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Critical infrastructure and fire-vulnerable facilities are often located in close proximity to wildland domains,
including urban settlements, human activity areas, and industrial zones. Vulnerability is frequently assessed through
physical analyses of the fire’s direct effects on specific types of facilities (e.g. storage tanks). However, wildfire
dynamics and behaviour in the extended wildland domain are often neglected, overlooking scenarios where distant
ignitions from wildfires can trigger Natech events and the release of hazardous substances, e.g., from Seveso
sites, potentially leading to domino effects. Proper consideration of wildfire dynamics is essential to determine
the response times required to prevent disasters. This study considers Wireless Sensor Networks (WSNs), as early
detection systems, and uses wildfire simulation datasets to obtain statistical insights into response times and optimize
the sensor locations accordingly. The study considers a case study of a wildland-industrial interface in Spain,
including time-to-failure data on storage tanks in immediate fire proximity. Results demonstrate that early wildfire
detection systems significantly enhance risk awareness, underscoring the potential of optimized WSNs for mitigating
wildfire risks at wildland-human interfaces.
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1. Introduction

Wildfires at human interfaces are an escalating
risk. When facing the wildland-industrial inter-
face, including critical infrastructures, wildfire
threats represent a type of Natech disaster with
the potential to trigger severe incidents or domino
effects. Notable examples are the Alberta fires
in Canada, which disrupted oil sand produc-
tion (Khakzad, 2018) and the South Korea wild-
fires that destroyed a liquefied natural gas plant
facility and threatened the operations of a nuclear
power plant (Park et al., 2023).

While the threat to Wildland-Urban Interface
(WUI) has long been studied, wildfire threats to
industry are increasingly recognized as an emer-
gent hazard (Planas et al., 2023). However, reg-
ulations such as the Seveso III Directive have
not yet recognized wildfires as a significant risk
factor (European Parliament and Council of the

European Union, 2012). Factors including cli-
mate change, the increase of human interfaces
through urbanization, and the significant pres-
ence of flammable substances are key drivers
for increased vulnerability of industrial facili-
ties (Schug et al., 2023).

Current public regulations consider buffer dis-
tances for Seveso plants (Ricci et al., 2024), and
propose guidelines (Partners in Protection, 2003)
to reduce risks from heat and flame impinge-
ment. The majority of existing research focuses
on the time-to-failure of containers susceptible to
BLEVE events, such as atmospheric and pressur-
ized storage tanks, due to radiant heat and flame
impingement (Wu et al., 2020; Landucci et al.,
2009). These studies often assess the probability
of exposure, leading to cascading failures within a
site, where the failure of one container propagates
to others (Ricci et al., 2021).
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However, the broader wildfire landscape (igni-
tion probability, fire behavior and wildfire dynam-
ics) is often neglected, highlighting the insuffi-
ciency of such measures. Examples of research
efforts to address this gap are the proposal of prob-
abilistic frameworks coupling wildfire dynamics
to flame impingement on atmospheric storage
tanks (Khakzad, 2019), or the delimitation of
Wildland-Industrial Interfaces (WII) (Planas et al.,
2023).

The current work argues that Wireless Sensor
Networks (WSNs) can provide a cost-effective
early wildfire detection system, if they are prop-
erly adapted to the fire landscape surrounding a
vulnerable critical infrastructure (Mohapatra and
Trinh, 2022). Therefore, we follow a data-driven
approach to optimize the sensor locations using
simulated fire dynamics to detect wildfires as early
as possible. The optimal sensor localization will
be such to maximize the available time for re-
sponse until a Seveso disaster becomes imminent,
as well as to protect the surrounding wildland.

2. Methodology

This section describes the optimization framework
to find the optimal sensor locations. Figure 1 il-
lustrates the general methodology presented in the
following subsections.

