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This research explores the integration of Large Language Models (LLMs) and Automatic Speech Recognition
(ASR) technologies into Root Cause Analysis (RCA) to enhance decision-making in complex engineering
environments, particularly mining operations. Traditional RCA methods, such as Ishikawa diagrams and the "Five
Whys," often face limitations related to scalability, reliance on structured data, and the labor-intensive nature of
manual processes. By leveraging advanced Al capabilities, this study presents a novel step by step approach that
combines ASR for accurate transcription of unstructured verbal data with LLMs for automated causal analysis and
solution generation towards to provide an structured RCA analysis. A specific case study was introduced to validate
the novel proposal in real scenario. Moreover, a test with different mining operators was developed to evaluate
novelties of research proposal by using the Technology Acceptance Model (TAM) questionnaire, which showed
high operator satisfaction and usability. The findings emphasize the potential of Al-driven RCA frameworks in
streamlining workflows, reducing cognitive load, and improving decision-making processes.
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1. Mining Projects. decision-making frameworks to navigate
uncertainties and conflicting criteria effectively

Mining engineering projects are inherently - o
(Taherdoost & Madanchian, 2023). Traditional

complex, requiring the integration of diverse .
technical, economic, and operational factors to ~ methods such as Root Cause Analysis (RCA)

ensure efficiency and reliability (Viveros et al., have provided structured  approaches to
2012; Nikulin et al., 2024). These projects often ~ dentifying underlying problems, but they face
significant limitations in scalability, efficiency,

and the integration of unstructured data sources
(Medina et al., 2012; Wang & Wu, 2024).

involve extensive data analysis and multi-
stakeholder collaboration, demanding robust
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Addressing these challenges requires innovative
approaches that leverage advanced technologies
while preserving the core principles of structured
decision-making. One promising advancement in
this field is the integration of Artificial
Intelligence (Al), particularly Large Language
Models (LLMs) and Automatic Speech
Recognition (ASR), into RCA methodologies.
LLMs, powered by Natural Language Processing
(NLP), have  demonstrated  exceptional
capabilities in synthesizing insights from
unstructured textual data, allowing decision-
makers to extract actionable knowledge from
complex discussions (Dwivedi et al., 2023,
Krugmann & Hartmann, 2024).

Concurrently, ASR  technologies have
significantly improved in transcription accuracy,
even in challenging environments, facilitating the
seamless conversion of verbal exchanges into
structured formats for analysis (Li, 2022). The
synergy of these technologies seems to enable a
more efficient RCA process, enhancing both the
precision of root cause identification and the
generation of data-driven for companies. In
specific, traditional RCA methodologies, such as
Ishikawa diagrams and the "Five Whys," rely
heavily on expert-driven processes and structured
data inputs, often resulting in time-intensive and
inconsistent outcomes (Yu & Deng, 2016; Ma et
al., 2021). In contrast, LLMs can process
transcribed maintenance discussions to extract
critical information, establish causal
relationships, and generate RCA insights with
minimal human intervention. For example, ASR
can capture maintenance discussions, creating a
textual dataset that LLMs analyze to identify
problem hierarchies, prioritize failure causes, and
propose tailored mitigation strategies (Wang &
Wu, 2024).

In this context, this article a novel structured
approach that integrates LLMs and ASR to
automate RCA applied in mining industry. To
validate the proposed approach, an illustrative
case study was conducted in a mining
environment, analyzing operational inefficiencies
in SAG mills. The system's usability was assessed
using standardized evaluation frameworks such as
the Technology Acceptance Model (TAM)
questionnaire (Murillo et al., 2021).

This research contributes to the growing field of
Al applications in engineering by presenting an
structured approach by using ASR and RCA
technique for mining projects.

