
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P5688-cd

Mitigating disruptions: Assessing the role of regulatory measures in fuel supply chain
resilience during floods in Brazil

Jardel Farias Duque
Civil and Environmental Engineering Department, University of Strathclyde, United Kingdom/National
Agency for Petroleum, Natural Gas and Biofuels (ANP), Brazil. E-mail: jardel.farias-duque@strath.ac.uk

Raphael Moura
National Agency for Petroleum, Natural Gas and Biofuels (ANP), Brazil.

Edoardo Patelli
Civil and Environmental Engineering, University of Strathclyde, UK. E-mail: edoardo.patelli@strath.ac.uk

Climate change has emerged as one of the most pressing global challenges, with extreme weather events increasingly
disrupting supply chains worldwide. In April 2024, catastrophic floods in Rio Grande do Sul, Brazil, severely
affected the fuel distribution infrastructure, prompting regulatory intervention through temporary relief measures.
This paper presents a spatial competition model to assess the resilience of the fuel supply chain and to evaluate
some of the regulatory responses. We develop a three-echelon supply chain model that incorporates diesel and
biodiesel suppliers, distributors, and retailers, and simulate market dynamics through iterative price updates while
considering transportation costs, capacity constraints, and mandatory biofuel blend requirements. Our analysis
reveals that supply overcapacity significantly influences price stability, with tighter capacity leading to higher
prices. When simulating the removal of a major biodiesel supplier - mirroring occurred real events - our results
suggest that reducing mandatory biodiesel content may have had unintended consequences, potentially increasing
overall fuel costs to retailers. These findings demonstrate the complex interplay between regulatory interventions
and market dynamics during supply chain disruptions, offering insights for policymakers and industry stakeholders
in developing more effective resilience strategies.
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1. Introduction

The impact of climate change is becoming in-
creasingly evident and severe causing supply
chain disruption (Ali et al., 2023). Consequently,
supply chain resilience — the capacity to prepare
for, withstand, and quickly recover from extreme
events — has become a significant topic of dis-
cussion among practitioners, policymakers, and
researchers (Hosseini et al., 2019).

In April-May 2024, hundreds of towns were
flooded in the Brazilian state of Rio Grande do
Sul, with casualties and thousands of citizens dis-
placed from their homes (Buschschlüter, 2024).
Among the consequences, many of the fuel pro-
duction and distribution facilities were underwa-
ter, which impacted the fuel supply of the state,
increasing the challenges to post-disruption recov-
ery. With the objective of making fuel distribution

operations more flexible, the National Agency for
Petroleum, Natural Gas, and Biofuels (ANP) ap-
proved some temporary relief measures, among
which was temporary relaxation of the blend of
biodiesel with diesel oil and ethanol with gasoline
(ANP, 2024).

Brazil has a mandatory biodiesel blend pol-
icy, which requires distributors blending a specific
percentage of biodiesel with regular diesel A (i.e.,
pure fossil diesel without any biodiesel content)
to produce diesel B, which is then sold to retailers
and larger consumers. This policy is overseen by
the National Energy Policy Council (CNPE) and
regulated and enforced by ANP. The mandatory
blend level is set to increase from 14% to 15% in
2025 (IEA, 2023). During the Rio Grande do Sul
floods, the obligation was relaxed to as low as no
biodiesel (depending on the content of diesel sul-
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fur) in the entire state, with a progressive recovery
to the prescribed levels.

Our goal in this article is to develop a supply
chain spatial competition model to assess the im-
pacts of the regulatory relaxation measure. The
standard model of spatial competition, introduced
by Hotelling (1929), considers firms competing in
both prices and locations along a linear market,
and the spatial allocation can also be interpreted as
a ”consumers’ preference space” to justify goods’
differentiation. Its ideas are still used to these
days to study different markets such as health care
(Kuchinke and Zerth, 2015), retail (Chai et al.,
2021) and fuels (Luo and Moschini, 2019).

In Hotteling’s foundational framework, con-
sumers are modeled as uniformly distributed
along a market space, choosing firms based on
the lowest total cost (price plus transportation).
While this continuous distribution aids theoreti-
cal insights, real markets often show discrete de-
mand patterns. For example, in fuel retail mar-
kets, demand nodes like gas stations are discretely
located with specific demand (Netz and Taylor,
2002). This discreteness affects competitive dy-
namics and market outcomes, which continuous-
space models may not capture.

