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The rise of Artificial Intelligence (AI) and Industry 4.0 has led to a growing interest in predictive maintenance
strategies, which offer benefits like reduced downtime, increased availability, and improved efficiency. This paper
explores data-driven predictive maintenance of spare parts at a smart manufacturing company, based on AI
methodologies to enhance efficiency and reduce downtime. The success of a smart manufacturing company is partly
attributed to its advanced production facilities, particularly the precision injection moulds used for producing detailed
and consistent parts. Injection moulding involves melting plastic and injecting it into a mould under high pressure.
These moulds consist of many critical spare parts, such as gate bushes and inserts, which are prone to wear and tear
due to intense pressures and temperatures. Failures in these small parts can halt production and affect efficiency.
This study highlights the limitations of deep learning models due to insufficient data and the need for explainability
and interpretability of models due to interaction with non-technical personnel. Also, results show that tree-based
classification models, particularly Random Forest (RF) and XGBoost, perform best, with test accuracies of 69.59%
for gate bushes and 69.23% for centre units. This investigation advances the manufacturing company’s predictive
maintenance capabilities, offering insights for future AI-driven maintenance optimization, leading to reduced costs,
enhanced efficiency, and improved health and safety standards.
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1. Introduction

Maintenance can be defined as the upkeep of
assets, such that they can be used to their full
productive capacity. This involves the routine in-
spection, servicing, and repair of assets to pre-
vent breakdown and prolong their lifespan. The
key benefits to maintenance come in the form of
preventing unexpected downtime, reducing long-
term costs, and ensuring consistent quality of the
produced goods.

Traditional approaches to maintenance involve
either run-to-failure or preventive maintenance
and have served the industry well for many years.
Run-to-failure strategies such as corrective or re-
active maintenance, which involves addressing is-
sues as they arise, and preventive maintenance,
which is based on scheduled servicing, have their
own merits. However, they also come with inher-
ent limitations. The potential for missed degrada-
tion, inaccurate lifespan estimates, and the resul-

tant unexpected failures can lead to costly repairs,
production disruptions, unplanned overtime costs,
critical safety risks, and an overall decrease in
operational stability Gulati and Smith (2009).

With the evolution of technology such as the
emergence of artificial intelligence (AI), a new
maintenance approach is emerging: predictive
maintenance. This approach leverages historical
data and Machine Learning (ML) to predict when
a part is likely to fail, allowing for timely mainte-
nance and replacement/repair. Additionally, Prog-
nostics and Health Management (PHM) has be-
come a crucial aspect of modern maintenance
strategies. PHM integrates sensor data, anomaly
detection, diagnostics, and prognostics to predict
the Remaining Useful Life (RUL) of components
and systems, thereby enabling proactive main-
tenance decisions. This project aims to explore
the potential of AI, specifically explainable AI,
in predictive maintenance, with a focus on the
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development and implementation of a predictive
maintenance system on historical data of injection
moulds in a smart manufacturing company.

2. Business Justification

At its essence, maintenance aims to minimize as-
set downtime and enhance production reliability.
A well-designed maintenance strategy not only
improves efficiency and production throughput,
but also reduces worker overtime, enhances em-
ployee safety, improves product quality, and min-
imizes production delays (Mobley, 2002).

The current maintenance strategy in the smart
manufacturing company (hereafter referred to as
SMC) considered for this study consists of a mix
of reactive and proactive approaches. In other
words, the maintenance strategy combines run-
to-failure strategies with scheduled maintenance
based on either time or other relevant metrics.
While these strategies are not inherently flawed,
they may inadvertently lead to a decline in quality
if an asset incurs damage or deteriorates prema-
turely. This can result not only in financial losses
but also in a dip in customer satisfaction.

