
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P6239-cd

A Time-series Data Generation Tool for Risk Assessment of Robotic Applications

Yuliang Ma1, Apurv Patel1, Don Kurian1, Julien Siebert2, Silvia Vock3, Andrey Morozov1

1 University of Stuttgart, Institute of Industrial Automation and Software Engineering (IAS), Germany.
E-mail: {first.last}@ias.uni-stuttgart.de
2 Fraunhofer Institute for Experimental Software Engineering, Germany.
E-mail: {last.first}@iese.fraunhofer.de
3 Federal Institute for Occupational Safety and Health (Bundesanstalt für Arbeitsschutz und Arbeitsmedizin,
BAuA), Germany. E-mail: {last.first}@baua.bund.de

Robotic systems increasingly rely on artificial intelligence (AI) to enhance their capabilities in performing complex
tasks across various domains. The development and evaluation of AI systems usually require high-quality datasets.
In addition to normal datasets, faulty datasets are critical for enabling anomaly detection and failure prevention,
which are essential for ensuring the safety and reliability of safety-critical robotic applications. However, faults are
rare in real-world environments. Although fault injection techniques allow for the manual injection of configurable
faults, deploying such methods directly in real-world settings is rather risky. As such, it is important to develop
a data generation tool which is low-cost, safe, and efficient. To address this, we developed a time-series data
generation tool for the risk assessment of robotic applications. In this paper, we used Robot Operating System (ROS)
Quigley et al. (2009) as the middleware. This ROS-based simulation tool integrates three key modules: (1) a Gazebo-
based scene generator that can configure different working scenarios (e.g., drilling and welding) by adjusting end-
effectors, workpieces, and hand positions; (2) an online fault injector that can introduce faults into robotic systems
with configurable parameters; and (3) a risk monitor that records faulty data and safety violations in real time by
measuring the distance between hands and end-effectors. Proposed tool facilitates the generation of time-series fault
data and helps identify faults that may pose risks in human-robot collaboration scenarios. Additionally, the proposed
simulation tool enables fast and safe deployment for other robot-related research areas, e.g., deep learning-based
anomaly detection, failure prediction, and risk assessment.

Keywords: Fault injection, execution monitoring, robotic manipulator, human-robot collaboration.

1. Introduction

Currently, AI is increasingly enhancing the ability
of robotic systems in many fields Vrontis et al.
(2023), and valid datasets are usually critical for
deploying AI agents. Compared with the normal
dataset collected when the robot operates nor-
mally, datasets with anomalies are equally impor-
tant for anomaly detection and failure prevention
in robotic applications. In addition, modern robots
can perform various complex tasks by leveraging
dense integration among multiple sensors (e.g.,
cameras, IMU sensors, LiDAR). This intensive
integration between hardware and software in-
creases the behavioral and structural complexity
of robotic systems, which significantly raises the
likelihood of faults and errors. These issues can
lead to hazards and unexpected accidents, espe-
cially in human-robot collaboration (HRC) sce-

narios, where safety is critical. Sensor faults and
errors in such environments can threaten human
safety. Deep learning-based anomaly detection
(DLAD) methods show promise in identifying
errors and enhancing safety proactively Luo et al.
(2021), Chirayil Nandakumar et al. (2024). How-
ever, the effects of sensor faults and errors are
uncertain and it is essential to study the abnor-
mal behaviors caused by these issues. For detect-
ing unsafe robot behaviors, existing methods can
generally be categorized into reactive approaches
Inceoglu et al. (2021) and proactive approaches
Ji et al. (2022). The availability of effective data
and labels is critical for all these studies. However,
faults and errors are rare in real-world scenarios,
and obtaining risk labels can be both challenging
and unsafe. As such, it is necessary to have a data
generation tool that could generate faulty datasets

1749



1750 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Fig. 1. Overview of the proposed tool.

in robotic applications. To address this challenge,
we propose a time-series data generation tool
based on the ROS-Gazebo simulator. This tool
can (1) generate configurable industrial scenar-
ios, (2) inject sensor faults into robots online,
and (3) monitor and label hazards automatically.
Specifically, we define configurable scenarios for
practical tasks such as welding and drilling. Faults
with random parameters are injected into the joint
sensors of the robotic arm, and hazards are au-
tomatically labeled by monitoring the distance
between the end-effector and the human hand.
An overview of the proposed tool is shown in
Fig. 1. The main contributions of this work are
summarized as follows:

• A time-series data generation tool for manip-
ulator joint states. This tool simulates various
industrial scenarios and injects two types of
signal faults into joint sensors in real time,
recording unsafe behaviors caused by faults.
Additionally, it includes an offline fault injec-
tion feature for post-processing. This easy-to-
deploy tool supports research areas such as
deep learning-based anomaly detection and risk
assessment in HRC.

• The relationship between injected faults and
safety violations is explored. Specifically,
whether a fault leads to abnormal manipula-
tion behaviors depends on various factors, such
as fault parameters and scenarios. This insight

offers new perspectives for anomaly detection
studies in robotics, particularly on classifying
faults that genuinely threaten human safety in
HRC.

• A publicly available Fault-to-Hazarda dataset
generated using our time-series data tool. The
dataset includes faulty joint states (from sen-
sors) and reactive joint states (from actuators).
In addition, fault flag, safety violations, fault
parameters, and the distance between hands and
the end-effector are concluded in the dataset.

2. Related works

2.1. Fault injection

Fault injection is an efficient method for risk
analysis, especially in many safety-critical ap-
plications. In the field of robotics, many related
methods has been introduced. Our previous work
introduced a ROS-based fault injection method for
risk assessment. Ma et al. (2023). The case study
illustrated the failure modes might happen after
injecting faults in a pick-and-place task. Favier
et al. (2020) introduced a framework to analyze
error propagation chain for mobile robots. The
proposed framework could inject faults based on
ROS-Gazebo simulator. In addition, Hsiao et al.
(2023) proposed a framework, MAFVI, for error
analysis. This end-to-end framework could inject

ahttps://www.kaggle.com/datasets/yuliangma/fault-to-
hazardts-generator



1751Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

faults and provide mitigation strategy. For ma-
nipulators, Li et al. (2016) introduced a method
that could automatically inject faults into the robot
control module, and a feedback is provided to the
operator.

2.2. Safety in HRC

Ensuring safety in HRC is an important and chal-
lenging task. As specifies in ISO/TS 15066b, col-
laborative robots are required to at least have one
or more following functions: Safety-rated moni-
tored stop, Hand guiding, Speed and separation
monitoring (SSM) and Power and force limiting
(PFL). Among these requirements, SSM-related
works have be widely studied. In brief, the core
of SSM method is to keep humans at a minimum
distance from robots during operation. Malm et al.
(2019) developed a safety system that monitors
the speed and separation between humans and
robots. The system could dynamically determine
the minimum safety distance and avoid collisions.
Kamezaki et al. (2024) introduced a new concept
about dynamic collaborative workspace. This con-
cept dynamically adjusts the workspace that the
robot is restricted from entering via predicting
the human’s trajectory. In addition, Park et al.
(2021) and Heo et al. (2019) introduced some
deep learning-based collision detection methods
for HRC. In general, aforementioned works rely
to varying degrees on valid datasets and labels.
However, directly collecting data from real-world
is expensive and even dangerous when it’s related
to safety topic in HRC. Motivated by this, our goal
is to develop a time-series data generation tool
using simulators, which is convenient, efficient,
and safe.

3. Method

This section provides a detailed introduction to the
core functionalities of the proposed tool, including
(i) Configurable scene generator, (ii) Online

fault injector, (iii) Execution monitor, and (iv)
Offline fault injector.

bRobots and Robotic Devices—Collaborative Robots, Inter-
national Organization for Standardization, ISO/TS Standard
15066:2016.

3.1. Configurable scene generator

First, customized end-effectors for drilling and
welding tasks are designed. These CAD files were
incorporated into the corresponding robot descrip-
tion file, where they were defined as new end-
effector links for the manipulator. To enable the
creation of configurable working scenarios, we
developed the following functions:

• Randomize workpiece geometry/position: The
size and pose of the workpiece could be an be
randomly adjusted within a predefined area on
the workbench.