2.1. Wildfire simulation data

The first step is to use available geospatial data,
a set of scenarios for the possible weather con-
ditions, and the possible ignition locations, to
generate a dataset of wildfire simulation data.
The dataset comprises a set of raster files with
various spatio-temporal features (e.g. fire arrival
times, burnt areas, fire front, etc.) of a wildfire
initiated at a given location, under given weather
conditions. This spatio-temporal information can
be used to evaluate the performance of a given
WSN in detecting a wildfire. The performance
could be quantified as, for instance, the time the
WSN takes to detect a fire, or the burnt area at the
time of detection, etc. (see Section 2.3). Section 3
provides more information on the various data and
the wildfire simulator used here.

2.2. WSN representation

Assuming a set of possible (valid) sensor loca-
tions, G, each WSN is represented as a binary
vector, S, indicating the presence or absence of
a sensor at each candidate location. For instance,
given a set G={g1,g2,g3,g4,g5} of 5 known geo-
graphical coordinates, a WSN with sensors placed
on locations g2 and g4 is represented as the binary
vector S={0,1,0,1,0}.

For this study, all pixels, except those depicting
potential ignition locations and urban/industrial
land use, are considered as valid sensor locations.
To avoid finite-size effects, the space where sen-
sors can be located extends beyond the ignition
grid, enabling the identification of the fastest de-
tection location for each fire regardless of the main
spreading direction.

2.3. Evaluation of the WSN performance

The problem of finding the best WSN configura-
tion is formulated as a bi-objective optimization
problem, minimizing the number of sensors (or
the WSN cost) while maximizing detection per-
formance. This is directly linked to the wildfire
characteristics that must be addressed to miti-
gate their impact (e.g. suppression and ecologi-
cal costs, response time, burnt area, fire perime-
ter...). An early wildfire detection system requires
detecting fires at the earliest development stage.
Detection times are estimated using wildfire simu-
lations. Nevertheless, minimizing detection times
implies that slow-propagating fires may overesti-
mate low-danger fires, while very fast, and thus
dangerous, are neglected until the fire has burnt a
large surface. The burnt areas correlate with fire
severity and fire spread (Mattioli et al., 2022),
representing a suitable performance metric for an
early wildfire detection system.

The wireless sensors can usually detect com-
bustion gases, smoke, temperature, noise, or any
other feature related to fire. This work assumes
that a sensor is triggered when fire propagates
to pixels where sensors are present. For a given
simulation scenario and a known instance of the
WSN, the detection time will be the minimum of
arrival times at the sensor locations.

In the present study, we formulate the per-
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Fig. 1. Procedure for WSN design in cases of wildland areas surrounding industrial facilities

formance of any WSN instance as the weighted
average of burnt areas at detection over all the
wildfire scenarios. The contribution of each sce-
nario to the weighted average depends on the fre-
quency of weather conditions (based on historical
weather data in the region) and the likelihood of
the ignition location. Here, a uniform distribution
is assumed for the ignition likelihood. The exact
formulation of the objective function and the cal-
culation of the weather frequencies are explained
in (Gómez-González et al., 2025). The maximum
allowable detection time can also be included as a
problem constraint, based on the analysis of time-
to-failure in Section 3.3. However, this is left for a
future work.

2.4. Optimization of WSN configuration

In bi-objective optimization problems like the one
considered here, the final solution is a set of non-
dominated solutions approximating the Pareto
front. In our case, the Pareto-front is a set of WSN
configurations such that for each configuration,
neither objective can be improved without detri-
ment to the other (Skretas et al., 2022).

The sensor location problem is solved using
evolutionary algorithms, particularly the Non-
dominated Sorting Genetic Algorithm II (NSGA-
II) (Blank and Deb, 2020). NSGA-II is a well-
established optimizer available in the Pymoo
Python library and has demonstrated efficiency
in solving similar problems. More information
on the optimization procedure can be found
in (Gómez-González et al., 2025). Section 3 pro-
vides more details on the WSN representation and
the optimization requirements.

3. Application case study

3.1. Geospatial data

For the case study, we use a well-studied WUI
terrain and an extended dataset of wildfire simu-
lations over different weather and ignition condi-
tions. We consider a fictitious facility comprising
atmospheric and pressurized tanks in the direct
presence of wildland fuels. The domain is a raster
representation of a real WII and WUI because the
area includes a portion of the municipality of Co-
centaina (Southeast Spain). The raster comprises
124 x 121 pixels, each covering 25 x 25 m2, with
a total surface of 937.75 ha.

