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Critical infrastructures (CRITIS), as the backbone of our society, must be safeguarded against attacks through 
effective security measures. Since implementing such measures often entails significant costs, it is essential to 
provide tools that enable operators to make well-informed decisions based on objective analyses. A sound decision, 
from the operator's perspective, balances the costs of investing in security measures with benefits such as risk 
reduction. Quantitative metrics are a widely used tool in CRITIS risk assessment, valued for their ability to deliver 
objective, comparable, and reproducible results. However, these metrics can be challenging for users and decision-
makers to manage, especially when quantitative data is unavailable or in instances where only a rudimentary 
assessment is requested. A simpler alternative is scoring, which categorizes security contributions using expert 
knowledge. Yet, due to the inherent uncertainty of scoring, it becomes crucial to determine the conditions under 
which cost-benefit analyses (CBA) can yield results comparable to those of quantitative assessments. This paper 
builds on prior work by Termin et al. (2024, a) and Witte et al. (2024), demonstrating how scoring-based assessments 
of physical vulnerability can be adapted to assess potential attack paths within an exemplary series-connected barrier 
topology. This approach aims to identify Pareto-optimal configurations of security measures. Ultimately, it is 
expected that this straightforward scoring-based methodology will assist users in optimizing physical security 
concepts more effectively. 
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1. Introduction 
The increasing threat landscape (Mathas et al., 
2020) and the enactment of regulatory 
requirements for conducting physical security 
assessments (Izuakor & White, 2016) present 
critical infrastructure operators with the challenge 
of finding suitable tools to produce results that are 
as objectively reproducible as possible and 
scalable to different topologies, which can be 
used as a basis for deciding whether to invest in 
security measures (Yusta et al., 2011). 

There are already validated approaches for 
performing quantitative assessments, such as 

those developed by Lichte et al. (2019). In 
practice, however, scoring-based approaches that 
use expert knowledge to categorize security 
contributions and aggregate them into an overall 
score are increasingly used, see e.g. Chauke & 
Mphadzha (2022) and Harnser (2010). Compared 
to quantitative methods, scorings have the 
advantage that they are often more intuitive and 
easier to understand, especially for people without 
deep mathematical knowledge.  

They allow for a quick assessment based on 
predefined criteria presented in the form of scores 
(Krisper, 2021). Scoring systems also make it 
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easier to prioritize risks and actions, as decision 
makers can easily identify which areas require the 
most attention based on simple calculations using 
the score assigned. By their very nature, scoring 
systems are inherently uncertain. This uncertainty 
results from several factors.  

First, scores involve a range of subjective 
judgments that can be influenced by individual 
interpretations and experiences. This is because 
scoring systems generally lack an underlying 
(objective) metric that measures the differences 
between scores using data and numbers. This 
means that it is not possible to make a general 
statement that a score of "2" is twice as high as a 
score of "1" (Braband, 2008). 

Quantitative assessments, in contrast, are 
predicated on scientific models that can be 
analyzed with the aid of stochastic tools. By 
contrast, scorings can amalgamate disparate types 
of data and expert knowledge and can be 
structured in a multitude of complicated ways. 
The metric algorithm, i.e., the injection of expert 
knowledge into the metric to obtain a result score, 
can theoretically be n-step and not based on real 
(attack) processes. Consequently, there is a 
possibility for discrepancies between the 
outcomes of quantitative metrics and scoring-
based metrics. This has led to the hypothesis that 
poor security decisions could be made with 
scoring-based assessment approaches, as 
evidenced by Termin et al. (2023), Braband 
(2008), and Krisper (2021).  

From the user's perspective, there is 
therefore a need for a user-friendly assessment 
methodology that can be applied to different use 
cases (topologies of infrastructure elements) and 
can reflect the results of quantitative metrics 
under defined boundary conditions. This is a 
prerequisite for being able to make good decisions 
regarding investment in security measures.  

