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Impact of common-cause failures on the availability of connected (r,s)-out-of-(m,n):F
systems
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There has been a renewed interest in connected bi-dimensional configurations, since they successfully describe real-
life systems such as cellular networks, communication and property security solutions, etc. The computation of their
availability has long been known as a delicate task, especially for large systems. Most of the published studies have
considered independent failures for identical elements.
In this work, we investigate the modification of the availability of connected (r,s)-out-of-(m,n):F systems when
common-cause failures or correlations are present. It turns out that the availability may be larger or smaller than its
value in the case of purely independent failures; this is also true for the failure frequency. The transition between
these two behaviors occurs at a component critical unavailability qc that depends on the size of the system. Analytical
expressions for the asymptotic values of qc are given in the case of the β-factor model and binomial failure rate
models, as well as for correlations described by a degenerate Gaussian copula. A comparison with the case of one-
dimensional consecutive configurations is also provided.

Keywords: Connected (r,s)-out-of-(m,n):F lattice system, Network reliability, Availability, Common-cause failures,
Correlations, Asymptotic expansions.

1. Introduction

Telecommunication networks may be simply de-
scribed by a two-dimensional lattice system, ini-
tially proposed as a generalization of the linear
consecutive k-out-of-n system.Salvia and Lasher
(1990); Boehme et al. (1992); Zuo (1993) A (r,s)-
out-of-(m,n):F system consists of m×n elements
arranged in n rows and m columns; the system
fails if all elements in a block r × s fail. Initial
applications of this model ranged from electronic
devices to X-ray and disease diagnostics. More
recently, wireless sensors networks, video surveil-
lance systems, pattern search systems, and biolog-
ical systems have been proposed.Aki and Hirano
(2004); Beiu and Dăuş (2015); Cheng et al.
(2016); Si et al. (2017). Preventive maintenance
and the component assignment problem have re-
cently been addressed.Yun and Endharta (2016);
Nakamura et al. (2024) Very good surveys are
available.Kuo and Zuo (2003); Akiba et al. (2019)

The calculation of the availability of such sys-
tems, especially for large ones, is definitely not
simple. Zhao et al. (2011) have improved algo-
rithms, while keeping small values of r, s, and
m. More complete states of the art can be found

in Akiba et al. (2019); Tanguy (2024); the prob-
lem has been revisited, showing that the avail-
ability for given r, s, and m can be otained
through a recursion relation, the order of which
increases rapidly with m.Malinowski and Tanguy
(2022); Tanguy and Malinowski (2023) For large
(n � 1) systems of identical and independent
elements, the probability of operation of a (r,s)-
out-of-(m,n):F has the asymptotic form

R(m)
n ≈ δ∗ (γ∗)m (χ∗)n (ζ∗)mn (1)

where δ∗, γ∗, χ∗, and ζ∗ depend on r, s, and
the common unavailability q = 1 − p. When
presented at the ESREL 2024 conference, this re-
sult attracted a question from the audience: “What
happens when failures are not independent? Is
the power-law still valid?”. This question can-
not be waved aside. The issue of common-cause
failures (CCFs), and more generally of correla-
tions, has long been studied by the reliability
community, and is still important, as witnessed by
a recent work on the operational resilience of a
network.Yuge et al. (2024)

A very nice introduction to dependent failures
can be found in Rausand and Høyland (2004). The
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main point to recall is that the average value
of two probabilities of operation pi and pj is
not equal to the product of the individual prob-
abilities anymore: 〈 pi pj 〉 �= 〈 pi 〉 〈 pj 〉. Many
approaches and models have been discussed in
Fleming (1974); Atwood (1986); Mosleh et al.
(1988); Hokstad and Rausand (2008), to mention
only a few. This adds another level of complex-
ity to the present problem. Is it possible to say
something sensible about the role of CCFs or cor-
relations for connected two-dimensional systems?
Our approach is to apply a few CCF and corre-
lation models developed in Tanguy (2009, 2010,
2011) to a connected two-dimensional (r,s)-out-
of-(m,n):F system made of identical elements.
The notations 〈R 〉 and 〈 ν 〉 will be used to de-
scribe the measured availability and failure fre-
quency in the presence of correlations, in order
to distinguish them from the usual R and ν when
elements are independent.

