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With the rapid advancement of machine learning technology, its applications are becoming increasingly vital across 
various critical systems and domains. However, the effectiveness of machine learning models heavily depends on 
high-quality data, which is often costly to obtain and affected by inherent uncertainty. To address this challenge, we 
propose a robust Bayesian physics-informed neural network (BPINN) that enables the analysis of limited datasets 
while incorporating uncertainty quantification, all while maintaining the physical interpretability of predictions. In 
this study, we develop a verification problem to systematically assess and verified the effectiveness and robustness 
of our approach and shown the performance by predicting the fracture time of a steel alloy based on very limited 
dataset.  
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1. Introduction 

With the rapid advancement of machine learning 
(ML) techniques and the increasing availability of 
data science methodologies, it has become 
possible to address complex challenges across 
various engineering domains, including aerospace, 
nuclear energy, and renewable energy. However, 
in many critical applications, data availability 
remains limited or highly sparse, significantly 
impacting the performance and reliability of ML 
methods [1]. 
In real-world engineering scenarios, data 
acquisition is often challenging due to factors 
such as loss, corruption, or difficulties in 
measurement under extreme conditions. For 
instance, in fields like aerospace, nuclear energy, 
and certain renewable energy sectors, data 
collection is costly and infeasible under high-risk 
or extreme environments (see e.g. [11]). 
Additionally, some physical systems, such as 
environmental hazard monitoring and disaster 

prediction, naturally suffer from data sparsity due 
to the infrequency of catastrophic events. 
The availability of limited data has a profound 
impact on ML model training and predictive 
performance [12]. Traditional ML techniques rely 
on large datasets for learning, making it difficult 
for these models to generalize effectively when 
trained on sparse datasets, often resulting in 
overfitting and poor extrapolation beyond the 
training range. Even when ML models perform 
well within the training data distribution, they can 
fail in unseen physical scenarios, limiting their 
practical applicability. 
Numerical simulations offer a potential solution 
by generating synthetic probabilistic data, which 
can supplement ML training. However, these 
simulations come with high computational costs 
and often introduce noise, reducing overall data 
quality and reliability [16]. As a result, while 
simulated data can enhance ML model training, it 
does not fully resolve the challenges associated 
with data sparsity. 
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Physics-Informed Neural Networks (PINNs) 
integrate physical laws with conventional neural 
network models, offering a promising approach to 
addressing problems constrained by underlying 
physical principles during the training process [2]. 
However, also PINNs exhibit limited capabilities 
in handling uncertainty, which can hinder their 
effectiveness in real-world applications [3].  
To overcome this limitation, the recently 
developed Bayesian Physics-Informed Neural 
Network (B-PINN) has emerged as a powerful 
tool for managing uncertainty and sparse data 
across a wide range of applications. 
In this work, we propose a set of benchmark 
problems designed to systematically evaluate and 
verified machine learning models under different 
scenarios of increasing complexity. These 
scenarios vary in terms of dimensionality, 
uncertainty levels, prior knowledge availability, 
and model complexity. By utilizing these 
benchmark problems, researchers and engineers 
can assess and compare the accuracy, stability, 
and computational efficiency of their algorithms 
in diverse physical modelling scenarios, ensuring 
consistent evaluation under standardized 
conditions. 

2. Methodology 

In our deep learning framework, we integrate the 
methodologies of Bayesian Neural Networks 
(BNNs) and Physics-Informed Neural Networks 
(PINNs) to develop a more robust and 
interpretable model. BNNs combine Bayesian 
inference with neural networks, where the model 
weights are represented as probability 
distributions, enabling uncertainty quantification 
in predictions. This probabilistic approach 
enhances the robustness of BNNs, making them 
well-suited for complex and high-dimensional 
tasks [5]. 
On the other hand, PINNs are designed to solve 
challenging partial differential equations (PDEs) 
by incorporating physical knowledge into the 
neural network architecture. A common technique 
involves embedding physical constraints into the 
loss function or enforcing them as output 
constraints, ensuring that predictions remain 
physically consistent and interpretable [6], [14]. 
Existing research PINNs often incorporates 
physical constraints into the loss function using a 
Mean Squared Error (MSE)-like penalty, similar 
to conventional neural networks [7] [8][9]. While 

this approach provides a straightforward method 
for integrating physics-based terms, it introduces 
inconsistencies when combined with a Bayesian 
formulation. Typically, BNNs define the loss 
function using the negative log-likelihood or the 
Evidence Lower Bound reflecting a probabilistic 
interpretation of the data likelihood and priors as 
follow:  