The quality of a decision is contingent upon 
the acceptance by the decision-maker of the ratio 
of costs (damage or expenditure for the 
implementation of security measures) and 
benefits (in the form of risk reduction caused by 
security measures). The applicability of simple 
scorings when conducting cost-benefit analyses 
(CBA) in physical security assessments must 
therefore be carefully considered. This paper is 
dedicated to this question, and the results are 
summarized and discussed at the end of this 
contribution. 

2. Background 
The application of cost-benefit analysis (CBA) 
and the principle of Pareto optimality are crucial 
for designing effective security measures – that is, 
measures that reduce risk – and efficient security 
measures – that is, measures that optimize cost 
(Boardman, 2008; Sun et al., 2018).  

In the context of physical security 
assessments, a CBA endeavors to quantify the 
trade-offs between the costs of implementing 
security measures and the benefits derived in the 
form of reduced risks and potential loss reduction. 
The fundamental objective of CBA is to ensure 
that the limited resources allocated to security 
barriers are commensurate with the anticipated 
risk reduction (Hicks et al., 1997).  

The CBA process involves the collection of 
detailed data on the frequency of potential threats, 
the impact of security measures on potential 
attacks (e.g. resistance against overcoming 
attempts), and the expected consequences in case 
of a successful attack. This comprehensive data 
set is then used to assess risk. Traditionally, risk 
is determined by integrating threat, vulnerability, 
and consequences. If the three elements are 
strictly independent of each other, then risk can be 
expressed as a product of threat, vulnerability, and 
consequences. 

The elicitation of CBA-related information 
can be particularly challenging due to the 
variability of threats and the unpredictability of 
attacks (Wyss et al., 2010). To address the 
challenge of threat-inherent epistemic 
uncertainty, the risk formula can be simplified by 
assuming that the threat scenario under 
consideration is certain to occur, i.e., the 
probability of the threat is p = 1 (100%).  

This approach enables the operator to 
concentrate their risk assessment on the elements 
that can be influenced by security measures. This 
is predicated on the assumption that the efficacy 
of security measures and the ramifications of a 
successful attack can be evaluated through the 
application of expert knowledge. From a worst-
case perspective, it can also be assumed that there 
is a maximum monetary value for the 
consequences of a specific successful attack. 

It is imperative to regard the consequences 
as a scalar variable, which can be incorporated as 
a constant into the costs of the security measures. 
That is to say, the severity of the consequences 
directly correlates to the total costs, which follows 
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a linear relationship. These boundary conditions 
enable the execution of a CBA to assess the risk 
contribution of vulnerability (at the physical 
security concept level). Within the CBA 
framework at the security concept level, the 
vulnerability of each security measure 
configuration is evaluated in relation to the costs 
of the security measures, expressed in the form of 
a matrix.  

The objective is to identify configurations 
that exhibit minimal costs while maintaining an 
acceptable vulnerability level, such as 10% from 
the operator's perspective. An optimal 
configuration of measures in the CBA is therefore 
described as Pareto-efficient if no reduction in 
physical vulnerability is possible without 
increasing the cost of security measures to an 
extent that is not accepted by the decision-maker 
(Ojamaa et al., 2008). 

Quantitative approaches are traditionally 
used to justify investment in security measures. 
However, these methods are often characterized 
by complexity and intricacy, potentially hindering 
their accessibility and actionability for CRITIS 
security decision makers in comparison to 
scoring-based approaches. The risk-appropriate 
design of scoring metrics is a challenge that has 
already received initial attention in functional 
safety, e.g., from Braband (2008) or Krisper 
(2021).  

In the context of CRITIS's physical security 
assessment, this subject matter is novel. Earlier 
contributions, including those by Termin et al. 
(2023) and Termin et al. (2024), examined the 
adaptability of a scoring metric's rating scale for 
assessing physical vulnerability to specific barrier 
types or measure configurations, using a 
quantitative assessment metric to inform the 
calculation results. Termin et al. (2024) 
demonstrate how properties of security measures 
available to a CRITIS operator can be transferred 
as input to a scoring-based metric for assessing 
physical vulnerability of specific barrier types. 

Accordingly, a locally adjusted vulnerability 
scale can be developed for each barrier of a 
CRITIS, which can be used to replicate the 
calculation results of a quantitative metric. This 
approach entails the isolation of the vulnerability 
adjustment process for each barrier of a 
designated attack path, thereby excluding the 
consideration of residual protection time along 
the attack path.  

