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In structural health monitoring (SHM), measurements from various sensors are collected and often reduced to
damage-sensitive features. Diagnostic values for damage detection are then obtained through statistical analysis of
the measurements or features. However, the system outputs, i.e., sensor measurements or extracted features, depend
not only on damage but also on confounding factors (environmental or operational variables). These factors affect
the mean and the covariance. The latter is particularly important because the covariance is often used as an essential
building block in damage detection tools. This paper discusses a nonparametric kernel estimator for estimating
the conditional covariance matrix, allowing it to vary based on the confounding variable. This improves the
understanding of how factors, such as temperature, influence system outputs. Additionally, a method for calculating
confounder-adjusted scores using conditional principal component analysis is described, thus adjusting not only the
mean but also the covariance. The technique is applied to monitor real-world data from the Vahrendorfer Stadtweg
bridge in Hamburg, Germany, using a MEWMA control chart.
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1. Introduction

Structural health monitoring (SHM) is the process
of utilizing sensors to automate the assessment of
damage in engineered systems within the fields of
civil, mechanical, and aerospace engineering (Far-
rar and Worden, 2013). It includes acquiring mea-
surement data, extracting damage-sensitive fea-
tures, and their statistical evaluation, for exam-
ple, with unsupervised methods such as principal
component analysis (Reynders et al., 2014; Wang
et al., 2022). However, system outputs, i.e., sen-
sor measurements or extracted damage-sensitive
features, change due to damage as well as en-
vironmental and operational parameters (EOP).
Therefore, the effects of the EOPs need to be
eliminated. In SHM, this process is referred to as
“data normalization” (Farrar and Worden, 2013),
and there are various comprehensive literature re-
views available (e.g., Avci et al., 2021; Han et al.,
2021; Wang et al., 2022). Some methods for di-
agnosing damage, such as neural networks (Avci
et al., 2021), include data normalization during
the training phase, while other approaches require
data normalization as a separate step. Following

the data normalization, the system outputs are
utilized in other post-processing methods, such as
statistical process control (SPC) (e.g., Magalhães
et al., 2012; Wang and Ong, 2008; Wittenberg
et al., 2024) or model updating approaches.

All data normalization methods mentioned in
the literature, e.g., the cited literature reviews,
have in common that they only focus on the mean,
i.e., the expected value of the system outputs.
However, Neumann et al. (2025) demonstrated
that the EOPs affect not only the mean but also
the (co-)variances. To extract confounder-adjusted
scores, this paper uses a conditional version of
the principal component analysis (Neumann et al.,
2025) that can also adjust for confounding effects
on second-order statistical moments. These scores
are then utilized for monitoring real-world load
test data from the Vahrendorfer Stadtweg bridge
(Köhncke et al., 2024) in Hamburg, Germany.

The remainder of this article is structured as
follows. In Section 2, the Vahrendorfer Stadtweg
bridge is presented. Section 3 discusses the
confounder-adjusted covariance estimator, condi-
tional principal component analysis, and control
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charts. Section 4 illustrates the application to the
data, and Section 5 concludes.

2. Vahrendorfer Stadtweg Bridge

The Vahrendorfer Stadtweg bridge is a 50-
meter-long and 10-meter-wide prestressed con-
crete bridge over Highway (“Autobahn”) A7 in the
south of Hamburg, Germany. Constructed in 1972,
it features a single lane for agricultural traffic and
a pedestrian walkway on the southeastern side
of the bridge. It was built with an open frame
design and a box girder cross-section. Figure 1
shows the bridge from different angles. For the

Fig. 1. Vahrendorfer Stadtweg bridge view from north
(top) and northeast (bottom left), and three additional
masses at the middle of the bridge (bottom right).

analysis, measurements of six strain sensors (in z-
direction) and one material temperature sensor are
used. The sampling frequency of 200 Hz (strain)
and 10 Hz (temperature) was downsampled (av-
eraged) to one measurement per hour, compare
Han et al. (2021). Recording of measurements
started in April 2023. In the following year, be-
tween February 22nd and March 23rd, 2024, load
tests were carried out. Those consisted of three
additional masses (680 kg, 740 kg, 740 kg), which
were placed in the middle of the bridge in a step-
wise increasing procedure. For ten days, the first

mass was placed (scenario A). Then, the second
mass was added for another ten days (scenario B),
and finally, the third mass was added for another
ten days (scenario C). Scenario C is shown in Fig-
ure 1 (bottom right). For a more comprehensive
description of the bridge and further load tests, see
Köhncke et al. (2024).