In this work, we show that in the presence of
CCFs or correlations, the availability and failure
frequency of the system may increase or decrease
with respect to the independent failures case.
Equation (1) will therefore be useful as an initial
estimate when dependence effects are small.

The paper is organized as follows. We present in
Section 2 the formulas used in the different CCF
and correlation models. We expose in Section 3 a
study of the (3,3)-out-of-(5,5):F system in the case
of the β-factor model, in order to show the main
variations of 〈R 〉 and 〈 ν 〉 with β. The regions
corresponding to an increase or a decrease of these
two quantities are displayed in a way that makes
them easier to visualize. Section 4 is devoted to
(r,s)-out-of-(m,n):F systems. The asymptotic ex-
pressions for the frontiers of the regions are given
in Section 5. Before the Conclusion, Section 6
describes the results for other architectures, in-
cluding the standard linear consecutive k-out-of-
n:F configuration.

2. Assumptions and notations

2.1. Systems of identical components

The assumption of identical components may
provide some insight to the behavior of large
systems.Kołowrocki (2004) Assuming that the

N components of the system are identical, the
reliability polynomial may be written R(p) =
N∑

k=1

ak p
k, where each ak is an integer, with

R(0) = 0 and R(1) = 1. The true value of the
availability under correlations will then be

〈R 〉 =
N∑

k=1

ak 〈 pk 〉 (2)

Note that 〈R 〉 �= R(〈 p 〉), since 〈 pk 〉 is not equal
to 〈 p 〉k anymore; its value is model-dependent.
〈 p 〉 is actually the measured availability of an
element of the system.

2.2. β-factor model

This model is a well-known one, in which only
two failure rates are considered: λ for the indi-
vidual failure rate, and Λ for the failure rate of
all the elements of the system. The factor β is
simply given by β = Λ

λ+Λ . After some calcula-
tions (a unique, single-element repair rate μ was
assumed); see Tanguy (2009)), the kth coupled
population reads, where Γ is the Euler gamma
function

〈 pk 〉 = 〈 p 〉k
(1−β (1−〈 p 〉))k

k! Γ( 1
1−β (1−〈 p 〉) )

Γ(k+ 1
1−β (1−〈 p 〉) )

(3)

When β → 0, we recover the independent case.
From the previous equations, it is not difficult

to find the derivative of 〈R 〉 at β = 0.Tanguy
(2010)

∂〈R 〉
∂β

∣∣∣∣
β=0

= (1− 〈 p 〉)

×
{
pR′(p)−

∫ p

0

R(r)−R(p)

r − p
dr

}
p=〈 p 〉

.(4)

The failure frequency is another performance
measure of systems. Following the above proce-
dure, one can show — after some work — that the
variation of 〈 ν 〉 at the origin, for the most gen-
eral reliability polynomial and the β-factor model
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assumption, reads

∂〈 ν 〉
∂β

∣∣∣∣
β=0

= μ (1− 〈 p 〉)

×
{
R(p)− pR′(p) + p (1− p)R′′(p)

−(1− p)

∫ p

0

R′(r)−R′(p)
r − p

dr
}
p=〈 p 〉

(5)

2.3. Binomial failure rate model

In this case, we can define an effective β̃ factor
for a total number N of elements (see Tanguy
(2010) for a detailed exposition). The kth coupled
population is then

〈 pk 〉 = 〈 p 〉k∏k
i=1

(〈 p 〉+ (1− 〈 p 〉) γi

i

) (6)

γi =
1− (1− β̃)

i
N−1

1− (1− β̃)
1

N−1

(7)

When β̃ → 0 (independent limit), γi → i,
whereas β̃ → 1 leads to γi → 1.