 
(1) 

where N represents the number of (training) 
samples,  the observed (true) data,  the set of 
parameters of the BNN. The first term is negative 
log-likelihood while the second term is Kullback-
Leibler (KL) term acting as a prior regularisation 
representing which quantifies the difference 
between the posterior distribution of the network 
parameters learned from data q(θ), and the prior 
distribution over parameters P(θ). 
In contrast, loss functions based on MSE or Mean 
Absolute Error (MAE), commonly used in 
standard neural networks, focus on pointwise 
errors (i.e. difference between the predicted 
output of the model and ) rather than 
modelling full probability distributions  

 (2) 

To resolve this inconsistency, we propose 
reformulating the physical constraint term into a 
negative log-likelihood framework, ensuring that 
both the data-fitting term and the physics-
informed term share a consistent probabilistic 
interpretation within the BNN loss function. 
Specifically, we assume that the model’s 
prediction for the physical constraints follows a 
Gaussian distribution with learnable mean and 
variance, resulting in a per-point NLL penalty 
(see Eqs. (3)–(5)). This adjustment ensures 
dimensional consistency between the physics 
likelihood and the data likelihood, both 
conforming to the Bayesian negative log-
likelihood (NLL) formulation. 

 (3)

 (4)
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 (5)

Here,  or   and  or  represent the 
mean and standard deviation of the model outputs 
under their respective distributions while  is a 
parameter that define the weight between the 
physics likelihood and the data likelihood Unlike 
methods that measure the full distribution-to-
distribution distance (e.g., KL divergence 
between arbitrary distributions), this approach 
treats each physics or data point as a sample 
drawn from a univariate Gaussian distribution, 
aligning with the BNN’s negative log-likelihood 
framework. 
Our proposed method follows the workflow 
illustrated in Fig. 1. The process begins with data 
preparation, where the input dataset and the 
corresponding physical constraint formulation are 
defined. Next, the neural network architecture is 
constructed, with the prior distribution of weights 
initialized. The physical constraints are then 
reformulated into a negative log-likelihood 
representation, specifically modelled as a 
Gaussian NLL for the physics residuals. Once 
these components are established, the combined 
loss function is formulated (as described in Eq. 
(3)), followed by the training and optimization 
process. 
For evaluating our model performance, our 
research uses  (coefficient of determination) as 
the primary evaluation metric  

 (6)

We selected this evaluation metric due to its 
clarity and interpretability [17]. It provides a 
straightforward measure of how well the model 
captures variability, making it easier to compare 
different models: a value of  equal to 1 
indicates a perfect prediction, where the model 
captures all variability in the data. A value around 
0 suggests that the model performs no better than 
the mean prediction, meaning it fails to explain 
variance in the data while  implies that the 
model performs worse than simply predicting the 
mean, indicating poor generalization. However, 
we also recognize certain limitations in using 

as the primary evaluation metric for our model. 
When applying to scenarios with sparse data,  
reliability may be compromised since it is 
computed based on variance. In cases where only 

a few data points are available, the sample 
variance may not accurately reflect the true 
variability of the dataset. For instance, in small 
datasets, extreme values can have a 
disproportionate influence on making it 
challenging to consistently assess the model’s 
true predictive performance [15]. Therefore, we 
also incorporated additional metrics to ensure a 
more comprehensive assessment of our model’s 
performance. 
 

 
Fig. 1 Model workflow 

3. Verification problem  

A key aspect of our investigation is evaluating 
whether our model can maintain satisfactory 
performance when physical constraints are 
missing or incomplete. This is particularly 

Step A: Input Preparation
- Observed data points

- Physical formula constraint

Step B: Define Bayesian NN
- Weight distributions

- Output: for data & physics
- Negative Log-Likelihood framework

Step C: Recast Physical Constraints as NLL
- physics formula

- Define Gaussian NLL loss for physics residual

Step D: Formulate Combined Loss
- Data likelihood term (Eq.(4), NLL for observed data)
- Physics likelihood term (Eq.(5), NLL for physics law)

- KL divergence term (Eq.(1), intrinsic to BNN) )

Step E: Training & Optimization
- Forward pass (data & physics points)

- Compute total loss (Eq.(3) + KL)
- Backprop + update , , , etc.