In spatial competition models under Hotelling’s
framework, firms typically make pricing decisions
simultaneously and without cooperation. This si-
multaneity implies that when setting prices, each
firm must act without knowledge of its competi-
tors’ choices, instead forming expectations about
their behavior. When firms can accurately antic-
ipate their competitors’ actions, the market tends
toward a Nash Equilibrium (Tirole, 1988). A Nash
equilibrium of prices occurs when each firm sets
its price at a level where it has no incentive to
change, given the prices set by its competitors.
In this equilibrium no firm can increase its profits
by unilaterally changing its price and each firm’s
price is the best response to the prices set by other
firms (Osborne and Rubinstein, 1994).

2. Methodology

We propose an agent-based three-echelon sup-
ply chain model comprising diesel A (A) and
biodiesel (B) suppliers, distributors who mix these

products in the right compulsory amount, and re-
tailers. The network structure is defined by nodes
(with capacity and demand) connected by edges
representing distance-based travel costs. Through
agent-based iterative simulation, we evaluate how
price competition affects cost structures and, ulti-
mately, market supply capability.

2.1. Network structure

We choose an arbitrary number of agents for each
echelon, which increases as we go downstream
through the supply chains, reproducing the Brazil-
ian market: 3 diesel A suppliers (A), 5 biodiesel
suppliers (B), 10 distributors (D), and 50 retailers
(R). The demand of each retailer is first estab-
lished as a random integer number between 1 and
10. Each individual distributor demand of A and
B products is a result of the attribution of retailers
to it, multiplied by the fraction of each component
in the mixture. As the biodiesel proportion is most
commonly referred to, that is defined as x = 14%

for B and (1−x) = 86% for A when not explicitly
indicated otherwise.

An overcapacity factor, α, is included to ac-
count for the proportion of the summed supply
capacity, of all agents in a group, that exceeds
the total demand of the retailers. Using ci for the
capacity of an individual firm and dj as the indi-
vidual demand of a retailer, that can be expressed
as in Eq. (1):

∑

i

ci = α
∑

j

dj ∀ i ∈ {A,B,D}, j ∈ R (1)

The capacity varies between agents, as is usu-
ally the case in real markets. The capacity pro-
portion decreases as the index of a firm in their
group increases, so D0 has the higher capacity
between distributors (and D9 has the lowest). For
the A firms, with 3 agents, they have the following
proportion: 3:2:1. For B firms, with 5 agents, the
proportion of capacity between them is 5:4:3:2:1,
and so on. Considering that a given echelon e has
ne firms, the individual capacity of each firm ci in
that echelon is given by Eq. (2):
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ci =
ne − i

1 + 2 + ...+ ne
×

ne−1∑

j=0

ck

∀ i ∈ {0, 1, ..., ne − 1}, e ∈ {A,B,D}
(2)

The firms are randomly placed in a 1x1 square
space using x and y coordinates are drawn from a
uniform distribution in [0, 1). Then, the euclidean
distance from each supplier to all the other firms in
the downstream echelon is calculated to compose
the distance matrix. The travel cost is set as a
constant value of $2 per unit of distance and unit
of the fuel transported.

2.2. Agent behavior

Retailers are assumed to be rational economic
agents who minimize their total cost (price plus
travel cost) when purchasing fuel, subject to dis-
tributor’s capacity constraint and their own reser-
vation price.

We decided to introduce capacity constraints
for the suppliers and distributors as, in disruption
episodes, the temporary lack of firms’ capacity
may be one of the factors that impact prices and,
ultimately, causes a shortage of fuels for the final
consumer. This constraint means that, even though
some consumers are willing to pay the price a
firm is charging, the firm cannot meet all of its
demand since it cannot sell more than it is capable
of producing. In our model, we process the buyers
sequentially one after the other, evaluating their
options. That is a kind of ”first come, first served”
rule, where the buyer with the smaller index has
precedence over the others. This might be not so
realistic since in real life situations, firms would
apply some rule to decide which consumers to
serve (e.g. prioritizing contracts, consumers with
stronger relationship, or any other).

Buyers also have a reservation price, which is
the highest amount they are willing to pay. That
means that, when a retailer evaluates distributors,
if no available seller offers a price, including trans-
portation costs, below the reservation price, the
retailer will not make a purchase. We considered
that all the retailers have the same arbitrary reser-
vation price of $10 per unit of fuel.

Distributors are both sellers and buyers. Acting
as a seller, given a set of prices from all other dis-
tributors, a distributor calculates its best response
price by maximizing its profit, subject to capacity
constraints. Given their discontinuous and non-
concave profit function (Fig. 3), this is done by
iterating through a range of possible prices ($0.01
increments up to retailer reservation price) and
calculating the resulting profit for each price.