2. Literature Review
2.1 Methodology in Root Cause
Analysis

Root Cause Analysis (RCA) is a systematic
approach employed to identify the underlying
causes of failures or inefficiencies in various
domains, including engineering, healthcare, and
manufacturing (Andersen & Fagerhaug, 2006).
RCA methods are instrumental in reducing the
recurrence of issues by addressing the root rather
than the symptoms of problems (Gano, 2007).
Traditional RCA frameworks, such as the "Five
Whys" technique, Ishikawa diagrams, and Failure
Mode and Effects Analysis (FMEA), have long
been applied to analyze -causative factors
systematically (Barbera et al., 2012; Medina et al.,
2012). These methods are widely regarded for
their ability to deconstruct complex problems into
manageable components, aiding decision-makers

in identifying causative chains effectively
(Rasmuson & Kelly, 2008).
Despite their advantages, traditional RCA

methods are not without limitations. Manual
execution of these approaches is labor-intensive
and prone to subjectivity, especially in cases
where significant expertise is required to interpret
data and prioritize causes (Li & Gao, 2010).
Moreover, the scalability of these methods in
large, data-intensive projects is constrained by
their reliance on structured data and expert input
(Medina et al., 2012). Addressing these
challenges requires innovative approaches that
integrate advanced tools capable of processing
unstructured data, reducing manual intervention,
and enhancing the accuracy of cause
identification.

2.2 Advances in RCA Methods

Recent advancements in RCA methods have
sought to address these limitations by
incorporating quantitative techniques and digital
tools. For instance, methods such as Bayesian
Inference and Fault Tree Analysis (FTA) provide
quantitative frameworks to model the probability
of failures and their interdependencies (Medina et
al., 2012). Similarly, HAZOP and Ishikawa
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diagrams are often enhanced with software tools
to streamline data processing and visualization,
improving their applicability in complex systems
(Rossing et al., 2010). At the samte time,
emerging approaches also emphasize integrating
RCA into broader operational frameworks, such
as Reliability-Centered Maintenance (RCM) and
Proactive Maintenance. These approaches
leverage RCA to enhance equipment reliability,
minimize downtime, and optimize resource
allocation (Gano, 2007; Crespo, 2007). However,
even with such advancements, the challenge of
effectively analyzing unstructured data, such as
maintenance logs or stakeholder discussions,
persists. Traditional RCA frameworks often fail
to capitalize on the wealth of information
embedded in natural language inputs, which are
increasingly common in real-world scenarios
(Latino & Latino, 2002; Pietsch et al., 2024).

2.3 Large Language Models in RCA

The advent of Artificial Intelligence (Al),
particularly Large Language Models (LLMs), has
introduced transformative potential in addressing
the limitations of traditional RCA methods
(Pietsch et al., 2024). LLMs, such as GPT-4,
leverage advanced Natural Language Processing
(NLP) capabilities to process and analyze
unstructured text data with remarkable accuracy
(Dwivedi et al.,, 2023). These models can
synthesize information from diverse sources,
identify patterns, and provide insights that are
both contextually relevant and actionable
(Krugmann & Hartmann, 2024).

One of the primary advantages of LLMs is their
ability to process natural language inputs, such as
meeting transcripts or maintenance discussions,
enabling them to extract critical information for
RCA (Wang & Wu, 2024). By employing
reaction analysis and contextual understanding,
LLMs can identify stakeholder priorities, quantify
the relative importance of causative factors, and
propose  data-driven  mitigation  strategies
(Krugmann & Hartmann, 2024). This capability
significantly reduces the reliance on manual
interpretation and  expert-driven  analyses,
enhancing the scalability and efficiency of RCA
processes.
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2.4 Integration of ASR and LLMs in
RCA

The integration of Automatic Speech Recognition
(ASR) and LLMs represents a significant
advancement in RCA methodologies. ASR
technologies have achieved notable
improvements in transcription accuracy, enabling
the conversion of verbal discussions into
structured text formats for analysis (Li, 2022).
When combined with LLMs, ASR facilitates the
automated analysis of maintenance discussions,
towards to enable real-time RCA execution.For
instance, the transcription of maintenance team
discussions using ASR provides a dataset that
LLMs can analyze to identify causative
hierarchies and propose solutions (Wang & Wu,
2024; Pietsch et al., 2024). This approach not only
reduces the time required for RCA but also
enhances the consistency of results by minimizing
human biases and errors. Additionally, the use of
Al-powered RCA frameworks has demonstrated
significant potential in multi-criteria decision-
making (MCDM), providing structured analyses
of complex, data-intensive problems (Taherdoost
& Madanchian, 2023; Pietsch et al., 2024).