3. Theoretical Background

Principal component analysis (PCA) is a widely-
used mathematical tool in SHM, for example, for
feature extraction (Tibaduiza et al., 2016; Zhu
et al., 2019). Neumann et al. (2025) introduced
a novel approach for conditional principal com-
ponent analysis using a conditional covariance
estimator. The conditional eigenvalues and prin-
cipal components obtained through conditional
PCA can be used to calculate confounder-adjusted
scores. This will be revisited in Section 3.1. Sec-
tion 3.2 presents the MEWMA control chart with
a monitoring scheme for the scores.

3.1. Conditional Principal Component
Analysis and Feature Extraction

Let x = (x1, . . . , xp)
� ∈ R

p be a p-dimensional
random (output) vector and z ∈ R a poten-
tial confounder. Furthermore, let Σ(z) denote the
conditional covariance matrix of x given z. Then,
the Nadaraya-Watson kernel estimator used in this
paper has the following form (Yin et al., 2010;
Neumann et al., 2025):

Σ̂(z;h) =

(
n∑

i=1

Kh(zi − z)

[xi − m̂(zi)] [xi − m̂(zi)]
�
)

(
n∑

i=1

Kh(zi − z)

)−1

, (1)

where xi = (xi1, . . . , xip)
�, i = 1, . . . , n, are

observations of x, and zi is the associated con-
founder variable (e.g., temperature). Kh(·) is a
kernel function with bandwidth h, and m̂(zi) is
an estimate of the mean of x at zi. The condi-
tional mean vector m(z) can be estimated utiliz-
ing methods such as penalized regression splines



2987Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

(Eilers and Marx, 1996; Neumann and Gertheiss,
2022), local polynomial regression (Cleveland
et al., 2017) or a Nadaraya-Watson kernel estima-
tor (Yin et al., 2010; Neumann et al., 2025). The
optimal bandwidth h can be estimated through
cross-validation as, e.g., described in Yin et al.
(2010) or Neumann et al. (2025). The bandwidth
is the smoothing parameter of the kernel, i.e., the
higher the bandwidth, the wider the kernel, and
the smoother the estimate. The case h → ∞
corresponds to the marginal covariance. In this
paper, a Gaussian kernel is used, which is equiva-
lent to a normal density with a mean of zero. The
estimation was done with the statistical software
R (R Core Team, 2024), and an example code for
estimating the conditional covariance is available
from Neumann (2024).

Conditional PCA (Neumann et al., 2025) can
then be performed by applying the eigendecompo-
sition to the conditional output covariance matrix
Σ(z), Eq. (1),

Σ(z) = A(z)Λ(z)A(z)�, (2)

where the matrix Λ(z) = diag(λ1(z), . . . , λp(z))

holds the conditional eigenvalues in decreasing or-
der and A(z) = [a1(z) . . . ap(z)] the correspond-
ing eigenvectors, the principal components. As the
conditional covariance requires the confounder to
be measured, it makes conditional principal com-
ponent analysis a supervised method rather than
an unsupervised one.