- Iterate until convergence

Step F: Prediction & Uncertainty Quantification
- Predict , under trained posterior

- Check physics constraint consistency
- Visualize uncertainty for risk assessment
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important as, in many practical applications, 
obtaining complete and accurate physical 
equations to describe the relationships between 
inputs and outputs is often challenging  [10]. 
To systematically examine this issue, we design a 
controlled experiment in which certain physical 
information is deliberately omitted, partially 
simplified, or modified. This allows us to assess 
the robustness and adaptability of our model. Our 
objective is to determine whether the proposed 
approach can effectively infer missing physical 
information from the available data, and whether 
the learned representations remain consistent with 
known physical principles despite incomplete 
constraints.  
Thus, a verification problem has been created to 
simulate the structural deformation of a beam-
based systems subjected to various loading 
conditions and material properties. The 
characteristic equations define the maximum 
displacement (D) and stress (S) as function of 
load and material properties derived from 
classical beam bending theory:  

 (7)

 (8)

where the symbols are defined as in Table 3.  
These equations coupled with the constraints 

, adapted from [19], consider the 
combined effects of horizontal and vertical loads, 
which shows that both components contribute to 
the total deflection.  
Parameter [unit] Distribution 
L (Length) [m]  

(Displacement tolerance) [m] 
 

R (yield stress) [Pa]  
E (Young's modulus) [Pa]  
w (Width) [m]  
T (Thickness) [m] 
Y (Vertical load) [N] 
X (Horizontal load) [N] 

 
 

 
Table. 1 Parameter of the verification problem. 

Normal distributions are indicated as    with 
mean  and variance . Uniform distribution as 

 a and b are the bounds of the distribution. 
Synthetic data have been generated for training 
and testing by sampling the values of each 

parameter from its distribution and further perturb 
each computed  and  by adding a small (0.5
1%) Gaussian noise.  
The ML model has 6 inputs, 2 hidden layers with 
16 and 12 neurons and 2 outputs. We use 
multitask learning to predict D and S as outputs at 
the same time in models, because D and  share 
the same input parameters and have some 
physical coupling. It help with enhancing model 
efficiency by enabling shared feature extraction
improving generalization through task-related 
knowledge transfer, and ensures physical 
consistency between the predicted D and S. 

 
The created dataset allows to systematically test 
our model’s performance under different training 
set sizes, with a particular focus on small datasets 
(10–50 samples) to evaluate the model's 
effectiveness in data-limited scenarios from a 
comprehensive perspective. We also assume three 
different levels on knowledge are available to 
define the physical:  
1. No physical knowledge at all. In this case the 
only choice is to use a BNN or other different 
kinds of conventional models.  
2. Partial prior physical knowledge available, 
based on the incomplete formula :  

2  (9) 

2  (10) 

We assume that the exact functional forms are 
unknown. Therefore a 50 data points are 
randomly selected from the synthetic datasets to 
fit Regression models as shown Fig.2 and Fig.3.  
3. Complete physical knowledge is available. We 
use the physical information used to generate the 
synthetic data as a full physical constraint. 
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Fig. 2 Regression for fitting incomplete physical 

constraint for stress (fitting equation 
 

 
Fig. 3 Regression for fitting incomplete physical 
constraint for displacement (fitting equation 
D=   

The performance of the neural network is shown 
in Fig.4 and Fig.5 for the stress and displacement, 
respectively for different size of training data 
(10,20,30,50,100, 200, and 500). From the results of 
S and D, it is seems that for small data set the 
partial physical knowledge provides the best 
results, while complete knowledge is in the 
middle, and as expected no knowledge model 
does not provide satisfying results. Generally, our 
models with different levels of physical prior 
show improvement than traditional none physical 
data driven model. 

 
           

 
Fig. 4 Stress prediction using complete, partial and no 
physical prior knowledge under different numbers of  
training data 

  

 
Fig. 5 Displacement prediction using complete, partial 
and no physical prior knowledge under different 
numbers of samples 

4. Case study PRMOAP Research 

The proposed approach has been successfully 
adopted to predict the creep rupture 
characteristics of SCH24, a specialized steel alloy 
used in nuclear reactor construction. [4][11] The 
primary challenge in this application was the 
extremely limited dataset due to the high cost and 
difficulty of experimental data collection (creep 
rupture process is highly complex and difficult to 
control, introducing significant uncertainty into 
the process). The dataset [18] contains the 
features shown in Table. 1. The database contains 
8005 entries for with 281 different material cast 
codes represent different material type and 
production batch. We analysed a specific steel 
batch (cast code 221) containing only 13 data 
points. The cast code defines the material 
composition and therefore the remaining input 
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variable were the stress and temperature and the 
quantity of interest the fracture time. 

Input feature Output feature 
Material code Fracture Time (FT) 
Cast code Elongation 
stress Reduction of Area (RA) 
temperature  
Composition (19 elements)  

Table. 2 Features of PROMAP datasets 
 

We use the approach shown in Fig.6. A dataset of 
generic SCH24 steel alloy (dataset B) is used for 
pretraining the neural network while the original 
datasets (dataset A) is used to fine training the 
neural networks. Finally physical constraint is 
used as shown in the verification example. 
  