Setting R(p) =

N∑
k=1

ak p
k gives

〈R 〉=
N∑

k=1

ak

k∏
i=1

1

1+
1−〈 p 〉
〈 p 〉

γi
i

(8)

〈 ν 〉=λeff

N∑
k=1

γk ak

k∏
i=1

1

1+
1−〈 p 〉
〈 p 〉

γi
i

(9)

The derivative of the availability with respect to
β̃ at the origin is

∂〈R 〉
∂β̃

∣∣∣∣
˜β=0

= 1−〈 p 〉
4 (N−1)

N∑
k=1

k (k − 1) ak 〈 p 〉k

= 1−〈 p 〉
4 (N−1) 〈 p 〉2

∂2R

∂p2

∣∣∣∣
p=〈 p 〉

(10)

The interpretation is straightforward: the slope at
the origin has the sign of the second derivative
R′′(〈 p 〉). It vanishes at the point of inflection
of R, which is easy to determine visually. Here
again, if we keep 〈 p 〉 constant and increase the
size of the network, the slope at the origin will
become positive.

The failure frequency at β̃ = 0 is

〈 ν 〉
˜β=0 = λeff 〈 p 〉R′(〈 p 〉) (11)

(
λeff = μ 1−〈 p 〉

〈 p 〉
)

. From eqs. (7) and (9), one gets

∂〈 ν 〉
∂β̃

∣∣∣∣
˜β=0

= λeff
〈 p 〉3

4 (N−1)

×
{
(1− p)R′′′(p)− 2R′′(p)

}
p=〈 p 〉

(12)

The critical availability pc is a solution of (1 −
p)R′′′(p) − 2R′′(p) = 0; it is one of the two
extrema of (1− p)2 R′′(p).

2.4. Degenerate Gaussian copula

Our last model of correlated probabilities is the
degenerate multivariate normal distribution also
known as the Gaussian copula; it has been used
in the context of network reliability.Walter et al.
(2008); Tanguy (2011) Correlations are described
by a single parameter ρ. For identical components,
the relevant integrals are

〈 pk 〉 =
∫ ∞

−∞
1√
π
e−u2 ×

(
1
2 + 1

2 erf
[
erf−1(2 p−1)√

1−ρ
−

√
ρ√

1−ρ
u
])k

du (13)

where erf is the standard error function. When
ρ = 0, we recover the independent case 〈 pk 〉 =
pk. The fully correlated situation is reached when
ρ → 1 (and 〈 pk 〉 → p). Since small correla-
tions are considered, a Taylor expansion in ρ is
what really matters. Using Eq. (13), one obtains(
ξ =

[
erf−1(2 〈 p 〉 − 1)

]2)
〈R 〉 = R(〈 p 〉) + ρ

4π
e−2ξ R′′(〈 p 〉) +O(ρ2)

(14)

3. A simple example: (3,3)-out-of-(5,5):F
system and β-factor model

Before turning to the behavior of a general con-
nected (r,s)-out-of-(m,n):F system in the next
Sections, we first consider the (3,3)-out-of-(5,5):F
configuration, as already studied in the literature
Yun and Endharta (2016). In that case, the relia-
bility for identical components is given by (the
expression of the reliability polynomial is shorter
when using q instead of p)

R = 1− 9 q9 + 12 q12 + 8 q14 − 16 q15 + 12 q16

− 14 q17 + 8 q18 − 10 q19 + 12 q20 − 4 q21 (15)
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From (15), one can compute the values of 〈R 〉
and 〈 ν 〉 as functions of 〈 p 〉 and β, as well as
their derivatives with respect to β. The latter are
displayed in Fig. 1. In the case of 〈R 〉, the sign
of the slope is positive for 〈 p 〉 less than a critical
value pc ≈ 0.208549, and negative above it.
The observed availability 〈R 〉 will increase or
decrease — with respect to its expected value for
independent failures — depending on 〈 p 〉. In the
case of the failure frequency, two critical points
exist for 〈 p 〉, at 0.054153 and 0.362715, lead-
ing to another increase/decrease behavior. Similar
variations are observed for β = 1: the critical
value for the availability is 0.076027, while they
are 0.016598 and 0.221638 for the failure fre-
quency (see Fig. 1).

