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Since the advent of Automatic Identification System (AIS) has opened opportunities for shipping data to be 
disseminated worldwide, trajectory clustering has seen increasing applications in maritime traffic pattern 
recognition, trajectory prediction, anomaly detection, and route planning. Trajectory similarity measurement is a 
central concept in ship trajectory clustering, where the majority of computational time is spent on similarity 
calculations. However, the exponentially growing volume of AIS messages has posed significant challenges to 
efficient processing, with popular trajectory simplification methods such as Douglas-Peucker (DP) algorithm 
showing limited effectiveness in improving trajectory similarity calculations. In this study, we propose a novel 
surrogate ship trajectory construction (SurTraC) method to reduce the complexity of similarity calculations, where 
the Geohash gridding technique is employed to aggregate spatially adjacent points. The method can generate an 
alternative sparse trajectory that uniformly and precisely represents the original one. A case study using one-week 
AIS data from Gulf of Finland indicates that SurTraC can effectively simplify the trajectory dataset while 
maintaining the entirety of the features. Compared to the DP-based methods proposed in previous research, a 
discussion from the perspectives of trajectory simplification, similarity measurement, and clustering demonstrates 
that SurTraC can significantly accelerate similarity measurement without compromising clustering performance. 
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1. Introduction 
In recent years, with the worldwide 
dissemination of Automatic Identification 
System (AIS) data, trajectory clustering has 
emerged as a powerful tool to identify recurring 
patterns and group similar ship trajectories (Bai 
et al. 2023). This technique has facilitated 
numerous maritime traffic pattern recognition 
applications, including trajectory prediction 
(Chen et al. 2024), anomaly detection (Guo et al. 
2021a), and route planning (Yan et al. 2023), 
significantly enhancing navigational risk 

assessment and decision-making processes (Guo 
et al. 2023). 

Assessing ship trajectory similarity is 
central to trajectory clustering, as accurate 
measurement identifies similar features and 
reveals repetitive ship behaviors (Zhao and Shi 
2019). Given that a ship trajectory inherently 
exhibits typical spatiotemporal characteristics, 
similarity measurement is often performed using 
spatial distance as a primary metric (Yang et al. 
2022). To comprehensively evaluate trajectory 
similarities, advanced metrics in addition to 
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spatial distance such as speed and course 
differences, and trajectory length are also 
evidenced in (Zhang et al. 2021). Since this 
study focuses on investigating the computational 
efficiency of similarity measurement, we mainly 
adopt spatial distance as a metric for subsequent 
analysis.  

The increasing volume of AIS data has 
introduced significant computational challenges 
due to the extensive number of pairwise point 
calculations involved (Taha and Hanbury 2015). 
To mitigate this concern, researchers have 
primarily focused on applying trajectory 
simplification methods to reduce the number of 
input points, where Douglas-Peucker (DP) 
algorithm is the most widely used (Zhang et al. 
2018). Although DP algorithm has shown strong 
compression capability in previous studies, the 
substantial data volume and its continuous 
growth still result in inefficient similarity 
measurement (Guo, Bolbot, and Valdez Banda 
2024). In addition, the uneven spatial 
distribution of the trajectory points after DP 
compression may also lead to inaccurate 
similarity measurement for the methods relying 
on pairwise point distance, such as Hausdorff 
distance (Huang and Guan 2024). Accordingly, 
overcoming these limitations remains a critical 
yet challenging study for precise and efficient 
similarity measurement. 

This paper proposes a novel surrogate 
trajectory construction method named SurTraC 
for efficient similarity measurement in clustering 
analysis. This method applies Geohash gridding 
technique to effectively balance a high 
compression rate with the preservation of the 
overall trajectory features, simultaneously 
achieving a uniform distribution of simplified 
trajectory points. To further validate the 
effectiveness of the proposed method, a case 
study using AIS data from Gulf of Finland was 
conducted. By utilizing Hausdorff distance and 
Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) method, we 
evaluated the processing efficiency and accuracy 

of our method by comparing it with the results 
obtained from the original dataset, as well as the 
compressed trajectory dataset by DP-based 
algorithms. 

The remainder of the paper is organized as 
follows: Section 2 elaborates on the 
methodology of this study. Section 3 presents a 
case study to illustrate the surrogate trajectory 
construction results, followed by a thorough 
discussion in Section 4 to analyze the findings 
and their implications. Finally, Section 5 
summarizes the key contributions of the study 
and outlines a potential direction for future 
improvement. 