Furthermore, past studies referenced by Gu-
lati and Smith (2009) indicate that a well-
implemented predictive maintenance strategy can
provide savings of 7-15% when compared to a
standalone preventive approach. A study cited by
Mobley (2002) demonstrated how the implemen-
tation of a computer-based maintenance system
enabled a cable manufacturer to experience an
increase of 50% in production capability without
any corresponding increase in maintenance staff.
This lead to a 60% increase in overall productivity.

As product quality remains a top priority for
the SMC, any decrease in quality due to damaged
or under-performing parts can result in signifi-
cant financial losses and adversely affect customer
satisfaction. The injection moulds, being custom-
made and quite expensive, represent a substantial
investment for the SMC. Damage to these moulds
not only generates huge losses but also disrupts
the production process, further adding to the fi-
nancial and operational strain.

Implementing an AI solution for predictive
maintenance can significantly mitigate these risks.

By accurately forecasting when repairs or mainte-
nance should be performed, the SMC can reduce
maintenance costs and increase production effi-
ciency. This approach ensures maintenance is per-
formed exactly when needed, avoiding unneces-
sary downtime or premature interventions. More-
over, this predictive capability can potentially in-
crease safety, reducing the chance of catastrophic
failures that could endanger workers or halt pro-
duction lines.

Additionally, this foresight leads to inventory
reduction, as spare parts for the injection molds
can be ordered on an as-needed basis rather than
kept in large quantities. This not only saves on
storage space but also optimizes cash flow and
reduces inventory costs.

Therefore, considering the significant benefits
that can be derived from an effective maintenance
strategy, it is evident that implementing an AI so-
lution for predictive maintenance would be highly
advantageous.

3. Theoretical Basis and Related Work

This section will highlight important related work
regarding the topic of predictive maintenance as
well as provide a theoretical basis for understand-
ing the ways in which such a problem can be
solved. The findings in this section will be used to
discover a methodology for solving the problem
of predictive maintenance for the SMC.

3.1. Theoretical Basis

Over time, assets deteriorate due to a multitude
of reasons such as reduced strength, increased
stress, or design flaws. Determining the optimal
timing for asset replacement or repair is done
through what is known as a maintenance strategy.
These strategies revolve around the balance of
prolonging an asset’s useful life while maximizing
uptime. Choosing a run-to-failure approach may
maximize an asset’s useful life, i.e. the production
capability, but it can result in additional costs
stemming from potential damage and production
downtime upon failure. Conversely, a preventive
maintenance strategy, while enhancing uptime, of-
ten requires unnecessary repairs, leading to pro-
duction losses and increased labor. With this in
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mind, it is the predictive maintenance strategy
which strikes the best balance as it leads to max-
imized uptime and should only require repair just
before the asset’s useful life has been exerted (see
Figure 1).

Fig. 1. Asset health over time for the preventive
maintenance (marked in blue), predictive maintenance
(marked in red), and run-to-failure (marked in green)
strategies.

In predictive maintenance, two primary ap-
proaches are commonly employed; physical-
based and data-driven approaches (Paolanti et al.,
2018; Wen et al., 2022). Physical-based models
utilize mathematical representations to present the
degradation process. These models require a thor-
ough understanding of degradation mechanisms,
which often renders them impractical or inef-
fective in real-world applications due to system
complexity or unclear degradation mechanisms.
In contrast, data-driven models leverage ML tech-
niques to detect patterns and anomalies within
raw data, making them well-suited for predictive
maintenance tasks, especially in the era of Indus-
try 4.0, big data, and AI as a whole.

Data-driven models can be further categorized
into two sub-types (Wen et al., 2022; Taşcı et al.,
2023):

(1) Statistical-based models
(2) AI models

Statistical-based models typically monitor
degradation trajectories in a probabilistic manner,
while AI-based approaches utilize ML algorithms
like RF, support vector machines, or deep learning

to extract features and predict an asset’s RUL.
Recent advancements in AI have positioned data-
driven approaches as the most promising method
for predictive maintenance (Paolanti et al., 2018;
Taşcı et al., 2023; Wen et al., 2022).

