system 
diagnostics (Zhou, 2022), failure prediction 
(Zhang et al., 2024), and risk analysis (Wu et al., 
2015). For instance, classical Bayesian networks 
have been utilized in applications ranging from 
structure engineering (Hlaing et al., 2022) to 
human reliability analysis (Podofillini et al., 
2023). From a traditional computational 

perspective, Bayesian networks often rely on 
Monte Carlo simulations and other probabilistic 
inference methods to perform reliability 
assessments. While robust, these techniques are 
computationally intensive, particularly for large 
and complex systems. 

In recent years, advancements in quantum 
computing have paved the way for innovative 
approaches to Bayesian networks, giving rise to 
quantum Bayesian networks (QBNs) (Borujeni et 
al., 2021). Studies such as those by (San Martin 
and Droguett, 2023; San Martin, Parhizkar, et al., 
2023) have highlighted the potential of QBNs in 
reliability contexts.  
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Quantum computing offers unparalleled 
advantages in handling complex probabilistic 
computations due to its inherent parallelism and 
the exponential scalability of quantum states. This 
has opened new horizons for applications in 
reliability engineering, where precise and 
efficient modeling is crucial. Recent studies 
highlight, for example, the potential of quantum 
machine learning (QML): (Lins et al., 2024) 
applied QML to EEG-based drowsiness 
detection; (Correa‐Jullian et al., 2022) used QML 
for wind turbine fault detection; and (Maior et al., 
2023) explored QML for rotating machinery 
health management. Beyond QML, quantum 
computing has also shown promise in 
combinatorial optimization, as demonstrated by 
(San Martín et al., 2024), who proposed a 
quantum-based approach for optimal sensor 
placement in civil structures. Therefore, these 
new techniques could also explore the field of 
inference. 

Despite these advancements, a significant gap 
persists in the application of QBNs: the 
incorporation of continuous probability 
distributions. Many practical reliability problems 
rely on continuous distributions to model 
uncertainties and dependencies accurately. 
Existing quantum approaches to Bayesian 
networks primarily focus on discrete 
distributions, limiting their applicability in 
scenarios where continuous variables play a 
critical role. Bridging this gap is essential for 
advancing the practical utility of QBNs in 
reliability engineering. 

In this study, we aim to encode continuous 
probability distributions in quantum Bayesian 
networks. By combining quantum state 
preparation with Quantum Amplitude Estimation 
(QAE), we discretize and encode distributions, 
especifically the Normal distribution, by using 
rotation and controlled quantum gates.  As a proof 
of concept, we will apply this method to a 
hypothetical Bayesian network for system 
reliability estimation and compare its 

performance against the traditional Monte Carlo 
method. 

The remainder of this paper is organized as 
follows: Section 2 provides an overview of 
quantum computing principles. Section 3 outlines 
our proposed methodology for incorporating 
continuous distributions in quantum Bayesian 
networks. Section 4 presents the experimental 
setup and results. Finally, Section 5 concludes the 
paper and highlights directions for future 
research. 
2. Quantum Computing 

The definitions and concepts presented in this 
section are grounded in established principles of 
quantum computing and quantum mechanics. For 
a more comprehensive understanding, readers are 
encouraged to refer to the foundational literature 
in this field (Nielsen et al., 2010; Rieffel et al., 
2011; Scherer, 2019). 

Quantum computing is an emerging 
computational paradigm that processes 
information using the principles of quantum 
mechanics. Unlike classical computing, which 
relies on bits that take values of either 0 or 1, 
quantum computing utilizes quantum bits (qubits) 
that can exist in superposition states.  

A qubit can be described as a two-level 
quantum system, represented as a linear 
combination of basis states: 

  (1) 
Where α, and β are complex probability 

amplitudes satisfying the normalization condition 
|α|² + |β|² = 1. This superposition allows quantum 
computers to explore multiple computational 
paths simultaneously. 