• Randomize drilling points/welding line: For
different tasks, the positions of drilling points
and welding lines are randomly assigned on the
workpiece. These target points and lines are
then automatically retrieved by the execution
program.

• Randomize hand’s location: The positions of
two hands are randomly assigned to regions
outside the boundaries of the workpiece. These
positions are automatically recorded and used
for subsequent distance calculations.

d) Randomize drilling points

e) Randomize hand's location

c) Randomize welding line

b) Randomize workpiece position

a) Randomize workpiece geometry

Fig. 2. Function demos.



1752 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

All above functions are achieved using the
ROS-Gazebo SetModelState service. Fig. 2 illus-
trates the demo of each functions.

3.2. Online fault injector

Fault injection is a promising approach for risk
analysis in many safety-critical applications. In
this study, signal faults are injected into joint
position sensors to simulate potential malfunc-
tions that may arise in real-world scenarios. When
these faults are injected randomly, the onboard
path planner may process erroneous position data
during trajectory planning. This can lead to inac-
curate trajectories, resulting in abnormal manip-
ulator behavior and potential safety violations in
HRC scenarios. Figure 3 illustrates the workflow
of the online fault injector. During execution, both
virtual sensor data (with injected faults) and real
actuator data (reflecting the robot’s response to the
faults) are recorded as ROS topics.

In this study, faults with random fault parame-
ters are generated and then injected into sensors.
In our setup, only one fault is injected into a spe-
cific joint of the robotic manipulator during each
round of execution. Fault parameters are shown in
Table 1. A brief explanation of fault parameters is
as follows:

Virtual joint states

Initialize

Read original JS

Inject faults

Generate faulty JS

Plan path

Execute task

Data

Real joint states

Fig. 3. The workflow of online fault injector.

a) Bias

b) Noise

Fig. 4. Online fault demo.

• Fault type: Two common faults are considered,
bias and noise. Biased sensory data could be
caused due to unexpected loads or vibration in
robotic applications, while noise might occur
because of external environmental factors. The
demo of faults is illustrated in Fig. 4.

• Fault magnitude: The value is randomly se-
lected in a continuous interval.

• Fault duration: For how long the fault is in-
jected.

• Fault location: Which joint position data of the
manipulator would be manipulated. We select
Franka Emika Panda, a 7-DoF manipulator, as
our robot model.

• Starting time: According to the simulator clock,
when the fault injector will start injecting faults.

3.3. Execution monitor

For collaborative robots, ISO/TS 15066 highlights
four fundamental functions essential for HRC.

Table 1. Fault parameters

Parameters Set notations

Type T = {Bias, Noise}
Magnitude M = (0, 1]
Duration D = [1, 10]
Location L = {Joint1, ..., Joint7}



1753Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

One of these functions is Speed and Separation
Monitoring (SSM), where the robot is designed to
maintain a consistent speed and a safe distance
from humans. This function ensures protective
stopping in response to unexpected robot behav-
iors. Building on this, we developed an execution
monitor to detect safety violations caused by in-
jected faults via calculating the distance between
the robot’s end effector and the human hand.
Specifically, the monitor determines the pose of
the end effector using Denavit-Hartenberg (DH)
parameters, which define the robot’s kinematic
chain. The Euclidean distance between the end
effector and the center of the human hand is
then computed in real-time. In this case study, a
recorded sample is classified as a safety violation
if the observed distance is less than 0.2 meters.
To facilitate the generation of time-series data
and corresponding labels in ROS, the execution
monitor integrates several ROS topics, including:
virtual joint states (from sensors), real joint states
(from actuators), fault labels, the distance between
the hand and the end effector, safety violation
labels, and fault parameters.

3.4. Offline fault injector

The key difference between online and offline
fault injection is their purpose and application.
Online fault injection allows us to know how the
robot reacts in real-time when faults occur, while
offline fault injection primarily addresses errors
during data collection process. We integrate an
offline fault injector based on Badgers Siebert
et al. (2023) and it can be used to augment data
with faults. In this case study, we select several
practical faults, such as Missing values (randomly
dropping some values), Drift (introducing a lin-
ear trend over a randomly selected time interval),
Random patterns (injecting random patterns),
and Stuck-at zero (randomly injecting zeros) as
the fault injection options. Fig. 5 shows the corre-
sponding fault demos.