When employing AI models, the predictive
maintenance problem can be approached in 3
ways:

(1) Binary classification
(2) Regression
(3) Multi-class classification

Binary classification predicts whether an asset
will fail within a specific time frame or determines
the asset’s current state (e.g. healthy or unhealthy).
Regression forecasts continuous values, such as
calculating the RUL of an asset in days, kilome-
ters, etc. Multi-class classification estimates mul-
tiple outcomes, such as predicting an asset’s health
status or likelihood of failure within different time
intervals.

Selecting the appropriate problem classification
depending on factors such as dataset type is cru-
cial in the development of an effective predictive
maintenance application.

3.2. Performance Evaluation

Performance evaluation is a critical aspect of
assessing the effectiveness of predictive main-
tenance models. In the context of classification
models, several common performance evaluation
metrics are utilized to measure the model’s accu-
racy and effectiveness. These metrics include ac-
curacy, confusion matrices, precision, recall, and
F1-score (Lee et al., 2019; Paolanti et al., 2018;
Aslantas et al., 2022).

• Accuracy: Accuracy measures the proportion
of correctly classified instances out of the total
instances.

• Confusion Matrices: Confusion matrices
provide a breakdown of correct and incorrect
predictions made by a classification model.

• Precision: Precision quantifies the proportion
of correctly predicted positive instances out of
all instances predicted as positive.

• Recall: Recall calculates the proportion of
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correctly predicted positive instances out of
all actual positive instances.

• F1-Score: The F1-score is the harmonic mean
of precision and recall, providing a balanced
measure of a model’s performance.

For regression models, performance evalua-
tion focuses on metrics that assess the accuracy
and reliability of the model’s predictions. Com-
mon performance evaluation metrics for regres-
sion models include Root Mean Squared Error
(RMSE), Mean Squared Error (MSE), Mean Ab-
solute Error (MAE), Mean Absolute Percentage
Error (MAPE), and R-squared (R2) (Wen et al.,
2022; Ayvaz and Alpay, 2021).

• MSE: calculates the average of the squared
differences between predicted and actual val-
ues.

• RMSE: measures the square root of the av-
erage of the squared differences between pre-
dicted and actual values.

• MAE: computes the average of the absolute
differences between predicted and actual val-
ues.

• MAPE: represents the average percentage
difference between predicted and actual val-
ues.

• R2: quantifies the proportion of the variance
in the dependent variable that is predictable
by the independent variables.

These performance evaluation metrics (Gareth
et al., 2013; Géron, 2022) play a crucial role in es-
timating the accuracy and reliability of predictive
maintenance models.

3.3. Related Work

Predictive maintenance and PHM in general, has
gathered significant attention in recent years using
advanced ML techniques to forecast equipment
failures. This section reviews several studies that
have contributed to the field, showcasing a variety
of approaches and methodologies.

Lee et al. (2019) focused on predictive mainte-
nance for two critical components of machine tool
systems: the cutting tool and spindle motor. Utiliz-
ing data from sensors installed on the equipment,

they developed algorithms capable of predicting
failure events categorized into normal, warning,
and failure stages. Their approach employed sup-
port vector machines (SVM) and artificial neural
networks (ANN), specifically recurrent neural net-
works (RNN) and convolutional neural networks
(CNN), complemented by principal component
analysis (PCA) for dimensionality reduction. The
results were promising, with RNNs achieving an
average accuracy of 93%, SVMs 87%, and CNNs
84%.

Paolanti et al. (2018) explored predictive main-
tenance within the context of Industry 4.0, fo-
cusing on induction motors monitored through
internet of things (IoT) sensors. They also treated
the problem as a multi-class classification task
with four distinct classes, employing a RF
model. This model demonstrated impressive per-
formance, achieving an overall accuracy of 95%
on a large dataset of 530,731 samples with 15
features collected in real-time.