Once the eigenvalues and principal components
are estimated on the in-control data (denoted by λ̂j

and âj), they can be used for conditional feature
extraction. “In-control” means that only common
causes but no special causes, such as damage, are
affecting the system. For that purpose, we extract
the corresponding scores (Neumann et al., 2025)

si = (xi − m̂(zi))
�Â(zi)(Λ̂(zi))

−1/2, (3)

i = 1, . . . , n, with Â(zi) = [â1(zi) . . . âp(zi)],
(Λ̂(zi))

−1/2 = diag(λ̂−1/2
1 (zi), . . . , λ̂

−1/2
p (zi)),

and m̂(zi) being an estimate of the conditional
mean. Using the conditional mean, eigenvalues,
and principal components removes the effect of
the confounder z from the component scores. For
in-control data, those are uncorrelated, standard-

ized quantities, each with mean zero and variance
one for any given z-value.

3.2. Control charts

The Multivariate Exponentially Weighted Moving
Average (MEWMA) control chart (Lowry et al.,
1992; Wittenberg et al., 2024) is used to monitor
the scores si ∼ N (μ,Γ) in Eq. (3). In reference to
Knoth (2017), a mean vector is defined following
a change point model, i.e., μ = μ0 if i < τ and
μ = μ1 if i ≥ τ for an unknown time point τ ,
is introduced. As mentioned above, the in-control
scores should be of zero mean, hence, μ0 = 0,
and are assumed to be uncorrelated with variances
ν1, . . . , νp equal to one. The covariance matrix
Γ is diagonal with Γ = diag(ν1, . . . , νp). Then,
a smoothing procedure is applied to estimate the
MEWMA statistic

ωi = (1− κ)ωi−1 + κsi, ω0 = 0, (4)

with time point i = 1, 2, . . . and smoothing
parameter 0 < κ ≤ 1. The smoothing pa-
rameter κ controls the sensitivity of the shift to
be detected; specifically, smaller values such as
κ ∈ {0.1, 0.2, 0.3}, are usually selected to detect
smaller shifts (Hunter, 1986), whereas κ = 1

results in the Hotelling chart (Hotelling, 1947).
The control statistic is the Mahalanobis distance

T 2
i = (ωi − μ0)

�Γ−1
ω (ωi − μ0), (5)

with the asymptotic covariance matrix Γω of
ωi, Γω = limi→∞ Cov(ωi) =

(
κ

2−κ

)
Γ. The

MEWMA control chart will trigger an alarm if the
control statistic T 2

i exceeds the threshold value h4.
If the process is in-control, the average run length
(ARL0), i.e., the number of observations until a
signal occurs, should be high to minimize false
alarms. This ARL0 can be computed following the
procedure outlined in Knoth (2017) and is avail-
able in the R-package spc (Knoth, 2022; R Core
Team, 2024). One requirement for its application
is that the scores must not be auto-correlated, i.e.,
correlated with themselves over time. As this is
the case for the data considered in this paper,
a block bootstrapping procedure will be used to
determine the average run length and control limit,
following the procedure outlined below:
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(i) In-control score data {si, i = 1, . . . , n} is
divided into blocks {Bk, k = 1, . . . ,m} of
fixed size, where m is the maximum number
of available days. Then, block Bk contains
the estimated scores of day k.

(ii) These blocks are resampled with replace-
ment to generate a new dataset {s̃i, i =

1, . . . , n} while maintaining the original
data’s temporal structure.

(iii) The average run length (ARL0) is computed
using Eq. (4) and (5), and 105 repetitions, and
the control limit h4 is determined by a grid
search.

4. Application & Results

The methods from Section 3 are applied in the
following to the Vahrendorfer Stadtweg data de-
scribed in Section 2. The strain measurements
from July 2nd, 2023, to February 17th, 2024, are
used as Phase I data. Thus, Phase I consists only
of in-control data and is used for training. The
measurements from February 18th to March 23rd,
2024, are used as Phase II data, i.e., a combination
of in-control and out-of-control data (the three
added mass scenarios), and are used for valida-
tion and monitoring. First, the conditional mean
was estimated using penalized regression splines
(Eilers and Marx, 1996; Neumann and Gertheiss,
2022), and the optimal bandwidth h for the con-
ditional covariance matrix was estimated for each
entry separately following Neumann et al. (2025)
and is between 0.1 and 0.2. Additional smoothing
was necessary due to sparse data between 10◦C
and 15◦C and to ensure that the covariance ma-
trices for all z-values are positive semi-definite.
Therefore, a bandwidth of 1.2 was chosen. Subse-
quently, the conditional covariance was estimated
following Eq. (1) for each sensor pair separately.