Building on this concept, quantum gates 
manipulate qubits through unitary 
transformations. For instance, the Hadamard (H) 
gate transforms a qubit into a superposition where 
it has an equal probability (50%) of collapsing to 
either 0  or 1  upon measurement: 

 

 (2) 
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The Pauli matrices are fundamental quantum 
gates that perform single-qubit operations. The X 
gate, also known as the quantum NOT gate, flips 
the state of a qubit (  to  and vice-versa). The 
Y gate introduces a phase shift while flipping the 
qubit state, and the Z gate applies a phase flip, 
leaving unchanged but transforming  into 

: 

 

 (3) 
 

 

 (4) 
 

 

 (5) 
 

Rotation Gates introduce controlled 
transformation to qubits, adjusting their phase 
and, in some cases, their amplitude (  and ), 
allowing for finer control over quantum states. 
The rotation gates around different axes are given 
by: 

 

 

 
(6) 
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Another important concept is quantum 
entanglement. It is a phenomenon where qubits 
become correlated such that the state of one qubit 
instantaneously influences the state of another, 
regardless of distance. For example,  

  (9) 

Moreover, quantum measurement collapses 
the quantum state into one of the basis states, with 
probabilities given by the squared magnitudes of 
the coefficients. This irreversible process 

fundamentally distinguishes quantum computing 
from classical probability-based computation. 

Additionally, in quantum computing, 
interference occurs when quantum states combine 
in ways that enhance (constructive interference) 
or suppress (destructive interference) certain 
outcomes. This phenomenon allows quantum 
algorithms to direct computation toward the 
correct solutions while reducing the likelihood of 
incorrect ones, improving efficiency. 

Finally, quantum algorithms leverage the 
principles of superposition, entanglement, and 
interference to achieve exponential or quadratic 
speedups over classical approaches in specific 
problem domains. Some of the most well-known 
algorithms include: Shor’s algorithm for integer 
factorization, which runs in polynomial time 
using quantum Fourier transform; and Grover’s 
algorithm, which achieves quadratic speedup in 
unstructured search problems by iterating an 
amplitude amplification process   
compared to the classical complexity. This 
makes Grover's algorithm particularly useful for 
searching unsorted databases and solving 
combinatorial optimization problems. 

3. Quantum Amplitude Estimation 
QAE is a fundamental quantum algorithm that 

extends Grover's search to estimate the amplitude 
of a specific quantum state  (Tanaka et al., 2022). 
The problem addressed by QAE involves a 
unitary operator U acting on n+1 qubits. This 
operator is constructed such that: 

 
  (10) 

Where  and  are normalized quantum 
states, and   [0,1] represents the amplitude to 
be estimated. The objective of QAE is to 
accurately determine , which corresponds to the 
probability of measuring the ancillary qubit in the 
state |1 . An ancillary qubit is an additional qubit 
introduced to facilitate a quantum computation, 
often used for error correction, intermediate 
storage, or measurement purposes (Zoufal et al., 
2019). 
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The algorithm builds upon the concept of 
amplitude amplification, which generalizes 
Grover's operator Q. The amplification operator is 
defined as : 

  (11) 
Where  reflects about the 

initial state, and  reflects about 
the ancillary qubit state. Repeated applications of 
Q increase the amplitude of the desired state 
(Zoufal et al., 2019; Tanaka et al., 2022). 

A crucial aspect of QAE is the quantum phase 
estimation, which extracts the amplitude encoded 
as a phase. The eigenvalues of the amplification 
operator Q are given by , where θ 
satisfies . 

Using phase estimation, the angle θ is 
determined, and the amplitude a is computed as 

. The algorithm involves three 
primary steps. First, the initial state is prepared 
using the unitary operator U (

. 
Next, the quantum phase estimation is applied 

to the amplification operator Q to estimate phase 
θ. Finally, the amplitude a is extracted using the 
relation a = sin²(θ). The accuracy of QAE 
depends on the number of queries to Q and 
improves with the number of iterations m: Δa ~ 
O(1/m) (Zoufal et al., 2019). 