The profit is calculated as the sum of the de-
mands of all retailers that would choose that dis-
tributor under that set of prices, multiplied by the
difference between the distributor’s price and the
cost of the mixture of A and B products it buys
from its suppliers. Given a set of p1, ..., pn prices
of the n sellers, the i-th firm faces a demand
Di(p1, ..., pn) while the costs are ci = (1 −
x)ciA + xciB . Therefore, the profit Πi is

Πi(p1, ..., pn) = (pi − ci) ·Di(p1, ..., pn) (3)

Acting as buyers, the rules applied to distribu-
tors are similar to those applied to retailers. The
distributor also has a reservation price, in which
they will not pay more for each input component
(ciA and ciB) than the price they can sell the mix
to retailers (pi). Therefore,

ciA ≤ pi and ciB ≤ pi (4)

while the ith distributor‘s demands for each mix-
ture component, DiA and DiB , are given by

DiA = (1− x)Di and DiB = xDi (5)

Suppliers are similar to distributors. Each sup-
plier (A or B) calculates its best response price
by maximizing its profit, subject to capacity con-
straints. For simplicity, we assume no cost is as-
sociated to the suppliers and therefore their profit
is calculated as the sum of the demands of all
distributors assigned to the supplier, multiplied by
the supplier’s price.

Each distributor is assigned to the supplier that
offers the lowest price, including travel costs, sub-
ject to the supplier’s capacity constraint, in the
same way as retailers are assigned to distributors.

2.3. Iterative price update

Because of the discontinuous nature of the best
response price curves, it is unlikely to reach a



2063Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

Start

Iterative
price

update

End

Did it reach the total 
number of iterations?

No

Yes

For each 
iteration 
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Assign retailers to distributors 
based on new prices

Calculate distributor demands

Update A and B supplier prices 
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suppliers
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Calculate distributor costs based 
on A and B prices + travel costs

Fig. 1. Flowchart of the iterative price update algo-
rithm

Nash equilibrium in prices. This occurs especially
because a finite number of fully informed buyers
immediately respond to minimal price increases
by changing their chosen supplier.

Although Nash equilibrium is not possible, we
propose a different set of rules to evaluate the
direction that competitive prices take from a given
initial price in a three-echelon supply chain, ex-
plicitly considering the costs incurred by distrib-
utors in procuring products. The aim is to cap-
ture the dynamic interactions among agents and
their responses to changing market conditions.
The steps involved in each iteration (Fig. 1) are:

(i) Distributor Price Adjustment: At each itera-
tion t, each distributor i picks the price pi

∗
t

that maximizes its profit, considering the ac-

tual level of prices of all the other distribu-
tors (p1, ..., pi−1, pi+1, ..., pn)t−1. The initial
prices (p1, ..., pn)t=0 were arbitrarily set as
$5 per unit of fuel for all distributors.

(ii) Retailer Assignment: Retailers are assigned
to distributors based on updated set of prices
(p1, ..., pn)t. and their individual demands.

(iii) Distributors‘ Demand Calculation: The de-
mand is calculated aggregating the demand
from all retailers assigned to each distributor.

(iv) Supplier Price Adjustment: A and B suppliers
adjust their prices for iteration t based on the
demand from distributors and their competi-
tor’s available prices from iteration t− 1.

(v) Distributor-Supplier Assignment: Distribu-
tors are assigned to suppliers based on up-
dated prices and their individual demands.

(vi) Suppliers‘ Demand Calculation: The demand
for each supplier is calculated from distribu-
tors’ assignments. It aggregates the demand
from all distributors assigned to each sup-
plier. The suppliers prices in t = 0 were set
as $2.5 per unit of A component and $3 per
unit of B component.

(vii) Distributors‘ Costs calculation: Once each
distributor is assigned to A and B suppliers,
we can update the distributor costs based on
A and B prices summed to travel costs.

200 iterations are used to see the convergence
of the model around a certain level of prices, even
though the complete Nash equilibrium would not
be reached as explained.

2.4. Simulated scenarios

Resource limits, i.e., constraints on output based
on availability of the factors of production, such
as Supplier, Production and Distribution capacity,
are known to be vulnerability factors that improve
risks in supply chains. On the other hand, Capac-
ity, defined as availability of assets to enable sus-
tained production levels, such as reserve capacity
and redundancy are capability factors that mitigate
those risks, driving to balanced Resilience and
improved performance (Pettit et al., 2010).

We evaluate how the level of overcapacity, rep-
resented by α, changes the price dynamics and the
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Fig. 2. Spatial positioning of agents. Lines represent
the assignment of retailers to distributors and of these
to A and B suppliers. �: A suppliers, �: B suppliers, �

: Distributors, •: Retailers.

supply chain total costs. The values of α tested are
10%, 40%, 80% and 100%.