2. Methodology 
Unlike traditional DP algorithm that adopts a 
selective reduction strategy to preserve key 
feature points (Douglas and Peucker 1973), the 
method proposed in this study employs a 
representative aggregation strategy to simplify the 
trajectory while maintaining its overall features. 
The flowchart of SurTraC is shown in Fig 1. The 
process begins with Geohash encoding, which 
converts trajectory points into Geohash strings for 
efficient spatial indexing. Then, a bucketing 
process is applied to group points with the same 
Geohash strings. Next, centroid point calculation 
is performed for each bucket, obtaining a 
representative point to embody the overall 
features of this bucket. Finally, by connecting 
centroid points sequentially, the surrogate 
trajectory is constructed. 

2.1. Geohash Encoding 
Geohash is a hierarchical spatial data structure 
that encodes geographic coordinates into a 
compact base32 string representation, facilitating 
efficient spatial querying and indexing (Li et al. 
2024). It consists of two steps: spatial subdivision 
and binary encoding.  

As depicted in Fig 2, the spatial subdivision 
iteratively divides the Earth’s surface into 
progressively smaller cells by alternately bisecting 
longitude and latitude ranges. For illustration, this 
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figure does not consider the spherical nature of the 
Earth. Each resulting cell inherits a unique binary 
identifier based on its position relative to the 
parent cell. This process shares fundamental 
principles with the Z-order curve, as both 
approaches preserve spatial locality through a 
similar bit-interleaving mechanism (Wightman et 
al. 2022). 
 

 

Fig 1. Flowchart of the proposed method. 

 
Fig 2. Spatial subdivision. 

 
Fig 3. Binary encoding. 

The binary encoding process then groups the 
interleaved binary sequences into blocks of 5 bits. 
Each 5-bit block is mapped to a corresponding 
base32 character, generating the final Geohash 
string. As shown in Fig 3, where the spherical 
nature of the Earth is considered, an increase in 
precision results in a longer Geohash string, with 
each additional character reducing the size of the 
encoded geographic area by a factor of 32. To 
conclude, Geohash precision defines the number 
of characters in the Geohash string and 
consequently determines the size and range of the 
grid it represents. 

 
(a) Original trajectory 

 

 
(b) Geohash encoding 

 

 
(c) Bucketing 

 

 
(d) Surrogate trajectory 

Fig 4. Example of surrogate trajectory derivation. 

In this study, a ship trajectory is denoted by 
1 2{ , ,..., }nT p p p� , where each trajectory point is 

defined as ( , , , , )i i i i i ip t x y s c� . Here, it  denotes 
the timestamp of the point, ix  and iy  represent 
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longitude and latitude respectively, while is  and 
ic  indicate the speed over ground (SOG) and 

course over ground (COG). As shown in Fig 4(a) 
and Fig 4(b), by applying Geohash encoding 
under a certain precision, each trajectory point is 
mapped to a Geohash string. 

2.2. Bucketing 
Recognizing that AIS trajectory data inherently 
follows a high sampling frequency, several 
consecutive points may share the same Geohash 
code. Hence, the bucketing process aims to 
group those points within the same geographical 
area and assign them to a bucket. The process is 
described as follows: 

First a bucket 1 1{ }B p�  is created. By 
traversing the trajectory, if the current point curp  
has the same Geohash string as the previous 
point prep , which means cur pregh gh� , then curp  
is put into the same bucket; otherwise, a new 
bucket { }j curB p�  is created. This process is 
repeated until all trajectory points have been 
visited. An example of bucketing is illustrated in 
Fig 4(c). 

2.3. Centroid Point Calculation 
Previous research has suggested that redundant 
information in ship trajectories ought to be 
removed for efficient similarity measurements 
(Huang et al. 2023). Since each bucket 
represents several points that are located closely 
to each other, provided that the Geohash 
precision is appropriately set, we could assume 
that they demonstrate similar ship dynamic 
features. Therefore, a centroid point calculation 
process is designed to find the representative 
point of each bucket, reducing the number of 
points that need to be processed. 

Taking bucket � �1 2, ,..., ii i i i BB p p p�  as an 
example, its centroid point is described as: 

 
1 1 1 1 1

1 1 1 1 1, , , ,
i i i i iB B B B B

ij ij ij ij iji
j j j j j

t x y s ccp
n n n n n� � � � �

� �
� � �
	 

� � � � �  (1) 

where iB  is the number of points in iB . The 
arithmetic mean is appropriate for AIS trajectory 
data owing to their high density and frequent 

reporting, allowing the centroid point to 
effectively represent the trajectory by leveraging 
the similarity of nearby points. As shown in Fig 
4(d), by sequentially connecting the centroid 
points, the surrogate trajectory is formed. This 
approach significantly reduces the number of 
trajectory points, thereby simplifying the 
representation of the trajectory while preserving 
its essential spatiotemporal features. 