Regarding prediction of RUL in PHM, an in-
teresting approach was presented by Taşcı et al.
(2023), who aimed to predict the RUL for equip-
ment used in manufacturing consumer hygiene
products. Without a predefined target variable
for RUL, they calculated the time until the next
stoppage thus creating their own target variable
for RUL prediction. The study compared several
ML models, including support vector regression
(SVR), multilayer perceptron (MLP), RF, and ex-
treme gradient boosting (XGBoost). The decision
to exclude deep learning models from the compar-
ison was strategic, driven by the relatively small
size of the dataset and the desire to avoid the
computational complexity associated with these
models. One of the key aspects of this study was
its comprehensive approach to dataset prepara-
tion. The researchers created multiple versions of
the dataset to evaluate the impact of various pre-
processing techniques on model performance. The
standard dataset encompassed all collected data,
serving as a baseline for comparison. In contrast,
the stops-removed dataset excluded periods of
production halt, based on the hypothesis that such
intervals introduced noise rather than informative
data. Another dataset employed an autoencoder
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to achieve dimensionality reduction. Additionally,
the researchers experimented with clustering to
segment the data into meaningful groups before
model training, and they also explored the effects
of removing highly correlated features to assess
the impact on model accuracy.

Ayvaz and Alpay (2021) utilized real-time IoT
sensor data for predictive maintenance in manu-
facturing production lines. Their dataset contained
over 8.3 million rows and 101 features, analyzed
through a regression task. Six ML algorithms
were compared, with RF and XGBoost models
outperforming others, achieving R-squared values
of 0.982 and 0.979, respectively. PCA was also
applied for dimensionality reduction.

Aslantas et al. (2022) investigated the predic-
tion of RUL for plastic injection moulding ma-
chines using data from IoT sensors. They em-
ployed decision tree regression, XGBoost, and
RF regression models across three datasets from
different machines. The RF model exhibited the
highest performance, with an average R-squared
of 0.989 across the datasets, followed by XGBoost
at 0.967.

These studies highlight the many applications
and methodologies in predictive maintenance, un-
derscoring the potential of ML techniques to sig-
nificantly enhance maintenance strategies across
various industries.

4. Methodology

4.1. Data Description

The dataset, comprises two primary components:
notification data and master data. The notification
data contains records of maintenance activities,
including equipment numbers (injection mould
IDs), spare parts maintained, shot counts at noti-
fication time, and maintenance dates. The master
data provides static information about each in-
jection mould, such as plastic type requirements,
specifications, and production capabilities.

The dataset spans from April 2011 to March
2024, encompassing 64,020 maintenance notifi-
cations across 9,157 unique injection moulds and
2,553 unique spare parts. The master data contains
38 features, while the notification data comprises
15 features. Due to the dataset’s complexity and

the impracticality of predicting maintenance for
all spare parts, the analysis focuses on gate bushes
and centre units, identified through stakeholder
consultation based on cost and delivery lead time
considerations.

Data quality assessment revealed missing noti-
fication dates, which were excluded to maintain
integrity. The notification frequency has shown a
steady increase since the system’s implementation
in late 2012, with a notable decline in 2024 due to
incomplete notifications.

4.2. Problem Formulation

The predictive maintenance challenge is ap-
proached through two distinct methods: regres-
sion and multi-class classification. The target vari-
able for both approaches is defined as “shots un-
til next maintenance” rather than calendar days,
as shot count provides a more direct measure of
mould usage and wear.

4.2.1. Regression Approach

The regression approach directly predicts the
number of shots until the next maintenance event
is required. This method provides the highest
granularity for maintenance scheduling but faces
challenges due to the significant variability in shot
counts, which range from thousands to millions of
shots between maintenance events.