In order to make things more explicit, one can
focus on the β = 0 limit which corresponds to
a vanishingly small influence of CCFs. In Fig. 2,
the colored regions for 〈 p 〉 indicate what kind of
behavior is to be expected for the true availability
and failure frequency with respect to their values
in the absence of CCFs. The color code is

〈R 〉↗ 〈 ν 〉↗ 〈R 〉↗ 〈 ν 〉↘
〈R 〉↘ 〈 ν 〉↘ 〈R 〉↘ 〈 ν 〉↗
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Fig. 1. Slopes of 〈R 〉 (top) and 〈 ν 〉 (bottom) at β =
0 and β = 1 for the (3,3)-out-of-(5,5):F system.

In the following, the dependence of these two
derivatives at the origin β = 0 will be con-
sidered for various (r,2)-out-of-(m,n):F systems,
for the β-factor model and the two other models
described in Section 2. This will allow to assess
the influence of the system size on the global
behavior.

4. (r,2)-out-of-(m,n):F systems

4.1. β-factor model in the limit β → 0

Vanishingly small contributions of CCFs are again
considered. The critical value pc(n) has been
calculated for different values of r, but in this
Section, the focus is made on the case r = 3.
When m goes from 3 to 12, the reliability poly-
nomials of (r,2)-out-of-(m,n):F systems can be
calculated exactly throught recursion relations.
Tanguy and Malinowski (2023); Tanguy (2024)
One can observe in Fig. 3 that pc — the value of
〈 p 〉 for which the introduction of CCFs does not
change the observed availability — increases with
m and n. One may have a better understanding
of the expected behavior of large systems by also
considering the failure frequency, and investigate
how the various regions of decrease/increase of
〈R 〉 and 〈 ν 〉 evolve for a given m, when n

increases. Starting with m = 3 (see top of Fig. 4)
one notes that the four regions vary with n; the
case m = 12 provides a displaced set of curves
and regions, as shown at the bottom of Fig. 4.

As n increases, pc continues increasing. The
value of m plays a similar role, too, as expected in
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Fig. 2. Slopes of 〈R 〉 and 〈 ν 〉 at β = 0

for the (3,3)-out-of-(5,5):F system. 〈R 〉↗ 〈 ν 〉↗
〈R 〉↗ 〈 ν 〉↘ 〈R 〉↘ 〈 ν 〉↘ 〈R 〉↘ 〈 ν 〉↗
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Fig. 3. Variation of pc with n. The lowest curve cor-
responds to m = 3, the highest one to m = 12.
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Fig. 4. Regions at β = 0 for (r = 3,s = 2,m = 3)
(top) and (r = 3,s = 2,m = 12) (bottom).

such a connected two-dimensional system. Note
that the increase with n of the three curves is
rather slow. Their asymptotic variations will be
explicited in a later Section.

4.2. Binomial failure rate model (β̃ → 0)

The derivatives of the availability and the failure
frequency have been computed when β̃ → 0 using
Eqs. (10) and (12), again in the limit of a vanishing
CCF contribution. The variation of the domains is
displayed in Fig. 5 for m = 3 and m = 12.

The general behavior is the same as for the β-
factor model, with quantitatively slightly different
numerical values. The increase with n of the sep-
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Fig. 5. Same as Fig. 4 at β̃ = 0.

aration curves is still very slow.