3.2. Wildfire simulations dataset

This work uses a wildfire dynamic model vali-
dated in (Gómez-González et al., 2024). The set
of wildfire simulations results from considering a
grid of ignitions distributed over a regular grid,
omitting urban and industrial land use, including
242 possible locations. Each scenario is simulated
for up to 5 hours. To account for weather vari-
ability, each ignition is simulated under a series of
meteorological conditions derived from the wind-
rose (comprising 8 wind directions), constructed
using historical wind data during days with high
fire-weather indexes (FWI). Finally, the WSN op-
timizer is fed with a set of 1,936 simulations.

Figure 2-left illustrates the domain, highlight-
ing the fuel cartography, the facility location, and
the set of ignitions.

3.3. Total response time in WII

We can estimate the time available for response
actions when a wildfire approaches a vulnerable
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Fig. 2. (Left) Fuel type distribution in the fire domain and surface extension. � marks the storage tank. The fuel
classification is encoded as; (0) Artificial, (1) Timber litter,(2) Southern rough, (3) Dormant brush, (4) Brush, (5)
Chaparral, (6) Timber grass, (7) Short grass. (Right) A simulated wildfire spreads compromising the industrial
facility. A sensor (noted �) prompts a quick detection 24 min after ignition (noted by �). The arrival time relative
to the detection to the facility (noted � ) is 227 min.

site by analyzing (a) the fire detection times and
(b) the total time available for response consider-
ing the location and type of industrial equipment
that will be exposed to fire.

The total time available for response can be
estimated using time-to-failure data for pressur-
ized and atmospheric storage tanks present at the
industrial facility. (Ricci et al., 2021), focused on
four distinct types of vessels subjected to a variety
of burning fuels at varying distances. They consid-
ered grass fuels around the industrial facility, so
our case study is limited to this specific scenario.
Figure 3 shows times-to-failure as a function of
distance for different types and capacities of stor-
age tanks.

Extrapolating the data from Figure 3 to our
domain, flames can affect the industry across dis-
tances ranging from one pixel (for the 200 m3

pressurized storage tank) to three pixels (for the
14,000 m3 atmospheric tank) in the raster repre-
sentation. The vertical red line in Figure 3 is the
pixel resolution in our study. a50, a14000 repre-
sent atmospheric tanks with 50 m3 and 14,000 m3

volume capacity; p15, p200 represent pressurized
tanks with 15 m3 and 200 m3 volume capac-
ity, respectively. Data adapted from (Ricci et al.,

Fig. 3. Time-to-failure for storage tanks as a function
of distance in case of grassfires.

2021). The time-to-failure for a given wildfire in-
cident is determined by its minimum value of the
burning fuel in the affected pixels. Our analysis
computes the minimum available response time
following detection, providing an approximate in-
terval based on the worst-case scenario.

Figure 2-right presents a simulated wildfire,
characterized by the arrival times since ignition,
leading to a Natech incident detected by a sensor.
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4. Results

Figure 4 shows the set of final WSN configura-
tions obtained using the optimization procedure
outlined in section 2 for the case study.

Fig. 4. Pareto optimal WSN configurations.

These results have been obtained using NSGA
II with a population size of 100 individuals. The
algorithm had a limit of 200,000 generations until
achieving acceptable convergence over successive
generations. For the sake of simplicity, we use the
terms ”optimal” and ”Pareto front” for the set of
final solutions. However, it is acknowledged that
the final WSNs may be near-optimal and the final
WSN population is an approximation of the actual
Pareto front.

According to commercial sensor data, we need
an average of 0.2 sensors per ha to cover a typi-
cal forest encompassing human interfaces (Dryad
Networks GmbH, 2024). Since our study domain
covers 937.75 ha, we require 188 sensors. Look-
ing at our optimal WSNs, the configuration with
the closest number of sensors is 189.

Figure 5 shows the locations of the sensors, ei-
ther within the Natech region (grass) surrounding
the Seveso site or the wildland.