 
Fig. 6 PRMOAP flowchart 

The physical loss constraint in our model comes 
from the empirical Larson-Miller Parameter 
formula  

                    (11) 

where  is stress,  is temperature,  is a 
constant fitting parameter and  the fracture time. 
However, the functional form of is unknown. 
We used the information from other related cast 
codes (222-227) to fit a non-linear physical 
constrain as shown in Fig.7.  
We testes different physical loss weights (see 
Fig.8) and identifying the best model for a value 
of  The performance of the best network 
trained using out approach is shown in Fig.9. 
The proposed approach outperformed traditional 
approaches for the PROMAP case study as shown 
in Table.3. where RMSA represents the Root 
Mean Squared Error. The results have 
demonstrated the effectiveness and feasibility of 
the proposed model able to yield reliable and 
accurate results. 

 

Fig. 7 Regression analysis for physical constraint. 

 
Fig. 8. Comparison of  across methods under 
different weights for physical loss 

 
Fig. 9 Performance of B-PINN model with   

 
Model MAE MSE RMSE R2 
BNN 0.7853 0.9228 0.9606 -0.2096 
B-PINN 2.7141 8.0842 2.8433 -12.8897 
Our method 0.2426 0.1131 0.3363 0.8518 

Table. 3 Comparison of different metrics for 
predicting fracture time from PROMAP database. 
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However, in the field of deep learning, validation 
through a single application is insufficient to 
establish the versatility and transferability of the 
approach. Therefore, to ensure the robustness of 
our approach, it is essential to conduct further 
evaluations across multiple domains, datasets, 
and problem settings. Expanding the range of test 
cases will allow us to assess the model’s 
generalization capabilities and performance 
stability under diverse conditions.  

5. Discussion 

The results presented demonstrate the successful 
application of the proposed approach in both a 
synthetic case study and a complex real-world 
scenario, consistently outperforming traditional 
methods. Moreover, comparative experiments 
conducted under different levels of physical 
constraint knowledge—which simulate varying 
degrees of understanding or uncertainty in the 
physical prior—further highlight the advantages 
of our approach over a conventional Bayesian 
Neural Network. 
These findings indicate that even with partial 
physical information (relationship among 
parameters), the approach can still effectively 
utilise such information to its predictive 
performance. And in our experiments, the model 
with partial physical knowledge even behaves 
better than the model with full prior knowledge. 
These surprising results need further investigation, 
but it may suggest that a moderate physical priori 
can provide sufficient guidance to the model to 
avoid overfitting while retaining a certain degree 
of flexibility when data are limited. When the data 
size is small, the full knowledge may impose ‘too 
strong’ constraints and not allowing accounting 
for the uncertainty in the data. 
It is also important to notice, that full knowledge 
is never available (and if it is there is no need of a 
machine learning approach); instead, physical 
constraints are often simplified or derived under 
idealized assumptions. This suggests that 
proposed approach can effectively leverage 
incomplete or approximate physical priors, 
making it a reliable solution for applications 
where exact governing equations are unavailable 
or uncertain. 
However, further tests and applications are 
required to validate and refine the approach 
especially applicability across diverse domains 
needs further evaluation.  

6. Conclusions 
In this paper, we propose a novel Bayesian 
Physics-Informed Neural Network framework 
that directly incorporates physical constraints into 
the negative log-likelihood loss function, 
ensuring consistency within the Bayesian Neural 
Network framework. Our approach was evaluated 
on two distinct problems: a numerical example 
used for verification purpose in order the quantify 
the effect of each assumption and the effect of 
data size and a complex nuclear material property 
prediction task. Experimental results demonstrate 
that our method significantly improves both 
accuracy and stability compared to traditional 
PINN and B-PINN methods. 
Despite its advantages, our approach has certain 
limitations that require further investigation: 
� The current physical loss function is still 

based on a pointwise Gaussian assumption 
and our method has not yet incorporated more 
comprehensive probability distribution 
metrics 
 
To further refine and enhance the proposed 
framework, we outline three key research 
directions: 

� Extending Probabilistic Modelling of Physical 
Losses: 

� Investigate non-Gaussian distributions, 
correlation structures, and complex noise 
models: 

� Integrating Advanced Probability Distribution 
Matching Techniques: 

We anticipate that these improvements will 
contribute to a more comprehensive and 
adaptable framework, enabling its application to a 
broader range of benchmark problems and real-
world scenarios. 