4. Experiments

4.1. Data collection

In each execution round, the task scenario is
configured using the scene generator’s functions.

a) Missing value

b) Drift

c) Random patterns

d) Stuck-at zero

Fig. 5. Offline fault demo.

Then, fault injector starts injecting faults after the
robot is added into simulator. During the subse-
quent task execution phase, the monitor is acti-
vated. It records all required time-series data and
automatically labels injected faults and safety vi-
olations based on the robot’s behavior.

4.2. Results and analysis

Fig. 6 shows a hazard demonstration of welding
tasks when a bias fault is injected. From top to
bottom, the plot illustrates the virtual sensor data



1754 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Robot
accelerates 

Robot
collides

Fault
injected

Fig. 6. Hazard demo.

Table 2. Fault injections experimental results

Fault types Task #Samples #Faults #Safety violations

Bias
Welding 107138 13301 1402
Drilling 102682 13564 1092

Noise
Welding 86705 14187 0
Drilling 86415 12690 0

(where faults are injected), the real sensor data
(output from actuators), and the distance between
the end effector and two hands, respectively. In the
virtual sensor data plot, yellow, red, and orange in-
tervals represent accidents that are Fault Injected,
Safety Violation, and both. Based on these in-
tervals, it can be concluded that a hazard does
not immediately occur when a fault is injected. In
fact, results from other fault injection experiments
show that sensor malfunctions do not necessarily
lead to danger. This is due to multiple factors, e.g.,
fault location, the current working scenario, and
fault timing. Furthermore, by comparing virtual
and real sensor signals, it can be concluded that

signal channels with injected faults cause reac-
tions in their corresponding real signal channels,
while other channels remain unaffected. However,
subsequent events, such as collisions, may induce
abnormal patterns in other channels. Specifically,
in Fig. 6, a bias fault is first injected into Virtual

Joint Position 0, and then Real Joint Position

0 exhibits a steep slope after several timestamps,
while other channels remain unaffected. A sudden
change in the position sensing signal indicates that
the manipulator is accelerating, which can be ob-
served in the simulator. Subsequently, a collision
occurs due to the manipulator’s unexpected accel-
eration, which is reflected in other data channels



1755Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

(Real Joint Position 4 and 5 in this demo).
To further explore the potential relationship be-

tween fault parameters and safety violations, we
conduct extensive fault injection experiments for
both industrial tasks. For each task, we execute
100 trials, with two types of faults equally injected
(50 for bias and 50 for noise). The results are
shown in Table 2. The results indicate that, in
our setup, bias faults are more likely to cause
safety violations compared to noise faults. In the
simulator, bias faults often result in unexpected
robot acceleration, which causes the manipulator
to enter the safety zone and trigger a safety viola-
tion. In contrast, when the robotic system receives
noisy data, the path planner typically can not plan
the path until the noise stops. As such, noise faults
mostly lead to system delays and omission of
certain processes (e.g., skip a drilling step), rather
than safety violations.

5. Conclusion

In this work, we introduced a time-series data
generation tool designed to support risk assess-
ment and anomaly detection in HRC applications.
Built on the ROS-Gazebo simulator, the tool pro-
vides a structured approach to simulating real-
world robotic tasks while allowing controlled fault
injection and automatic hazard monitoring. The
main contribution of this tool is its ability to sys-
tematically generate labeled time-series data for
safety-critical robotic applications, addressing the
challenge of scarce real-world fault data. Specif-
ically, the tool: (1) Creates configurable indus-
trial scenarios, enabling realistic task simulations.
(2) Injects sensor faults dynamically, allowing for
controlled analysis of robot behavior under failure
conditions. (3) Monitors and labels hazards auto-
matically, facilitating reliable dataset generation
for anomaly detection. and (4) Supports offline
fault injection, augmenting datasets for training
AI models in risk assessment. Our experiments
reveal that not all sensor faults lead to hazards,
emphasizing the need for nuanced risk assess-
ment. The insights gained from fault-injection ex-
periments can enhance anomaly detection models
by distinguishing between faults that genuinely
impact safety and those that do not. By provid-

ing an easy-to-deploy, scalable, and reproducible
framework, this tool serves as a foundational step
toward improving safety analysis, fault classifica-
tion, and AI-driven anomaly detection in robotics.
Future work could extend the tool’s capabilities
by incorporating additional fault types, more com-
plex scenarios, and AI-based safety mechanisms.