Simulating a disruptive scenario, similar to
what happened during the floods in Rio Grande
do Sul, a biodiesel producer is removed (i.e. its
capacity is brought to zero). Using an overcapac-
ity factor α = 80%, the biggest biodiesel supplier
is taken away, which reduces the total biodiesel
supply capacity in one third or, in other terms,
reducing this component‘s supply capacity from
180% to 120% of the equivalent retailers‘ demand.

Inspired by the regulatory relief measures took
by ANP, we also simulated other two scenarios
where, while removing the biggest biodiesel sup-
plier, the mixtures proportions where reduced to
7% and to 0% of biodiesel in the mixture.

3. Results and Discussion

3.1. Assignment of buyers to sellers

The spatial competition model can be easily visu-
alised as a map where the agents and their buyer-
seller relationships can be plotted as shown in
Figure 2.

The nodes in Fig. 2 represent the spatial dis-
tribution of the 3-echelon supply chain agents:
Suppliers, distributors and retailers. The lines con-
necting these nodes represent the commercial re-
lationship that would be established under the

current set of prices and capacities.
The figure shows clusters of influence zones

for each distributor, with some deviations from
expected equidistant boundaries due to capacity
constraints. For example, despite being closer to
D8, several retailers in the middle-right area are
supplied by D4, as D8’s capacity (6.4% of total
demand) is quickly exhausted by retailers that
made earlier choices.

3.2. Reacting to competitors prices

Competitive prices are achieved when every agent
seeks to maximize its profit. As shown in Fig. 3,
starting from a price equal to zero, if all other
firms keep their prices constant, a firm can in-
crease its own price to see its profit grow. This can
continue until one or many of its potential clients
would swap to another supplier producing a profit
reduction. If the price increase continues, more
clients abandon this supplier, and, above a certain
price, there will be no client, and the profits go
down to zero. If costs were included, prices below
unitary costs would deliver negative profits (i.e.,
losses) and the curve would simply be translated
downward on the ordinate axis.

Firm D2 has a higher capacity than firm D4.
That partially explains why, in Fig. 3, for almost
all the considered prices, the total profits earned

Fig. 3. Profit for firms A0, D2 and D4 as a function
of the price charged, keeping all the other firms prices
fixed at $2.5 and $5.0 for A and B suppliers, respec-
tively. All the firms’ costs are disregarded. The black
dots represents the maximum possible profit.
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by D2 are higher than those earned by D4. Besides
the general aspect of both D2 and D4 profit curves
looking similar, the maximum profit is positioned
of different prices. That means that, if all other
distributors where to charge a price of $5, firm D2
best response would be a price less than $5, while
D4’s best price in that situation would be slightly
higher than its competitors.

Firm A0’s profit curve, shown in Fig. 3, dis-
plays two peak regions. Initially, as prices rise
from zero, profits peak on the left-hand part of
the plot as consumers pay more. Further price
increases cause some buyers to leave, but not all.
When prices exceed $8, another peak occurs on
the graph’s right-hand side. That clients stay with
this firm at prices as high as that only because all
the other firms reached their capacity limit and the
consumers do not have another alternative. Going
further, the buyers reach their reservation price (in
this example, $10) one after the other, the farther
ones before the closer ones, and profits decline to
zero. This dynamic is used to update each firm’s
price, as explained in section 2.3.

3.3. Competition model

After 200 iterations, prices move away from initial
values and tend to be included in some bounds as
seen in Fig. 4. In the last 50 iterations, the A prices
ranged from $0.10 to $1.24, while B prices varied
from $0.22 to $1.79 and the final mixture from
$0.89 to $2.84, among all agents.

With the resulting prices after each iteration, it
is possible to calculate the mean price of compo-
nents A and B, as well as the mean transporta-
tion cost payed by each distributor to move them
from the supplier to its site. It is also possible to
calculate the mean price charged by the distrib-
utors, but it is convenient to express the distrib-
utor margin, which is the difference between the
distributor’s price and the costs incurred to buy
the components. On top of that, there is the mean
transportation cost paid by the retailers. For the
base scenario, this is presented in Fig. 5-c.

3.4. Influence of overcapacity

The influence of the spare capacity level over the
prices after several iterations was evaluated, for

four different values of the overcapacity factor α
(see Fig. 5). For all plots in Fig. 5 the individual
costs are stacked: Costs of acquisition by the dis-
tributors, which includes the price and the trans-
portation costs for products A and B, distribution
margins and final transport cost to retailer. In all
cases, the costs associated with B product are
smaller, compared to product A and distribution
costs, because product B is present in only a minor
portion of the total mixture (14%).