Acknowledgement 
This work has been supported by the Strathclyde Centre 
for Doctoral Network in Digital technologies for 
Resilient and Sustainable Infrastructures and the 
Research Innovation Scotland - International 
Collaboration Fund 

 

 

 



321Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

References 
[1] Dou, B., et al. (2023). Machine learning methods 

for small data challenges in molecular science. 
Chemical Reviews, 123, 8736–8780. 

[2] Cuomo, S., et al. (2022). Scientific machine 
learning through physics-informed neural 
networks: Where we are and what’s next. Journal 
of Scientific Computing, 92, 88. 

[3] de la Mata, F. F., et al. (2023). Physics-informed 
neural networks for data-driven simulation: 
Advantages, limitations, and opportunities. 
Physica A: Statistical Mechanics and its 
Applications, 610, 128415. 

[4] Lye, Adolphus, Nawal Prinja, and Edoardo 
Patelli. 2022. ‘Probabilistic Artificial 
Intelligence Prediction of Material Properties for 
Nuclear Reactor Designs’. In 32nd European 
Safety and Reliability Conference. Dublin, 
Ireland.https://rpsonline.com.sg/rps2prod/esrel2
2-epro/html/S24-02-306.xml. 

[5] Jospin, L. V., et al. (2022). Hands-on Bayesian 
neural networks—A tutorial for deep learning 
users. IEEE Computational Intelligence 
Magazine, 17, 29–48. 

[6] Farea, A., O. Yli-Harja, and F. Emmert-Streib 
(2024). Understanding physics-informed neural 
networks: Techniques, applications, trends, and 
challenges. AI, 5, 1534–1557. 

[7] Yang, L., X. Meng, and G. E. Karniadakis (2021). 
B-PINNs: Bayesian physics-informed neural 
networks for forward and inverse PDE problems 
with noisy data. Journal of Computational 
Physics, 425, 109913. 

[8] Stock, S., et al. (2024). Bayesian Physics-
informed Neural Networks for System 
Identification of Inverter-dominated Power 
Systems. arXiv preprint arXiv:2403.13602. 

[9] Pensoneault, A., and X. Zhu (2024). Efficient 
Bayesian Physics Informed Neural Networks for 
inverse problems via Ensemble Kalman 
Inversion. Journal of Computational Physics, 
508, 113006. 

[10] Willard, J., Jia, X., Xu, S., et al. (2020). 
Integrating physics-based modeling with 
machine learning: A survey. arXiv preprint 
arXiv:2003.04919, 1(1), 1–34. 

[11] Chen, Yu, and Edoardo Patelli. 2024. ‘Towards 
Robust Prediction of Material Properties for 
Nuclear Reactor Design under Scarce Data - a 
Study in Creep Rupture Property’. In Reliability 
Computations in Sustainable and Resilient 
Development, 100–109. Beijing, China. 
https://drive.google.com/drive/folders/1QfP3Q-
yO5o-E5qgPY6-
3ghFVLgABqLw5?usp=sharing. 

[12] Kumar, A., Boehm, M., & Yang, J. (2017). Data 
management in machine learning: Challenges, 
techniques, and systems. Proceedings of the 

ACM International Conference on Management 
of Data, 1717–1722. 

[13] Dou, B., Zhu, Z., Merkurjev, E., et al. (2023). 
Machine learning methods for small data 
challenges in molecular science. Chemical 
Reviews, 123(13), 8736–8780. 

[14] Raissi, M., Perdikaris, P., & Karniadakis, G. E. 
(2019). Physics-informed neural networks: A 
deep learning framework for solving forward and 
inverse problems involving nonlinear partial 
differential equations. Journal of Computational 
Physics, 378, 686–707. 

[15] Barrett, J. P. (1974). The coefficient of 
determination—some limitations. The American 
Statistician, 28(1), 19–20. 

[16] Jordon, J., Szpruch, L., Houssiau, F., et al. (2022). 
Synthetic data—what, why and how? arXiv 
preprint arXiv:2205.03257. 

[17] Chicco, D., Warrens, M. J., & Jurman, G. (2021). 
The coefficient of determination R-squared is 
more informative than SMAPE, MAE, MAPE, 
MSE and RMSE in regression analysis 
evaluation. PeerJ Computer Science, 7, e623. 

[18] Lye, Adophuls. (2022). PROMAP dataset. 
Available at: 
https://github.com/Adolphus8/Project_PROMA
P. 

[19] Surjanovic, S. & Bingham, D. (2013). Virtual 
Library of Simulation Experiments: Test 
Functions and Datasets. Retrieved March 4, 2025, 
from http://www.sfu.ca/~ssurjano. 