Acknowledgement

This research is supported by the Bundesanstalt für
Arbeitsschutz und Arbeitsmedizin (BAuA, Germany)
funds, project BAuA-555989-Me.

References

Chirayil Nandakumar, S., D. Mitchell, M. S. Erden,
D. Flynn, and T. Lim (2024). Anomaly detection
methods in autonomous robotic missions. Sen-
sors 24(4), 1330.

Favier, A., A. Messioux, J. Guiochet, J.-C. Fabre, and
C. Lesire (2020). A hierarchical fault tolerant ar-
chitecture for an autonomous robot. In 2020 50th
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-
W), pp. 122–129. IEEE.

Heo, Y. J., D. Kim, W. Lee, H. Kim, J. Park, and W. K.
Chung (2019). Collision detection for industrial col-
laborative robots: A deep learning approach. IEEE
Robotics and Automation Letters 4(2), 740–746.

Hsiao, Y.-S., Z. Wan, T. Jia, R. Ghosal, A. Mahmoud,
A. Raychowdhury, D. Brooks, G.-Y. Wei, and V. J.
Reddi (2023). Mavfi: An end-to-end fault analysis
framework with anomaly detection and recovery for
micro aerial vehicles. In 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp.
1–6. IEEE.

Inceoglu, A., E. E. Aksoy, A. Cihan Ak, and S. Sariel
(2021). Fino-net: A deep multimodal sensor fusion
framework for manipulation failure detection. In
2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 6841–6847.

Ji, T., A. N. Sivakumar, G. Chowdhary, and K. Driggs-
Campbell (2022). Proactive anomaly detection for
robot navigation with multi-sensor fusion. IEEE
Robotics and Automation Letters 7(2), 4975–4982.

Kamezaki, M., T. Wada, and S. Sugano (2024). Dy-
namic collaborative workspace based on human in-
terference estimation for safe and productive human-
robot collaboration. IEEE Robotics and Automation
Letters.

Li, X., H. Alemzadeh, D. Chen, Z. Kalbarczyk, R. K.
Iyer, and T. Kesavadas (2016). A hardware-in-the-
loop simulator for safety training in robotic surgery.
In 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 5291–5296.



1756 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Luo, Y., Y. Xiao, L. Cheng, G. Peng, and D. Yao
(2021). Deep learning-based anomaly detection in
cyber-physical systems: Progress and opportunities.
ACM Computing Surveys (CSUR) 54(5), 1–36.

Ma, Y., P. Grimmeisen, and A. Morozov (2023). Case
study: Ros-based fault injection for risk analysis of
robotic manipulator. In 2023 IEEE 19th Interna-
tional Conference on Automation Science and Engi-
neering (CASE), pp. 1–6.

Malm, T., T. Salmi, I. Marstio, and J. Montonen (2019).
Dynamic safety system for collaboration of operators
and industrial robots. Open engineering 9(1), 61–71.

Park, K. M., J. Kim, J. Park, and F. C. Park (2021).
Learning-based real-time detection of robot colli-
sions without joint torque sensors. IEEE Robotics
and Automation Letters 6(1), 103–110.

Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, A. Y. Ng, et al. (2009). Ros:
an open-source robot operating system. In ICRA
workshop on open source software, Volume 3, pp. 5.
Kobe.

Siebert, J., D. Seifert, P. Kelbert, M. Kläs, and A. Tren-
dowicz (2023). Badgers: generating data quality
deficits with python.

Vrontis, D., M. Christofi, V. Pereira, S. Tarba,
A. Makrides, and E. Trichina (2023). Artificial intel-
ligence, robotics, advanced technologies and human
resource management: a systematic review. Artificial
intelligence and international HRM, 172–201.