In the following, three different methods to
estimate the scores are compared, each using a
different type of temperature adjustment:

(i) Standard: The marginal covariance is used
for PCA, and the scores are estimated us-
ing the standard PCA, but only considering
the second to sixth principal components.
The first score is excluded from the estima-

tion of the MEWMA control chart, assum-
ing that the first principal component mainly
accounts for operational and environmental
effects (Cross et al., 2012).

(ii) Residuals: Residual data are calculated, i.e.,
the conditional mean is subtracted from
the measurements to remove the tempera-
ture influence. This refers to the methods
of “data normalization” through mean ad-
justment discussed in the introduction. The
standard PCA is then applied based on the
marginal covariance. All principal compo-
nents are used to estimate the scores.

(iii) Conditional: The eigendecomposition, fol-
lowing Eq. (2), is applied, and the conditional
scores are estimated as in Eq. (3) to remove
the temperature influence in the mean and in
the covariance. As with the previous method,
all principal components are used to estimate
the scores.

4.1. Scores

First, all six scores are calculated using the three
described methods (i)-(iii). Figure 2 shows the
marginal distribution of the Phase I scores for
each of the three methods (columns) in form of
histograms. In theory, the scores should follow
a standard normal distribution, so the standard
normal density is plotted in black for comparison.
The first standard score (first column) follows a bi-
modal distribution. As described above, a possible
reason for this could be the impact of temperature;
hence, it was excluded from further analysis. Fur-
thermore, the first standard scores using the resid-
ual data (second column) and the first conditional
score (third column) are not normally distributed.
The bimodal distribution of the first conditional
score could be due to a second, unobserved con-
founder. The second to sixth scores approximately
follow standard normal distributions, with some
slightly skewed, indicating a tail on the right or
left side, respectively.

The influence of the temperature can also be
seen in the mean of the scores. Figure 3 shows
the first three scores as a function of the tempera-
ture with the conditional mean in black. The first
standard score is highly correlated with the tem-
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Fig. 2. Distributions (gray histograms) of the scores
(rows) for Phase I data for the standard, standard us-
ing residual data, and conditional method (columns) in
comparison with the standard normal density (black).

perature, but the dependence is also visible in the
second and third scores, however, in a non-linear
way. As seen from the second column of Figure 3,
simply subtracting the estimated, temperature-
dependent mean from the strain data is not suffi-
cient either to remove the temperature influence in
the scores. However, using conditional PCA from
Section 3.1 eliminates the temperatures’ effect
on the scores’ mean as can be seen in the third
column of Figure 3. All conditional scores have a
constant mean of zero.

Furthermore, as described in Section 3.1, the
scores should be uncorrelated and have a stan-
dard deviation of one for all temperature values.
Therefore, Figure 4 shows the conditional stan-
dard deviation (left column) and correlation (right
column) for the scores for the standard method

Fig. 3. First three standardized scores (gray dots,
rows) of the three methods (columns) with their con-
ditional mean (black) as a function of temperature.

Fig. 4. Conditional standard deviation (left column)
and correlation (right column) of the standard scores
(top), standard scores using residual data (middle), and
conditional scores (bottom).

(top row), the standard method using the residual
data (middle row), and the conditional approach
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(bottom row). The standard deviation and corre-
lation vary across different temperature values for
the two standard methods while showing minimal
to no variation for the conditional method, as they
are (nearly) constant around one and zero, respec-
tively. The most noticeable variation occurs in the
standard deviation of the fifth score for negative
temperatures. This demonstrates that the covari-
ance of scores from both standard methods con-
tinues to be influenced by temperature, whereas
the covariance of the conditional scores is nearly
constant across all temperature values. Thus, only
the conditional scores are uncorrelated and stan-
dardized, with a mean of zero and a variance of
one.