This leads to a quantum speedup, as QAE 
requires  queries to achieve an error ε (for 

< 1), compared to  in classical Monte 
Carlo methods. However, its practical 
implementation often necessitates fault-tolerant 
quantum computers due to its reliance on 
quantum phase estimation. To address this 
limitation, variants such as Iterative Amplitude 
Estimation (IAE) have been proposed, which 
reduce resource requirements by bypassing phase 
estimation. 

4. Proposed framework for Quantum Bayesian 
Networks with Continuous Distributions 
and Quantum Amplitude Estimation 
In this paper, we apply a quantum-enhanced 

Bayesian network framework to incorporate 

continuous probability distributions for reliability 
assessment. The methodology involves three 
main steps: (1) discretization and quantum 
encoding of continuous distributions, (2) 
construction of a quantum circuit to represent the 
Bayesian network, and (3) probabilistic inference 
using amplitude estimation. Additionally, we 
compare the quantum approach with classical 
Monte Carlo simulation to evaluate its 
performance.  

To demonstrate the proposed methodology, we 
consider a specific symple Bayesian network with 
four nodes, designed to model a reliability 
scenario in the context of industrial equipment 
maintenance (Fig. 1). 

 
Fig. 1. Example of a Bayesian network illustrating 
reliability modeling.  

 The network consists of the following nodes: 
� D (equipment wear level): represents the 

wear level of a critical component in the 
equipment, modeled as a continuous variable 
following a normal distribution 

 
� C (environmental conditions): represents 

the environmental conditions affecting the 
equipment, such as temperature or humidity. It 
depends on the wear level D, with the conditional 
probability . This 
reflects that harsher conditions are more likely as 
the wear level increases; 

� B (maintenance quality): represents the 
quality of maintenance performed on the 
equipment. It is an independent binary variable 
with , indicating a 60% chance of 
high-quality maintenance; 
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� A (equipment failure): represents the 
probability of equipment failure, which depends 
on both the maintenance quality B and the 
environmental conditions C. The conditional 
probabilities are defined as: 
o : Low 

failure probability under good 
maintenance and mild conditions; 

o  
Moderate failure probability under good 
maintenance but harsh conditions; 

o : High 
failure probability under poor maintenance 
but mild conditions; 

o : Very 
high failure probability under poor 
maintenance and harsh conditions. 

4.1. Discretization and quantum encoding of 
continuous distributions 
Continuous probability distributions can be 

discretized into a finite set of values to enable 
their representation in a quantum state. It is 
important to highlight that the methods and steps 
described in this work are specifically designed 
and analyzed under the assumption of a normal 
distribution, ensuring that the continuous 
variables are represented and processed 
accordingly within the quantum framework. 

For a continuous random variable D, for 
example, with a normal distribution , the 
probability density function (PDF) is given by: 

,  (12) 

where μ is the mean and σ is the standard 
deviation. The distribution is discretized 
into n points over the range [0,1]. The discretized 
probabilities  are calculated as: 

  (13) 

These probabilities are encoded into the 
amplitudes of a quantum state  using 
rotation gates ( ): 

  (14) 

Here,  represents the amplitude associated 
with the basis state . When the quantum state is 
measured, the probability of obtaining |  is given 
by , ensuring the correct encoding 
of the discretized distribution. To construct this 
state in a quantum circuit, each basis state  is 
prepared using an  gate with an angle 
computed as ). 

4.2. Construction of a quantum circuit to 
represent the Bayesian network 

The quantum circuit (Fig. 2) is designed to 
represent a Bayesian network with discrete and 
continuous nodes as follows (Borujeni et al., 
2021): 

� As initialization, Hadamard gates (H) 
are applied to the qubits , , and  to create a 
superposition state for D; 

� Node D is encoded into a quantum 
state  using rotation gates (RY) and n = 8 
points, requiring  qubits. These 
qubits are labeled, in Fig. 2, as , , and ; 

� The conditional probability 
 is modeled as a linear function of D (

). This is implemented using 
controlled rotation gates ), where: 

  (15) 
The qubit  (Fig. 2), represents C, and its state 
depends on the qubits , , and  (which 
encode D) 

� The discrete node B is independent and 
encoded using a single-qubit  rotation 
gate , where: 

  (16) 
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� The conditional probabilities of P(A = 
1 B, C) are encoded into the circuit using multi-
controlled rotation gate MCRY(θ). In Fig. 2, the 
qubit  represents A, and its state depends on the 
qubits  (for C) and  (for B). 