3. Case Study 
The AIS data for case study was collected from 
Gulf of Finland over a one-week period, 
spanning from June 1 to June 7, 2022. The 
experiments were conducted using Python 3.8 on 
a Windows 10 computer with an Intel Core i7-
12700KF processor, 32 GB RAM, and a 64-bit 
operating system. 

3.1. Data Preprocessing 
Raw AIS data is essentially a collection of 
disordered ship position reports rather than 
sequential trajectory data (Guo et al. 2021b). 
Additionally, it inevitably contains anomalies 
affected by the transmission environment. 
Therefore, we employed the method proposed by 
Guo et al. (2021b) to clean and reorganize the 
trajectory dataset in dictionary order of (MMSI, 
timestamp). Finally, 2068 trajectories with 
211686 points were obtained, whereas the 
visualization of the trajectory dataset is provided 
in Fig 5. 

 
Fig 5. AIS trajectories in Gulf of Finland. 

3.2. Precision Determination 
Using a centroid point to represent a group of 
points assumes an appropriate Geohash precision. 
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According to the purpose of improving similarity 
measurement computation, we analyzed the 
correlation between Geohash precision and 
compression rate based on a one-day subset to 
determine the optimal precision for this study.  

 
Fig 6. Correlation between precision and compression 

rate. 

As shown in Fig 6, when the precision 
reaches 4, the compression rate decreases 
significantly with further increases in precision. 
This is because higher precision results in 
progressively smaller grid sizes, leading to a 
sharp reduction in the number of trajectory 
points within each grid. This phenomenon 
indicates that higher precision rapidly 
approaches the spatial granularity of AIS 
trajectory data, thereby losing its ability to 
compress redundant points effectively. 
Consequently, a Geohash precision of 4 was 
selected for the experiments in this study. 

3.3. Surrogate Trajectories 
By setting the Geohash precision to 4, Fig 7 
displays an example of ship XXX471XXX. Due 
to confidentiality reasons, part of the MMSI 
digits have been concealed. The ship departed 
from Kilpilahden Öljysatama port in Sköldvik 
and sailed southwestward. The original 
trajectory contains 150 points, while the 
surrogate trajectory reduces the number to 8. 
Despite some inherent distortions, the substitute 
trajectory successfully captures the essential 
features of the original one.  

Moreover, Fig 8 presents the entire 
trajectory dataset after the surrogating, with 

point numbers decreasing from 211686 to 8382, 
reaching a compression rate of 96.04%. Owing 
to a large number of trajectory points being 
aggregated into centroid points, the visualization 
of the surrogate trajectories reveals a 
predominantly linear feature. Nevertheless, the 
overall trend is captured, as shown in 
comparison with Fig 5. 

 
Fig 7. Example of ship XXX471XXX. 

 
Fig 8. Surrogate trajectories. 

4. Discussion 
In order to validate the performance of the 
proposed method, the DP algorithm, which is 
among the most prevalent trajectory 
simplification methods in ship trajectory 
clustering analysis, was applied for a comparison 
experiment. First, to examine the performance of 
DP algorithm under a similar compression rate, a 
threshold of 1000 m was set for the traditional 
DP algorithm. Then, as suggested by previous 
studies (Guo, Bolbot, and Valdez Banda 2024), 
an advanced version of DP algorithm employs an 
adaptive threshold setting based on 0.8 times the 
ship length. Hence, we adhered to these settings 
in the validation experiments and denoted these 
two comparative methods by DP and ADP. The 
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experiment was divided into three components: 
trajectory simplification, similarity 
measurement, and clustering. 

4.1. Trajectory Simplification 
Trajectory simplification is typically the first 
step in clustering analysis. As listed in Table 1, 
SurTraC spent only 0.69 s to compress 96.04% 
of the trajectory points. DP method was 
controlled to have the same compression rate yet 
requiring 1.64 s to simplify the trajectory dataset. 
As for ADP, since more details were preserved, 
slower processing speed and lower compression 
rate were observed. In this case, SurTraC 
appears as the most efficient method.  

Table 1. Trajectory simplification results 
Method Compression rate Running time (s) 
SurTraC 96.04% 0.69 
DP 96.04% 1.64 
ADP 85.09% 2.89 
 
4.2. Similarity Measurement 
Conducting similarity measurement on a 
simplified trajectory dataset can substantially 
shorten the computation time. Hausdorff 
distance is a widely used metric for clustering 
analysis in many studies owing to its robustness 
in assessing the similarity between sets (Liu, 
Yang, et al. 2024). It is also important to 
consider both the distance between two 
trajectories and their relative positions to other 
trajectories. Therefore, the following similarity 
function as recommended by Wang et al. (2021) 
was employed to calculate the similarity matrix: 

 2

2

1,

,
ij

i j

dij

i j
sm

e i j� �



���� �
� ��

 (2) 

Here, ijsm is the element in the similarity matrix, 
indicating the similarity between i th and j th 
trajectories. ijd  is the Harsdorff distance between 
the two trajectories, with i�  and j�  denoting the 
mean Hausdorff distances of them to all other 
trajectories respectively.  