3 Methodology

This study employs step by step approach that
integrates Large Language Models (LLMs) and
Automatic Speech Recognition (ASR) to enhance
the Root Cause Analysis (RCA) in mining
engineering  projects. The methodological
approch is structured into three key phases: data
acquisition, automated RCA execution, and
evaluation.

3.1 Data Acquisition

The first phase involves collecting audio
recordings of maintenance and operational
discussions from mining projects. These
recordings are transcribed using ASR technology,
specifically the Whisper v2-large model, known
for its high accuracy in transcribing unstructured
audio data (Li, 2022). The transcription process
ensures that all verbal inputs are converted into a
structured text format suitable for analysis.
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3.2 Automated RCA Execution

In the second phase, the transcribed data is
processed using GPT-4, a state-of-the-art LLM
with advanced Natural Language Processing
(NLP) capabilities (Dwivedi et al., 2023). The
model identifies causal hierarchies, prioritizes
root causes, and proposes actionable solutions. By
employing techniques such as reaction analysis
and contextual understanding, the LLM provides
insights that align with the principles of
traditional RCA methods like Ishikawa diagrams
and the "Five Whys" approach.

3.3 Evaluation

The final phase evaluates the effectiveness of the
LLM-ASR-driven RCA process. Metrics such as
time easy to use and usefulness of RCA-ASR are
assessed through standardized tools like the
Technology  Acceptance  Model  (TAM)
questionnaire  (Murillo et al., 2021). An
illustrative case study involving a critical mining
systems was included as SAG mill. Moreover,
raw material transportation networks, are utilized
to validate the proposed research proposal with 24
operators answer using TAM. This questionnaire
aims to understand advantage and disadvantage
towards to LLM-ASR-driven RCA as intrinsical
company practice. Moreover, this analysis aims to
validate the potential of integrating Al
technologies to address the limitations of
traditional RCA frameworks, providing a
scalable, efficient, and data-driven approach to
problem-solving in  complex engineering
contexts.

3.1 Step by step approach

The figure 1 presented step by step approach
leading with usability evaluation, consisting of
five steps.

STEP-1: Discussion on potential causes. This
step involves a conversation focused on
identifying possible causes of a problem or issue.
Participants discuss various factors that might
have contributed to the problem.

STEP-2: Discussion on relevant criteria and
parameters. In this step, participants refine their
discussion by focusing on key criteria and
parameters that should be considered for further

analysis. This helps narrow down the factors that
are most relevant for Root Cause Analysis (RCA).

STEP-3: Automated RCA Using
Transcriptions. The recorded discussion is
transcribed, and an automated Root Cause
Analysis (RCA) process is applied to extract
meaningful insights. This step leverages speech-
to-text technology and analytical tools.

STEP-4: Results reporting. After the automated
RCA, the findings and insights are compiled into
a report. This report summarizes the identified
causes and relevant parameters discussed in the
previous steps.

STEP-S: Usability Evaluation. The final step
involves evaluating the usability of the results,
ensuring that the findings are actionable and
meaningful for decision-making.

RECORED
DISCUSSION

(—— )
STEP-1:

Discussion on
potential causes

H

STEP-2:
Discussion on
relevant criteria

and parameters J

]

STEP-3:
Automated RCA
Using
Transcriptions

i

STEP-4: Results
reporting

I

STEP-5: Usability
Evaluation

N—

Fig. 1. Step by step approach.

For instance, the pseudocode below shows the
core structure of code for this analysis:
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Input: Path file ("RCA.mp3")
Output: RCA report.pdf

Code stages:

1. Transcribe

- Audio: Transcribe audio file using ASR.
- Store transcription.

2. Get Evaluation Criteria and Weights from LLM:

- Send transcription to LLM, ask for:

- Definition of expected answers structure for different
RCA methods.

- Define RCA method to analysis data transcription: Five
Why and Ishikawa

3. Get RCA option based from LLM:

- Send transcription and classification to LLM, ask for:
- Each variable option on each criterion behind
classification

- Justification for RCA-causes from LLM

- Final RCA proposal according problems identified.

- Store LLM response

4. Maintenances solutions proposal base on Stored
LLM response:

- Audio with brainstorming solutions.