4.3. Degenerate Gaussian copula
(ρ → 0)

The derivatives of the availability and failure fre-
quency in the limit of vanishinly small correla-
tions can be computed at ρ = 0, so that the critical
values pc or qc = 1 − pc may be computed very
easily from the zeros of R′′(p) and (pR′(p))′,
respectively. The result is displayed in Fig. 6 for
the configuration r = s = 2, and m = 7.
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Fig. 6. Regions at ρ = 0 for r = 2, s = 2 et m = 7.

5. Asymptotic limits

The purpose of the present Section is to pro-
vide the leading term of the large n behavior of
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the various critical values delimiting the different
regimes for the increase or decrease of the avail-
ability and the failure frequency with respect to an
independent failures situation, in the limit of small
common-cause failures. Basically, one must find
the zeros of the derivatives of 〈R 〉 and 〈 ν 〉 in the
limit n→∞.

The availability of the connected (r,2)-out-of-
(m,n):F system has been shown, for arbitrary r

and s = 2, to be of the form of Eq. (1). Further
calculations for other values of s > 2 indicate that
the leading terms of the Taylor expansions of ζ∗,
χ∗, γ∗, and δ∗ are

ln ζ∗ = −qrs + · · · (16)

lnχ∗ = (r − 1) qrs + · · · (17)

ln γ∗ = (s− 1) qrs + · · · (18)

ln δ∗ = −(r − 1) (s− 1) qrs + · · · (19)

This leads to

Rn ≈ e−(n−s+1) (m−r+1) qrs (20)

The critical values of 〈 p 〉, pc, or their comple-
ments to 1, qc, can be found from the cancellation
of the derivatives of 〈R 〉 and 〈 ν 〉 at the respec-
tive origins (see Section 2).

5.1. Binomial failure rate model

The zeros of the derivatives of the availability
and the failure frequency are now given by the
solutions of R′′(p) = 0 and (1 − p)R′′′(p) −
2R′′(p) = 0, respectively. Using Eq. (20), one
finds that the critical value for the availability is

qc →
(

r s−1
r s (n−s+1) (m−r+1)

) 1
r s

(21)

In the case of the failure frequency, the two
critical values are given by

(qc)± →
(

3 r s−1±√
5 r2 s2−2 r s+1

2 r s (n−s+1) (m−r+1)

) 1
r s

(22)

5.2. Degenerate Gaussian copula model

For this model, the relevant equations for the
critical parameters are R′′(p) = 0 (again) and
(r R′(p)′′ = 0. This means that the critical qc for
the availability is the same as in Eq. (21). How-
ever, for the failure frequency, slightly different

(qc)± are obtained:

(qc)± →
(

3 (r s−1)±
√

(r s−1) (5 r s−1)

2 r s (n−s+1) (m−r+1)

) 1
r s

(23)

5.3. β-factor model

The calculations of the critical values are a bit
more involved because of the integrals in Eqs. (4)
and (5). Following the derivation in Tanguy
(2010), one finds

qc →
(

ln(n−s+1) (m−r+1)+γ
r2 s2 (n−s+1) (m−r+1)

) 1
r s−1

(24)

where γ ≈ 0.577... is Euler’s constant. The crit-
ical values related to the failure frequency have
different power-law behaviors and no ln term:

(qc)− =
(

1
r2 s2 (n−s+1) (m−r+1)

) 1
r s−1

(25)

(qc)+ =
(

1
(n−s+1) (m−r+1)

) 1
r s

(26)

5.4. Discussion

The above expressions show that all the critical
values qc tend to zero as n → ∞. They also
agree with the observed behavior exhibited in
the preceding Section. For large enough systems,
one will therefore reach a point located in the
green zone; this implies that the true availability
and failure frequency would both increase when
even a small fraction of CCFs is introduced. Note
that even though the global evolution with size is
similar, the n-dependences are slightly different.
Remember that the above equations only provide
the leading term of expressions that converge very
slowly to zero, and that the following terms of the
expansions decrease only slightly faster than the
prevailing one.