This paper builds on these considerations 
and investigates how scorings can also be used to 
make global adjustments to the vulnerability 
scales in which the path-specific residual 
overcoming time is included. The assessment 
methodology developed will serve as the 
foundation for conducting a CBA using scorings.   

4. Approach 
The following steps are conducted in this paper to 
investigate the research question of how large the 
differences are between a quantitative CBA and 
an adjusted, scoring-based CBA: 
 

(1) The exemplary system architecture is 
defined, as are the constraints for 
scoring. 

(2) Implementation of a CBA assuming the 
locally adjusted vulnerability approach 
according to Termin et al. (2024). 

(3) Implementation of a CBA assuming the 
globally adjusted vulnerability 
approach, which is introduced in this 
paper. 

(4) Summarizing and discussing the results. 
 
4.1. System Assumptions 
The infrastructure under consideration, illustrated 
in Figure 1, consists of the barriers B0, B1, B2, 
B3, and the asset A. The attack path under 
consideration is assumed to be B0-B1-B2-B3-A, 
i.e., the attacker must overcome all four barriers 
to reach his target. It is further assumed that the 
physical vulnerability is assessed along this attack 
path. 
 

 
Fig. 1. Topology Of A Fictitious CRITIS. 
 
The scoring-based Harnser metric (Harnser, 
2010) and the quantitative Intervention Capability 
Metric (ICM) according to Lichte et al. (2016) are 
used to assess physical vulnerability. In the 
Harnser metric, the three vulnerability 
contributions of protection, observation, and 
intervention are traditionally scored on a scale of 
"1" to "5", and then aggregated to derive an 
overall vulnerability score. The underlying 
assumptions are as follows: (a) The higher the 
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score, the better the security measure. To 
illustrate, a protection score of "1" signifies 
minimal protection, while a score of "5" denotes 
optimal protection. (b) A high vulnerability score 
indicates low vulnerability or high measure 
effectiveness, while a low vulnerability score 
indicates high vulnerability. (c) An existing 
security measure is assigned to a single score.  

The ICM conceptualizes an attack scenario 
as a temporal process, commencing with the first 
barrier being overcome and culminating in the 
asset being reached. During this attack, the 
defender must first recognize the attacker as such 
before intervening. The ICM assesses an attack 
path as vulnerable if the attacker reaches the asset 
faster than the defender reaches the attacker for 
successful intervention.  

The following assumptions are made: 
 
(a) The attack is regarded as unidirectional, 

meaning that an attacker selects an 
initial attack path and advances along it 
until reaching the asset, without 
returning via the same path.  

(b) In the ICM, a security measure is 
assigned to a probabilistic density 
function to account for uncertainties in 
the performance of the security measure 
under consideration.  

(c) The assumption is made that normally 
distributed variables are employed for 
protection, observation, and 
intervention, which can be 
characterized by a variance and a 
standard deviation.  

(d) Each Harnser score is assigned to a 
"time" (a probabilistic density function) 
in the ICM.  

(e) The vulnerability contributions are 
abbreviated as follows:   Protection is 
represented by P, Observation by O, 
and Intervention by I. The time t is 
specified in seconds. 

 
The implementation of a CBA entails the 

introduction of monetary costs for the security 
measures employed. The following assumptions 
are made:  

 
(a) Only vulnerability contributions with 

multiple options incur a cost amounting 
to monetary units.  

(b) The costs of vulnerability contributions 
with only one option are negligible. 
This assumption may not be realistic, 
yet it is ultimately inconsequential to 
the resultant findings.  

(c) Intervention costs along the entire 
attack path under consideration, B0-B1-
B2-B3-A, are only considered once. 
 

The assumptions employed for the 
assessment of the fictitious system under 
consideration are summarized in Table 1. 