4.2.2. Classification Approach

The classification approach segments the predic-
tion into four time intervals based on production
days: 0-49 days, 50-100 days, 101-300 days, and
301+ days. This categorization was informed by
data quartiles and stakeholder requirements, par-
ticularly the need for 6-7 weeks advance notice
for maintenance scheduling.

The final dataset comprises 981 instances for
gate bushes and 605 for centre units. Gate bushes
show a higher concentration of maintenance
events in the shortest interval (0-49 days, n=370),
while centre units display a more balanced dis-
tribution across intervals, with a slight skew to-
ward longer maintenance periods (101-300 days,
n=219). This distribution pattern suggests differ-
ent maintenance characteristics between the two
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components, possibly reflecting their distinct roles
and wear patterns in the injection moulding pro-
cess.

4.3. Model Selection

Based on the literature review and dataset char-
acteristics, two tree-based models were selected:
RF and XGBoost. These models were chosen for
their:

• Demonstrated effectiveness in handling com-
plex, non-linear relationships

• Robustness to class imbalance
• Interpretability for non-technical stakeholders
• Suitability for the available dataset size

Deep learning approaches were excluded due to
insufficient data volume and reduced interpretabil-
ity for stakeholder communication.

5. Results and Discussion

The models were trained using 85% of the dataset
with a temporal split for testing to prevent data
leakage. A 5-fold cross-validation strategy was
implemented to ensure result robustness. The
dataset included 46 engineered features, derived
from the original 15 features through various
transformations and aggregations.

5.1. Regression Performance

The regression models attempted to predict the
exact number of shots until next maintenance.

Table 1. Performance Metrics for Models with
Feature Engineering

Metric Gate Bushes Centre Units

RF XGB RF XGB

R² Score 0.152 0.087 0.182 0.012
RMSE (days) 74.14 75.96 82.06 88.17
MAE (days) 58.93 59.92 64.32 68.11

Note: Test metrics shown. RMSE and MAE in production
days.

The regression results show limited predictive
power, with R2 scores below 0.2 for all mod-
els. This poor performance can be attributed to

the high variability in the target variable, with
shots until next maintenance ranging from 271 to
2,560,452 for gate bushes and 4,133 to 3,154,941
for centre units. This wide range and high standard
deviation pose significant challenges for precise
predictions.

5.2. Classification Performance

The classification approach categorized mainte-
nance predictions into four intervals: 0-49 days,
50-100 days, 101-300 days, and 301+ days.

Table 2. Classification Accuracies for Models

Model Mean CV Accuracy Test Accuracy

Gate Bushes RF 0.507 ± 0.092 0.696
Centre Units RF 0.546 ± 0.068 0.692
Gate Bushes XGB 0.461 ± 0.105 0.615
Centre Units XGB 0.506 ± 0.081 0.637

Note: CV: Cross-validation results shown as mean ± standard devi-
ation.

Table 3. Detailed Performance Metrics for RF Models

Time Interval Gate Bushes Centre Units

Precision Recall Precision Recall

0-49 days 0.82 0.66 0.88 0.33
50-100 days 0.85 0.39 0.83 0.38
101-300 days 0.60 0.90 0.72 0.86
301+ days 0.58 0.88 0.56 1.00

Note: Results for RF models, which demonstrated superior perfor-
mance.

The classification approach showed signifi-
cantly better results than regression, with RF mod-
els achieving test accuracies of approximately
69% for both components. Particularly notewor-
thy is the high precision (0.82-0.88) for the critical
0-49 days category, indicating reliable predictions
for immediate maintenance needs. This high pre-
cision is especially valuable given the cost impli-
cations of spare parts procurement.

The models demonstrate strong performance
in identifying maintenance needs in the 101-300
days interval (recall > 85%) but struggle with
the 50-100 days interval (recall ∼ 38 − 39%).
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This pattern suggests that the models are more
reliable for short-term and long-term predictions
than medium-term forecasts.

The detailed performance of the RF models can
be visualized through confusion matrices (Fig-
ures 2 and 3).