Depending on wind conditions and the proxim-
ity of the ignition to the facility, a wildfire may or
may not impact on it. In this scenario, 27% of fires
can potentially trigger a Natech incident.

The capability of our WSN to enhance response
times against a potential Natech incident lies in
analyzing those sensors that detect that threat,

Fig. 5. Optimum WSN featuring 189 sensors. � de-
note sensors located in the wildland, and � sensors
detecting potential Natech threats. � marks the storage
tank. The gridded dots represent the ignitions.

along with the simulated time between detection
and the fire’s arrival at the facility. Additionally,
the available time-to-failure is assessed. Sensors
triggering detections of fires potentially leading to
a Natech incident are highlighted in Figure 5.

Based on the set of wildfires identified as po-
tentially leading to a Natech incident, we calculate
the response times as follows:

tR,i = tA,i − tD,i +minj(TTF j) (1)

Where, tR,i is the minimum allowable response
time for simulation i; tA,i is the arrival time for
simulation i; TTFj is the time-to-failure for equip-
ment type j; minj(TTFj) is the lowest TTF from
the burning wildland fuels surrounding the facility
(in this case TTF only depends on the fuel-to-
tank distance); and tD,i is the detection time for
simulation i.

Using Equation (1) over all the ignition loca-
tions and considering the meteorological condi-
tions, we obtain a distribution of response times
for each tank. Figure 6 presents the distributions
for the four analyzed storage tank types.
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Fig. 6. Boxplots showing the response time distributions for wildfires threatening the four storage tank types
analyzed in (Ricci et al., 2021).

5. Discussion

In the discussion we consider the optimal WSN
comprising 189 sensors. It is reminded that in
the present study the optimization does not con-
sider the presence of the facility. The results from
Figure 6 demonstrate that time-to-failure consti-
tutes a small fraction of the available response
times when an effective early wildfire detection
system is implemented. Note that, according to
state reports, in Spain, 80% of uncontrolled fire
events are suppressed within 45 minutes after de-
tection (Ministry for the Ecological Transition and
the Demographic Challenge (MITECO), 2019).

Given the sensor coverage density in this study
and the 1936 wildfire simulations we consider
here, 95% of these fires are detected within one
hour, with an average detection time of 26 min-
utes. Only 27% of all the wildfires are expected
to threaten the facility. From these, 7% are caus-
ing tank failure within the 45-minute suppression
threshold. This is actually the worst case scenario,
and it represents only 2% of all the simulated
wildfires.

Notably, six ignitions lie at the closest distance
(see Figure 5), resulting in 2.5% of the total pool
of wildfire simulations that would almost immedi-
ately threaten the facility. In the scenarios where
fire reaches the facility before detection, response

times can become negative (Fig. 6). Future work
will implement constraints to avoid these unde-
sired cases.

6. Conclusions

Optimally localized wireless sensor networks
(WSNs), based on wildfire simulations, improve
fire risk management by targeting specific perfor-
mance metrics, objectives, and input data, includ-
ing simulations and geospatial information. This
study considers an early wildfire detection system
that identifies fires and provides statistical insights
into response times before the safety of critical
infrastructure is compromised, including time-to-
failure data.

The use of optimal sensor locations can signif-
icantly enhance the detection efficiency without
increasing the number of sensors. The WSN opti-
mization approach outlined in (Gómez-González
et al., 2025) extends its utility beyond wildland
protection, facilitating the development of appli-
cations to safeguard critical infrastructures and ar-
eas of significant economic, human, or ecological
importance. Indeed, the WSN optimizer can easily
be adapted to different situations and requirements
by changing the objectives and constraints. The
present study does not consider the presence of the
critical infrastructure during the WSN optimiza-
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tion, and our analysis of response times is done
for a WSN which is generally optimal. However,
this can be addressed by integrating geospatial
information relevant to the WII, either from public
databases or site-specific computations. The setup
of the case study can be further improved to avoid
detecting fires after they have impacted the storage
tanks. This would involve the introduction of con-
straints on the detection time to ensure detections
occur only before any immediate threats to the
facility. Considering that the work presented here
provides a successful proof of concept, the above
constitutes part of ongoing research.
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