Table 1. Assumptions For The CRITIS Topology 
Assessment Under Consideration.  
Barrier 0: Mapping of Harnser Scores to Probability Density 
Functions (PDF) of normal distributions with given mean and 
variance, and to Costs in Money Units. 
Score t_P t_O t_I 

1 N(250, 60^2) N(100, 60^2) N(300, 60^2) 
2   N(240, 60^2) 
3   N(100, 60^2) 
1 0 0 100000 
2   125000 

3   200000 
Barrier 1: Mapping of Harnser Scores to PDF and to Costs in 
Money Units. 
Score t_P t_O t_I 

1 N(200, 60^2) N(100, 60^2) N(300, 60^2) 
2   N(240, 60^2) 
3   N(100, 60^2) 
1 0 0 0 
2   0 
3   0 

Barrier 2: Mapping of Harnser Scores to PDF and to Costs in 
Money Units. 
Score t_P t_O t_I 

1 N(250, 60^2) N(100, 60^2) N(300, 60^2) 
2 N(300, 60^2)   
3 N(350, 60^2)   
1 10000 0 0 
2 40000   
3 60000   

Barrier 3: Mapping of Harnser Scores to PDF and to Costs in 
Money Units. 
Score t_P t_O t_I 

1 N(100, 60^2) N(100, 60^2) N(300, 60^2) 
2 N(130, 60^2)   
3 N(200, 60^2)   
1 5000 0 0 
2 20000   
3 30000   

 
The potential configurations of security 

measures per barrier are illustrated in Table 2 for 
illustrative purposes. 



21Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

Table 2. Possible Configurations (Permutations) per 
Barrier on the Example of Barrier 0. 

P O I 
1 1 1 
1 1 2 
1 1 3 

 
To generate all permissible combinations, 

the distinct scores for the barriers B0, B1, B2, and 
B3 are amalgamated in accordance with the 
stipulated criteria: 

 
(a) For B0 and B1: P = 1, O = 1, I can be 1, 

2, or 3. 
(b) For B2 and B3: P can be 1, 2, or 3, O = 

1, and I = 1. 
 

For B0 and B1, three possible combinations 
exist since I can take three different values: 3 (for 
B0) × 3 (for B1). The number of possible 
combinations for B2 is three, and the number of 
possible combinations for B3 is three, as P can 
take three different values: 3 (for B2) × 3 (for B3).  

The total number of variants is calculated by 
multiplying the possibilities for each barrier: 3 
(for B0) × 3 (for B1) x 3 (for B2) × 3 (for B3) = 
81. The complete list of combinations is therefore 
81 (= 34). 

3.2. CBA With The Approach Of Local 
Vulnerability Adjustment 
First, the approach of local adjustment of scoring-
based vulnerability scales according to Termin et 
al. (2024) is applied to the application example. In 
this approach, barriers are regarded as "isolated" 
units, without considering the attack path-
dependent residual protection time. 

Given that the score sum of the vulnerability 
contributions at B0 ranges from "3" to "5" and the 
reliability of the scoring results according to 
Harnser in replicating the quantitative outcomes 
of the ICM is not yet established, a uniform 
distribution of 100% probability is assigned to the 
scores. The vulnerability scoring table can be 
found in Table 3. 

 

Table 3. Reference Vulnerability Scoring Table For 
Barrier 0. 

V Score (P, O, I Score Sum) 3 4 5 
Lower Interval Limit (LIL) in % 61 31 0 
Upper Interval Limit (UIL) in % 100 60 30 

The subsequent mapping of scores to 
probabilistic density functions in the ICM is 
selected for the calculation (see Table 4 for 
comparison): 

Table 4. Mapping of Scores of P, O, and I of B0 to 
PDF for the ICM. 

 B0  
P O I 
1 1 1 
1 1 2 
1 1 3 

ICM Configuration 0 
t_P t_O t_I 

N(250, 60^2) N(100, 60^2) N(300, 60^2) 
N(250, 60^2) N(100, 60^2) N(240, 60^2) 
N(250, 60^2) N(100, 60^2) N(100, 60^2) 

 
The scoring adjustment approach, as 

outlined by Termin et al. (2023), involves the 
calculation and comparison of vulnerability 
metrics across all possible combinations. The 
ICM provides the results in Table 5: 
 
Table 5. ICM Config 0: Vulnerability Calculation. 