Fig. 2. Confusion Matrix for gate bushes RF model on
test set

Fig. 3. Confusion Matrix for centre units RF model on
test set

The confusion matrices reveal important pat-
terns in model predictions. For gate bushes, the
model correctly identifies 42 instances in the criti-
cal 0-49 days class, with most misclassifications
falling into adjacent time intervals. This pattern
of confusion between neighboring classes is ex-
pected and less problematic from a practical per-
spective. The centre units model shows similar
patterns but with more pronounced difficulties in
capturing all instances of immediate maintenance

needs, often misclassifying them into longer time
intervals.

Both models demonstrate stronger performance
in the 101-300 days category, suggesting better ca-
pability in identifying medium-term maintenance
needs. The varying performance across different
time intervals likely reflects the underlying main-
tenance patterns of these components and the rela-
tive frequency of maintenance events in each time
period.

Several factors contribute to the superior perfor-
mance of the classification approach over regres-
sion:

• Simplified problem space through discretiza-
tion of the highly variable target

• Reduced sensitivity to outliers and noise in the
maintenance data

• Better alignment with practical maintenance
planning needs

However, data quality remains a challenge, par-
ticularly due to:

• Unstructured communication between depart-
ments leading to duplicate entries

• Inclusion of cleaning activities alongside
maintenance records

• Free-text input in the recording system caus-
ing information loss

Despite these limitations, the classification
models, particularly RF, provide actionable in-
sights for maintenance planning, with high preci-
sion in critical short-term predictions supporting
cost-effective spare parts management.

6. Conclusion and Future Work

This study developed and evaluated AI models
for predicting the maintenance of spare parts
in SMC’s injection moulds. While the regres-
sion approach showed limited success due to
high data variability, the classification approach
demonstrated promising results, achieving test
accuracies of approximately 69% for both gate
bushes and center units using RF models. Par-
ticularly noteworthy is the high precision (0.82-
0.88) achieved for the critical 0-49 days cate-
gory, indicating reliable predictions for immediate
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maintenance needs.
The complexity of the predictive maintenance

challenge became evident throughout the study.
Wide variability in spare part reliability, manual
data entry leading to inconsistencies, lack of com-
ponent state information, and diverse maintenance
activities ranging from routine cleaning to com-
plete replacement all contributed to the complex-
ity of the problem. Despite these challenges, the
results demonstrate the potential for implementing
data-driven predictive maintenance at SMC.

Several immediate improvements could en-
hance the current approach. Data augmentation
and sampling techniques could improve predic-
tion accuracy for the critical 0-49 days class, while
alternative binning strategies might optimize clas-
sification performance for different spare parts.
For the regression approach, reducing prediction
granularity to thousands of shots rather than indi-
vidual shots could potentially improve model per-
formance by reducing data noise and variability.
Furthermore, standardizing maintenance logging
procedures would significantly improve data qual-
ity and, consequently, model performance.

Available data type was limited to records
of maintenance activities and static information
about each injection mould. Hence, PHM could
not be applied in its full capability, and looking
ahead, there should be more focus on integrating
additional data sources, particularly the IoT sensor
data, which aligns with current industry best prac-
tices in predictive maintenance. Natural language
processing techniques could be employed to ex-
tract valuable insights from free-text maintenance
records, potentially revealing patterns and infor-
mation not captured in the structured data. Ad-
vanced feature engineering methods for categori-
cal data, such as embeddings or optimized one-hot
encoding, could also enhance model performance.

While the current results may not match state-
of-the-art performance levels, they provide a
solid foundation for predictive maintenance ca-
pabilities. The classification approach, in partic-
ular, shows promise for practical implementa-
tion, potentially leading to improved maintenance
scheduling and cost savings. To validate these
benefits, comprehensive testing in production set-

tings would be necessary to measure the system’s
impact on mean time between failures and overall
maintenance efficiency.
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