4.2. Monitoring

To apply a monitoring procedure to the adjusted
scores of the previous section, a MEWMA control
chart is set up with κ = 0.2 for all three methods
(i)-(iii). Figure 5 shows the control chart of the
standard scores using only the second to sixth
principal components (top), the standard scores
using the residual data (middle), and the con-
ditional scores (bottom). A logarithmic scale is
used for display. The black vertical dotted line
indicates the start of the Phase II data. The light
gray, gray, and dark gray shaded areas indicate the
stepwise placement of the additional masses one
to three (scenario A-C), respectively. The black
horizontal lines are the control limits h4 = 117.12

(standard), h4 = 119.92 (residuals), and h4 =

103.9 (conditional) and were estimated via block
bootstrapping with an ARL0 of 370.4. The control
statistic is lighter gray above the control limit and
darker gray below. Furthermore, the figure shows
that for both standard methods (i) and (ii), false
alarms occurred at the beginning of the control
chart and in December 2023. This could be re-
duced using the conditional method (iii). In par-
ticular, the false alarms in December 2023 were
eliminated.

Moreover, only the conditional method triggers
the alarm for all three added mass scenarios. For
the standard method (i), the control limit was
only exceeded in the middle of the second and
third added mass scenarios. The standard method

Fig. 5. MEWMA control chart in logarithmic scale of
the standard scores (top, PC 2-6), standard scores using
residual data (middle, PC 1-6) and conditional scores
(bottom, PC 1-6) with κ = 0.2 and h4 = 117.12,
h4 = 119.92, and h4 = 103.9 (black horizontal
line), respectively. The dotted vertical line marks the
beginning of the Phase II data, and the shaded areas
correspond to the different added mass scenarios: A
(light gray), B (gray), and C (dark gray).

using the residual data (ii) even reduces the alarms
during the second added mass scenario (B, gray),
but during the third added mass scenario (C, dark
gray), the control limit is exceeded almost con-
tinuously. However, the test statistic is still lower
than for the false alarms in December 2023. The
peak of the control statistic for the conditional
method (iii) at the beginning of each added mass
scenario can be attributed to the car crossing the
bridge while towing a trailer that carried the ad-
ditional mass. This was further influenced during
the first added mass scenario (A, light gray) by
a wheel loader that needed to reposition the added
mass. However, the peaks did not occur with either
standard method.

Table 1 summarizes the false alarms and prob-
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ability of detection for each of the three methods
and different values of parameter κ. As mentioned
in Section 3.2, the parameter κ controls the sen-
sitivity of the shift to be detected. Therefore, the
values κ = 0.1, 0.3, 1 were added for compar-
ison. Phase I consists of 5429 data points. As

Table 1. Summary of false alarms and probabil-
ity of detection (POD) per method and parameter
κ ∈ {0.1, 0.2, 0.3, 1}.

Standard Residuals Conditional

(PC 2-6) (PC 1-6) (PC 1-6)

κ h4 false alarms

0.1 192.82 291 [5.4%]
192.71 457 [8.4%]
162.21 124 [2.3%]

0.2 117.12 119 [2.2%]
119.92 269 [5.0%]
103.9 94 [1.7%]

0.3 79.73 115 [2.2%]
82.47 224 [4.2%]
70.87 100 [1.8%]

1 15.65 112 [2.1%]
16.67 157 [2.9%]
16.11 77 [1.4%]

κ h4 probability of detection [%]

0.1 1192.82 19.8
192.71 25.4
162.21 100

0.2 117.12 3.3
119.92 8.6
103.9 100

0.3 79.73 1.4
82.47 6.1
70.87 99.7

1 15.65 0
16.67 3.1
16.11 93.2

can be seen in the table, the false alarms for the
standard method are lower than for the standard
method using the residual data but still are rather
high for both methods, up to 269 and 457, re-
spectively. Also, the probability of detection is
higher for the standard method using the resid-
ual data. Although, the probability of detection

is quite low for both standard methods with val-
ues between 0% and 25.4%. However, the con-
ditional method produces fewer false alarms than
the standard methods, only between 77 and 124,
and has a probability of detection between 93%

and 100% for different values of κ. Therefore, us-
ing the confounder-adjusted scores for monitoring
appears to be the most appropriate option.