Score V_B0, ICM Config 0 Costs_B0 
3 0.9284129889613206 100000 
4 0.814211201570481 125000 
5 0.3416122167617115 200000 

 
A comparison of the ICM results with the 

scoring-based results reveals significant 
disparities, as illustrated in Figure 2. 
 

 
Fig. 2. Vulnerability Results For All B0 Combinations 
(UIL: Upper Interval Limit, LIL: Lower Interval 
Limit). 
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The adjustment of the scoring system is 
illustrated in Table 6. 

Table 6. Vulnerability-Adjusted Harnser Scale  
(V: Vulnerability). 

V Harnser 
LIL 

V Harnser 
UIL 

V ICM  
Config 0 

V Harnser 
Adjusted 

0.61 1 0.93 0.93 
0.31 0.6 0.81 0.81 

0 0.3 0.34 0.34 

 
The adjustment can be conducted as in Table 

6, as each permutation generates a clearly 
distinguishable vulnerability score that occurs 
only once and leads to a vulnerability interval that 
is also clearly distinguishable from the other 
vulnerability intervals. Consequently, a 
vulnerability value of the ICM can be distinctly 
assigned to a score. Consequently, the results of 
the scoring process and those of the ICM are 
identical in this instance, as illustrated in Figure 
3. 

 

 
Fig. 3. Vulnerability Results For All B0 Combinations 
(ICM And Adjusted Harnser Metric). 
 

As barrier B0 to barrier B3 each have three 
permissible permutations that generate a scoring 
result that does not occur twice, an adjusted 
Harnser metric or vulnerability scale can be 
generated for all four barriers that delivers 
identical results to the ICM. Consequently, the 
scoring results in further analysis (assessment of 
the attack path B0 to B3, including the CBA) are 
identical to a genuine quantitative assessment. 
That is to say, no difference can be determined 
between the ICM and the scoring for the 
exemplary system setup defined in this work. 

 
 

 

3.3. CBA With The Approach Of Global 
Vulnerability Adjustment 
In global adjustment, the barriers of the attack 
path under consideration are not regarded as 
isolated units, but rather as a composite (see 
Figure 4). Of particular relevance to the CBA is 
the aggregate vulnerability of the path, taking into 
account the path-dependent residual protection 
time. 
 

 
Fig. 4. Comparison Of The Attack Models In The 
Variants (a) Local Adjustment And (b) Global 
Adjustment. 
 

In the context of the global adjustment of the 
Harnser scoring, it is imperative to recognize that 
the summation of the barrier-specific scores 
pertaining to protection, observation, and 
intervention must be recalibrated. Instead, the 
aggregate sum of the scores associated with all 
security measures implemented in each 
configuration must be calculated (refer to Table 7 
for a detailed comparison). In this particular use 
case, a scoring range of "12" to "20" is attainable. 

If the global Harnser scale consists of a total 
of nine categories ("12" to "20"), then according 
to the approach of Termin et al. (2023), 100% 
probability is distributed equally among the nine 
categories (100%/9 ≈ 11.11%) in an initial step. 
This approach culminates in the correlations 
depicted in Table 8. 

Table 7. Example of Global Harnser Scoring. 

B3.P B0-B3 
else 

Global 
Sum Score 

Total Costs in 
Money Units 

1 1 12 115000 
2 1 13 130000 
3 1 14 140000 

Table 8. Global Harnser Vulnerability Scale (Equal 
distribution of 100 % to the sum scores). 

Global Sum  12 13 14 … 20 
UIL 1 0.8888 0.7777 … 0.1111 
LIL 0.8889 0.7778 0.6667 … 0 
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To execute the global adjustment to the 
Harnser scoring, the overall vulnerability of the 
pathway is calculated for all possible 
configurations using both metrics. This 
calculation is performed along the path in contrast 
to the calculation of vulnerability at a single 
barrier. Please refer to Table 9 for a comparison 
of the two metrics. 
 