- Send transcription and classification to LLM, ask for:

- Each variable option(solution) for RCA classification

- Justification for RCA-causes toward solutions.

- Final RCA proposal with solutions according problems
identified.

- Store LLM (model and solutions) response

5. Generate Report:

- Combine transcription, LLM results (Model, variables,
definition and solutions) into a structured report.

- Include:

- Executive Summary

- Explanation of RCA process

- Detailed Analysis (criteria, solution, justification)

- Decision recommendation

- Export report as a PDF.

Practical STEP.1 : The problem description phase was
completed within a concise four-minute timeframe,
during which participants provided a detailed
overview of the operational situation.

Practical STEP 2:
The method used was Five whys and Ishikawa model
and main parameter was time production.

4  Case study and results

Autonomous STEP 3 from recorded audio and
transcription:

**Problem Statement**:

The mill was stopped due to potential contamination of
the lubrication system.

###Five-Why Analysis###:

1. **Why was the mill stopped?**
- Potential contamination of the lubrication system.

2. **Why was there potential contamination in the
lubrication system?**

- Manipulation of the water valve was added to the
chute, and the closure was delayed.

3. **Why was the water valve closure delayed?**
- Inadequate post-alarm actions and process controls.

4. **Why were the post-alarm actions inadequate?**
- Lack of proper review and adjustment procedures for
the crushing process and interlock systems.

5. **Why were procedures lacking?**
- Insufficient routine checks and process adjustments,
leading to a lack of elasticity in the lubrication system.

### RCA Ishikawa (Fishbone) Analysis ###

**Problem Statement**:
Potential contamination of the lubrication system leading
to mill stoppage.

**Main Causes (Ishikawa Variables)**:

- **Methods**:

- Inadequate handling procedures for water valve
manipulation.

- Ineffective post-alarm procedures for chute blockages.

In this section, the authors attempt to illustrate the - **Machines**:

effectiveness of the proposed approach by - Non-optimal interlock settings for the needle valve
discussing its application within the RCA process closure.

of a Chilean mining company. In more detail, - Insufficient thermographic inspections of the chute.
Chile is one of the largest exporters of copper
worldwide, contributing significantly to the world
production of copper mining. In specific case
study is related to SAG mill problem, which had
to be stopped due to potential contamination of
lubrication system. This problem produced
several operational issues that operators need to
identify and solve. Based on recorded discussion
the results are presented below.

- **Materials**:

- Possibility of material contamination due to delayed
valve closure.

- Potential for contamination from chute blockages.

- **Manpower**:

- Insufficient training on handling valve operations and
recognizing alarm conditions.

- Inappropriate actions taken after an alarm is triggered.

- **Measurements**:
- Inability to measure the exact amount of
contamination.
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- Lack of clear guidelines on acceptable oil level
thresholds.

- **Environment**:
- Reduced volumetric capacity due to water supply
issues affecting the mill operation.

Autonomous STEP 4:

#### Reported andMitigation Actions
**Mitigation actions for each identified Ishikawa
variable**:

- **Methods™**:

- Establish clear standard operating procedures (SOPs)
for water valve operation.

- Develop and train on a comprehensive post-alarm
checklist for chute blockages.
- **Machines**:

- Review and optimize interlock settings for the needle
valve to ensure timely closure.

- Implement a schedule for daily thermographic
inspections of chutes and lubrication systems.
- **Materials**:

- Introduce a contamination monitoring system to
promptly detect any foreign material in the lubrication oil.

- Regularly clean and inspect chutes to prevent and
promptly address blockages.
- **Manpower**:

- Conduct training sessions focused on alarm response
procedures and correct valve operations.

- Set up a feedback mechanism for operators to report on
alarm conditions and corrective actions taken.
- **Measurements**:

- Establish clear guidelines for lubrication oil levels and
incorporate these into routine checks.

- Implement a tracking system to record and analyze any
deviations from normal oil levels for prompt action.
- **Environment**:

- Monitor changes in volumetric capacity and integrate
these observations into mill operation adjustments.

- Ensure a redundant water supply system to prevent
disruptions that could cause material blockages.