4.3. Probabilistic inference using amplitude 
estimation 

The methodology was implemented using 
Qiskit, an open-source quantum computing 
framework developed by IBM. Qiskit provides 
tools for designing quantum circuits, simulating 
quantum algorithms, and running experiments on 
real quantum hardware. The Qiskit Aer simulator 
was employed to simulate the quantum circuit. 
This simulator allows for noise-free execution of 
quantum algorithms. 

The probabilistic inference is performed 
using the IAE algorithm. The goal is to estimate 
the probability P(A = 1) of the target node A. The 
IAE algorithm iteratively refines the estimate to 
achieve the desired precision  and confidence 
level 1−α. Here we used 0.0001 and 0.95, 
respectively. 

The IAE algorithm iteratively refines the 
estimate of  by performing quantum 

phase estimation on the target qubit . The 
results were compared with a classical Monte 
Carlo simulation (100,000 samples). The 
estimated probability P(A = 1|B, C) and associated 
metrics are summarized below: 

Table 1. Comparison of Quantum and Monte Carlo 
Methods. 

Method 
Estimated 
Probability 

95% 
Confidence 

Interval 

Standard 
Error 

QAE 0.51876 
[0.51875, 
0.51878] 

1.57e-05 

Monte 
Carlo 

0.58800 [0.55749, 
0.61851] 

0.01556 

The results demonstrate notable differences 
between the quantum and Monte Carlo 
approaches in estimating the P(A = 1). The 
quantum method yielded an estimated probability 
of 0.51876, with [0.51875, 0.51878] as 95% 
confidence interval and a low sample mean 
standard error of 1.57e-05. In contrast, the Monte 
Carlo method produced a higher estimated 
probability of 0.588, but with a considerably 
wider 95% confidence interval, [0.55749, 
0.61851], and a significantly larger standard error 
of the sample mean (0.01556). While the quantum 

Fig. 2. The quantum circuit representing the Bayesian network. The circuit encodes the probabilities of nodes A, B, C, D. 
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approach provides a much narrower confidence 
interval and lower variability, the discrepancy in 
estimated probabilities suggests the need for 
further analysis. 

5. Conclusions  
The results highlight the potential of 

quantum methods for probabilistic inference in 
Bayesian networks, offering lower variance 
compared to the traditional Monte Carlo 
approach. While the quantum method 
demonstrated high precision, the discrepancy in 
probability estimates suggests the need for further 
validation to assess potential biases introduced by 
quantum encoding and estimation processes. 
Additionally, despite its advantages in variance 
reduction, practical implementation on near-term 
quantum hardware remains a challenge, 
especially in terms of computational cost and 
scalability. Expanding this approach to more 
complex Bayesian networks will be essential to 
fully understand its applicability. 

For reliability engineering, these findings 
point to quantum computing as a promising tool 
for risk assessment and decision-making under 
uncertainty. However, further exploration is 
needed to refine the method and ensure its 
robustness. Future research should test alternative 
probability distributions beyond the Normal 
distribution, such as Exponential, Lognormal , 
and Weibull, to evaluate whether quantum 
techniques consistently improve inference 
accuracy. Additionally, investigating key 
parameters – such as the number of qubits, IAE 
configurations, and the number of shots used in 
simulations — could help optimize performance 
and enhance reliability assessments. 

Inference remains a promising area for the 
application of quantum computing, with 
opportunities to refine algorithms and explore 
hybrid quantum-classical approaches. Continued 
research in this direction could lead to more 
efficient methods for reliability analysis, 
particularly in computationally demanding 
scenarios. 
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