6. Comparison with other architectures

6.1. Circular connected two-dimensional
structures

The first obvious architecture is the circular or
cylindrical connected (r,s)-out-of-(m,n):F con-
figuration. It has been shown in Tanguy (2024)
that in that configuration, the asymptotic availabil-
ity reads

R(C)
n ≈ (γ∗)m (ζ∗)mn (27)
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leading to R(C)
n ≈ e−m (n−s+1) qrs . One can

therefore expect a behavior similar to that of the
simple connected configuration of the preceding
Sections. In all the asymptotic limits, one merely
has to replace (m − r + 1) by m. The change
is marginal, but means that all the critical values
qc should be smaller in the circular configuration.
This is indeed observed in Fig. 7.
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Fig. 7. Regions at β = 0 for LinCon and
CirCon/(3,2)-out-of-(6,n):F.

6.2. Con/k-out-of-n:F

The method used in the previous Sections can be
used to look at the influence of CCFs or correla-
tions for the well-known linear connected k-out-
of-n:F system. In that configuration,

Rn ≈ e−(n−k+1) qk . (28)

leading, in the case of the β-factor model, to

qc →
(

ln(n−k+1)+γ
k2 (n−k+1)

) 1
k−1

(29)

One has to replace s by k and remove all the terms
(m−r+1). The particular case k = 6 is displayed
in Fig. 8.

7. Conclusion and outlook

We have considered the inclusion of various mod-
els of common-cause failure to assess how they
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Fig. 8. Regions at β = 0 for LinCon/6-out-of-n:F.

can, even when their contribution is very small,
modify the availability and the failure frequency
of a two-dimensional (r,s)-out-of-(m,n):F sys-
tem. We have shown that depending on the size of
the system and the average perceived availability
〈 p 〉, both these performance indices may increase
or decrease with respect to a situation where these
CCFs and correlations are absent. There are there-
fore four different regions, the extension of which
depends on r, s, m, n and 〈 p 〉. The asymptotic
limits of their separations have been provided and
shown to increase very slowly with the system
size. For extremely large sytems (n � 1), the
introduction of CCFs should translate into an in-
crease of both availability and failure frequency.
This is also true for linear consecutive k-out-of-
n:F systems.

The method described in this paper can be
readily transposed to other configurations. Even
though the results will quantitatively depend on
the specific architecture of the system and its
size, the general behavior should remain, for the
CCF models under consideration, qualitatively the
same.
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M. Čepin, and E. Zio (Eds.), Proceedings of the 33rd
European Safety and Reliability Conference (ESREL
2023), pp. 1208–1215.

Walter, M., S. Esch, and P. Limbourg (2008). A copula-
based approach for dependability analyses of fault-
tolerant systems with interdependent basic events.
In S. Martorell, C. G. Soares, and J. Barnett (Eds.),
Proceedings of the European Safety and Reliability
Conference (ESREL 2008), pp. 1705–1714. Taylor &
Francis Ltd.

Yuge, T., Y. Sagawa, and N. Takahashi (2024). Oper-
ational resilience of network considering common-
cause failures. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer
Sciences E107.A(6), 855–863.

Yun, W. Y. and A. J. Endharta (2016). A preventive re-
placement policy based on system critical condition.
Proceedings of the Institution of Mechanical Engi-
neers, Part O: Journal of Risk and Reliability 230(1),
93–100.

Zhao, X., L. Cui, W. Zhao, and F. Liu (2011). Exact re-
liability of a linear connected-(r,s)-out-of-(m,n): F
system. IEEE Transactions on Reliability 60(3),
689–698.

Zuo, M. J. (1993). Reliability and design of 2-
dimensional consecutive-k-out-of-n systems. IEEE
Transactions on Reliability 42(3), 488–490.