Table 9: Overall Vulnerability of the Attack Path 
Exemplarily Calculated With The Scoring Metric And 
The ICM. Else does mean “all other configuartions”. 
 

B3.P B0-B3 
(else) 

Global 
Sum Score 

Total V  
ICM   

1 1 12 0.000358223 
2 1 13 0.001108684 
3 1 14 0.000358223 

B3.P B0-B3 
(else) 

Harnser  
LIL 

Harnser  
UIL  

1 1 0.8889 1 
2 1 0.7778 0.8888 
3 1 0.6667 0.7777 

 
Subsequently, a comparison of the results 

with each other is conducted, and the assumed 
probability intervals behind the score categories 
"12" to "20" of the Global Harnser Vulnerability 
Scale in Table 9 are adjusted to the quantitative 
results (see also Termin et al., 2023). This 
adjustment results in the new correlations 
presented in Table 10. 

Table 10. Adjusted Global Harnser Vulnerability 
Scale. 

Globa 12 13 14 … 20 
UIL 0.00035

8
0.001108 0.003376

1
… 0.000358

2LIL 0.00035
8

0.000696
4

0.000358
2

… 0.000358
2 

As demonstrated in Figure 5, the adjustment 
was executed successfully. Concretely, this 
indicates that the adjusted scoring for this 
particular use case exhibits a maximum deviation 
of 1.2% compared to the quantitative calculation. 
While this may appear negligible, it is important 
to note that this 1.2% discrepancy encompasses 
the entire range of possible ICM values, 
indicating that the lowest and highest values differ 
by a similar margin.  

In summary, the scoring system's 
performance is contingent on the specific context; 
in some instances, it provides a reliable 

approximation of quantitative results, while in 
others, it does not. 

 

 
Fig. 5. Plot of Vulnerability Values, ICM and 
Globally Adjusted Harnser Scores. 
 

Subsequent to the preceding steps, the actual 
CBA can be conducted. To achieve this objective, 
the vulnerability values are initially grouped 
according to cost (see Table 11). 

Table 11. Grouped Vulnerability Values According To 
Costs (Excerpt). 

Total Costs 
In Money 

Units 
Vulnerability Path ICM 

115000 0.00035822 0.00075961 0.00035822 
130000 0.00110868 0.00235114 0.00110868 
140000 0.00035822 0.00075961 0.00035822 

Total Costs 
In Money 

Unity 
Mean Vulnerability Harnser Adjusted 

115000 0.00035822 0.00090255 0.00186715 
130000 0.00090255 0.00186715 0.00376834 
140000 0.00186715 0.00376834 0.00615817 

 
To illustrate the disparities between the 

quantitative CBA based on the ICM and the 
scoring-based CBA based on the globally 
adjusted Harnser metric, two matrices are 
constructed. In the initial matrix, the vulnerability 
values, determined through quantitative means, 
are plotted against the costs associated with the 
respective configurations (refer to Figure 6). The 
second matrix plots the vulnerability values 
determined by means of scoring against the costs 
for the corresponding configurations (see Figure 
7). 
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Fig. 6. Quantitative Cost-Benefit Matrix For The 
Exemplary Use Case. 
 

 
Fig. 7. Scoring-based Cost-Benefit Matrix (Black: 
Quantitative Value, Red: Mean Harnser, Violet: Upper 
Limit Harnser, Green: Lower Limit Harnser). 

4. Summary  
This research introduces a simplified scoring-
based approach to CBA, with the objective of 
facilitating more practical and accessible 
decision-making for security investments. It 
addresses the complexity of traditional 
quantitative methods, offering a user-friendly 
framework suited for security professionals in 
CRITIS use cases. While the approach simplifies 
calculations, its practical implementation poses 
challenges. The adaptation of the scoring system 
to quantitative methods or different infrastructure 
configurations necessitates adjustments.  

The vulnerability scores derived from this 
study, while beneficial in certain scenarios, may 
not consistently provide optimal decision-making 
support, particularly when strict vulnerability 
acceptance thresholds are employed. Future 
research endeavors will further explore the 
adaptability of this scoring-based approach to 
other use cases and refine its application for 
broader contexts. 
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