When the supply capacity is too tight, closer to
the demand, prices tend to reach the reservation
prices, as shown in Fig. 5-a for α = 10%, with A
prices representing the higher proportion of total
costs. In this scenario, firm A0 has the potential to
exercise its market power, reaching higher profits
by charging prices slightly higher than its com-
petitors, while the competitors hit their maximum
supply capacity.

Going to higher overcapacity amounts, average
prices tend to be more stable and smaller values,
as observed in Fig. 5 c and d. These findings
strengthen the intuition that capacity restrictions
(for example, during a disruption) could lead to
an increase in price levels.

3.5. Impact of supplier removal

In order to replicate a scenario that occurred dur-
ing the Rio Grande do Sul floods, when the most
central biodiesel producer‘s facilities were com-
pletely flooded, we removed the largest biodiesel
supplier from the simulation, keeping all other
capacities constant. The total cost incurred by
retailers, which includes the mean price charged
by the distributors and the mean transportation
costs (both weighted by the volume negotiated), is
presented in Fig. 6. In this figure, other scenarios
were included, inspired by the measures taken
by the regulatory body ANP. Beyond the regular
scenario of 14% of biodiesel in the mixture, two
additional scenarios are presented: mixture of 7%
and completely removing the biodiesel from the
mixture. For all scenarios shown in Fig. 6, the
costs stay between $2 and $3 for all scenarios.
Visual inspection of the graph suggests that price
levels are lower prior to the removal of firm B0.
Furthermore, after the removal of firm B0, scenar-
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Fig. 4. Evolution of prices over 200 iterations for (a) A suppliers, (b) B suppliers and (c) Distributors.

Fig. 5. Evolution of mean individual costs per unit of mixture, varying the overcapacity factor α. (a) α = 10%,
(b) 40%, (c) 80% and (d) 100%.

Fig. 6. Total Retailers costs, comparing three scenar-
ios of mixture proportion when the larger biodiesel
supplier is removed with the base scenario.

ios with higher biodiesel content result in reduced
price levels.

For each scenario, the values of the first 75
iterations were discharged, and the mean and stan-
dard deviation of the last 125 iterations where
calculated (see Table 1).

Table 1. Total retailers’ costs after removing the
first 75 iterations, under 4 different scenarios.

Scenario Retail costs
Firm removed x Mean Std. Dev.

No removal. 14% 2.17 0.13
B0 14% 2.29 0.09
B0 7% 2.40 0.08
B0 0% 2.61 0.17

The removal of B0 resulted in higher mean
costs observed by retailers in the simulated sce-
narios. That also means that, if B0 is removed,
decreasing the percentage of component B in the
mixture is associated with higher costs to retailers.
Since the reduction of component B in the mixture
means an increase in component A, this is accom-
panied by a reduction in the idle capacity of the
suppliers of A. As noted earlier, the reduction of
overcapacity might lead to price increases in our
model, specially in A product with less competi-
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tors, which can explain the increase in total costs.
That results suggest that the regulatory body‘s

relief measures might have had an unintended
impact in raising the total cost of fuel to retailers.
However, more research is necessary to conclude
that, including previously validating the model
using real data, which is a path for new research.

4. Conclusion

This paper presents an agent-based spatial compe-
tition model inspired by the Brazil’s fuel supply
chain. The model can used to evaluate supply-
chain resilience with particular focus on the
impact of regulatory measures during extreme
weather events. Our analysis demonstrates that
market overcapacity significantly influences price
stability and supply chain resilience. When supply
capacity is tight (10% overcapacity), prices tend to
rise toward reservation levels, while higher over-
capacity levels (80-100%) lead to more stable and
lower average prices.

Our simulation of the Rio Grande do Sul
floods scenario, where we removed the largest
biodiesel supplier, revealed possible unexpected
consequences of regulatory interventions. In con-
trast to intuition, reducing the requirement for a
mandatory biodiesel mixture, a measure intended
to alleviate supply chain stress, led to higher to-
tal costs for model retailers. While these results
provide valuable insights for policy makers and
industry stakeholders, future research should in-
clude other regulatory interventions, validate cur-
rent findings against empirical data and explore
additional regulatory mechanisms for enhancing
supply chain resilience.

To ensure reproducibility all the complete code,
data, and environment setup conducted using
Python within a Google Colab notebook are ac-
cessible at:

https://gist.github.com/JardelDuque/

49705c20d17a99a689714806b8a1b450.
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