5. Conclusion

The main contribution of this paper is the discus-
sion of a method for estimating and monitoring
confounder-adjusted scores of sensor measure-
ments. This method requires the measurement of
the confounding variable (such as temperature or
operational loads) and estimating the conditional
covariance matrix to account for the influence
of confounding variables in the covariance. The
estimate is utilized for conditional principal com-
ponent analysis. Subsequently, using the condi-
tional mean, eigenvalues, and principal compo-
nents, conditional scores can be calculated and
monitored through a MEWMA control chart. In
a comparative study, the conditional method and
two standard approaches – one that uses the mea-
surements while omitting the first principal com-
ponent and another that uses the residual data
– were applied to strain data from the Vahren-
dorfer Stadtweg bridge in Hamburg, Germany.
These three methods illustrated three different
techniques to adjust for temperature influence.
The presented confounder-adjusted method for es-
timating the scores ensured that their mean and
covariance were no longer influenced by tem-
perature, in contrast to both standard methods.
Furthermore, the conditional method could sub-
stantially reduce the number of false alarms while
increasing the probability of detection compared
to the standard methods. Reducing false alarms
is crucial because each bridge closure resulting
from a false alarm undermines trust in the mon-
itoring system and leads to user dissatisfaction. In
this paper, only the influence of temperature was
considered, while other confounding effects were
disregarded. Future research will involve extend-
ing this work to account for multiple confounders
using neural networks.
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italisierung und Überwachung von Infrastrukturbauw-
erken’ is funded by dtec.bw – Digitalization and Tech-
nology Research Center of the Bundeswehr. dtec.bw is
funded by the European Union – NextGenerationEU.
Thanks to Philipp Wittenberg for providing support in
finding the optimal control limit.

References

Avci, O., O. Abdeljaber, S. Kiranyaz, M. Hussein,
M. Gabbouj, and D. J. Inman (2021). A review of
vibration-based damage detection in civil structures:
From traditional methods to machine learning and
deep learning applications. Mechanical Systems and
Signal Processing 147, 107077.

Cleveland, W. S., E. Grosse, and W. M. Shyu (2017).
Local regression models. In Statistical models in S,
pp. 309–376. Routledge.

Cross, E. J., G. Manson, K. Worden, and S. G. Pierce
(2012). Features for damage detection with insensi-
tivity to environmental and operational variations. In
Proceedings of the Royal Society A, Volume 486, pp.
4098–4122.

Eilers, P. H. C. and B. D. Marx (1996). Flexible
smoothing with B-splines and penalties. Statistical
Science 11(2), 89–121.

Farrar, C. and K. Worden (2013). Structural Health
Monitoring: A Machine Learning Perspective. John
Wiley & Sons, Ltd.

Han, Q., Q. Ma, J. Xu, and M. Liu (2021). Structural
health monitoring research under varying tempera-
ture condition: a review. Journal of Civil Structural
Health Monitoring 11, 149–173.

Hotelling, H. (1947). Multivariate quality control il-
lustrated by the air testing of sample bombsights.
In C. Eisenhart, M. Hastay, and W. Wallis (Eds.),
Techniques of Statistical Analysis, New York, pp.
111–184. McGraw-Hill.

Hunter, J. S. (1986). The exponentially weighted mov-
ing average. Journal of Quality Technology 18(4),
203–210.

Knoth, S. (2017). ARL numerics for MEWMA Charts.
Journal of Quality Technology 49(1), 78–89.

Knoth, S. (2022). spc: Statistical Process Control –
Calculation of ARL and Other Control Chart Perfor-
mance Measures. R package version 0.6.7.
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