Flattening the matrix into a one-
dimensional array and applying Kernel Density 

Estimation (KDE) allows distribution analysis of 
similarity values across all trajectory pairs. The 
results are depicted in Fig 9, where the curves 
for the three methods closely resemble the 
original one. Despite the curve of SurTraC 
demonstrating slight distortion due to its nature 
of aggregating original trajectory points, the 
resemblance still indicates that all the methods 
effectively preserved the overall distribution of 
similarity values as exhibited in the original 
matrix. As a supplement, Table 2 presents the 
execution time for similarity matrix computation, 
where the compression time is not included. It is 
evident that using the original trajectory dataset 
to measure similarities is unbearable, which 
spent more than 20 hours to produce the 
similarity matrix. The removal of 85.09% points 
by ADP significantly facilitated the computation, 
which reduced the running time to 1531.81 
seconds. However, the results for SurTraC and 
DP proved that there was still room for 
improvement, where the running times were 
further shortened to 97.11 and 97.86 seconds. As 
a result, SurTraC and DP algorithms with a 
threshold of 1000 m can help achieve more 
efficient similarity measurement for big 
trajectory data. 

 
Fig 9. KDE of flattened similarity matrices. 

Table 2. Similarity matrix computation times. 
Method Running time (s) Running time (h) 
Original 72621.75 20.17 
SurTraC 97.11 0.03 
DP 97.86 0.03 
ADP 1531.81 0.43 
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4.3. Clustering 
To further explore the impact of these trajectory 
simplification methods on clustering 
performance, the similarity matrices were input 
to DBSCAN clustering algorithm. Usually, 
DBSCAN can work with a distance matrix if it is 
precomputed. Therefore, we directly transformed 
similarity matrices into distance matrices for a 
more efficient clustering process through the 
following equation: 
 1ij ijsm� � 
  (3) 

where ij�  is the element in the transformed 
distance matrix.  

As can be seen in Fig 9, a prominent peak 
is evidenced near 0.985, indicating that many 
similar trajectories have pairwise similarities 
close to this value. Meanwhile, we are interested 
in frequently occurring trajectory patterns. Thus, 
the parameters of DBSCAN were set to eps = 
0.015 and minpts = 25 respectively. 

The clustered trajectories as shown in Fig 
10 reveal that our proposed method has 
negligible impact on the clustering results. The 
trajectories were classified into 13 clusters when 
original trajectories and surrogate trajectories 
were used for similarity measurement. With the 
adoption of DP and ADP, the dataset was 
grouped into 10 and 9 clusters respectively, 
resulting in the loss of several main trajectory 
clusters. This phenomenon can be explained by 
the simplifying principles of different methods. 
SurTraC employs Geohash gridding technique to 
introduce a structural simplification of 
trajectories. All trajectory points are mapped to 
designated grids for simplification, which helps 
similar trajectories to exhibit analogous 
simplified structures. In contrast, DP and ADP 
independently consider the characteristics of 
each trajectory, removing redundant points 
without accounting for the potential relationships 
between similar trajectories. As a consequence, 
they either oversimplify or under-simplify, 
leading to suboptimal clustering results or higher 
computational costs. 

 
Fig 10. Clustering results. 

5. Conclusions 
As a pivotal role in facilitating maritime 
surveillance and supporting safe navigation 
decision-making, trajectory clustering analysis is 
currently facing the bottleneck problem of low 
computational efficiency owing to the rapid 
growth of AIS data volume. To address the 
challenge, this study proposes a novel method, 
SurTraC, to construct surrogate ship trajectories 
for efficient similarity measurement. The 
presented method can contribute to efficient 
processing in similarity measurement without 
compromising clustering performance. On the 
contrary, the experiment results prove that the 
widely applied DP-based algorithms struggle to 
simultaneously ensure efficient similarity 
computation and satisfactory clustering 
performance. This consequently underscores the 
substantial practical potential of our method for 
practical applications.  

Nevertheless, the approach presents certain 
limitations that warrant further study. 
Considering that trajectories typically exhibit 
varying scale characteristics depending on 
navigational tasks and ship types, the use of 
fixed Geohash precision for surrogate trajectory 
computation may cause non-negligible distortion 
that impact similarity measurements. A 
promising future direction is to refine SurTraC 
method by adopting an adaptive precision 
selection approach. 
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