According to case study, the integration of LLM-
ASR-driven RCA in mining operations, as
showed in the case of mill stoppage due to
potential lubrication system contamination, offers
a transformative approach to problem-solving. By
automating Step 3—root cause analysis from
recorded discussions—this method simplifies the
identification of critical issues, such as delayed
water valve closures and inadequate alarm
responses. The automation ensures structured
knowledge transfer, reducing time on manual
transcription and subjective analysis.

Additionally, by leveraging recorded audio and
transcriptions, LLMs can efficiently extract
recurring patterns, categorize root causes, and

propose targeted mitigation strategies. This

enhances operational efficiency, minimizes
downtime, and promotes proactive risk
management.  Additionally, the structured

documentation of failures and corrective actions
contributes to continuous improvement, ensuring
that lessons learned are effectively integrated into
SOPs, training programs, and equipment
optimization. Finally, this approach strengthens
knowledge retention, enhances decision-making,
and fosters a culture of operational excellence in
the mining industry.

4.1 Technology Acceptance Model(TAM)
test

In this subsection, the Technology Acceptance
Model (TAM) questionnaire was used to evaluate
operators’ perceptions of the wusability and
effectiveness of the LLM-ASR-driven RCA
proposed in this research. According to Table 1,
the results indicated high levels of satisfaction
among operators, with average scores of 6.13 out
of 7 for perceived usability and 5.92for perceived
effectiveness. These findings highlight the ease of
use and practical utility of the proposed approach
in addressing operational inefficiencies.

The high usability score underscores the intuitive
design of the ASR and LLM integration, which
facilitated seamless interaction for operators with
minimal learning curves. This reflects the
effectiveness of the transcription and analysis
processes in reducing cognitive load during RCA
execution. Similarly, the strong rating for
perceived effectiveness highlights the tangible
benefits realized, such as faster identification of
root causes and the generation of actionable
solutions. These attributes likely contributed to
improved decision-making and  workflow
optimization in critical mining systems.

Despite the overall positive feedback, slight
variations in individual scores suggest areas for
further refinement. For instance, enhancing the
adaptability of the Al framework to accommodate
a broader range of operational scenarios could
further improve user satisfaction. This analysis
reinforces the value of combining Al technologies
with user-centric approaches to develop robust
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and efficient problem-solving frameworks in
engineering contexts.

Table 1: Technologic Acceptance Model used in 24
Operators results.

Usefulness N Media s.d
Using RCA-ASR in my job
would allow me to accomplish 24 6,58 0,50

my tasks faster.

Using RCA-ASR would
improve my job performance.
Using RCA-ASR in my job

24 | 592 0,78

would increase my 24 | 6,13 0,85
productivity.

Using RCA-ASR would

enhance my work 24 5,63 0,77

effectiveness.
Using RCA-ASR would make
my job easier.
I would find RCA-ASR useful

24 | 5,83 0,82

24 | 6,00 0,93

in my job.

Ease of Use N Media s.d
Learning to use RCA-ASR 24 | 388 0.68
would be easy for me.

I would find it easy to make

RCA-ASR do what I wantitto | 24 | 4,04 0,81
do.

My interactions with RCA-

ASR would be clear and 24 | 4,00 0,33
understandable.

I would find RCA-ASR

flexible to interact with. 24 330 1,06
It would be easy for me to

become skilled at using RCA- 24 | 5,46 0,98

ASR.

Despite its advantages, integrating LLMs and
ASR into RCA presents challenges, including
potential model biases, dependence on high-
quality training data, and the risk of over-reliance
on Al-generated outputs (Heaven, 2020). To
address these concerns, this study emphasizes
a human-in-the-loop approach, ensuring that
domain experts validate and contextualize Al-
driven insights, maintaining robustness and
relevance in decision-making (Chiang et al.,
2024).

5 Conclusions.

This research explored the potential of integrating
Large Language Models (LLMs) and Automatic
Speech Recognition (ASR) technologies into the
Root Cause Analysis (RCA) process, particularly

in complex operational environments such as the
mining industry. The study presented in this paper
integrates ASR to transcribe unstructured verbal
data into analyzable text, followed by the
application of LLMs to extract insights, prioritize
causes, and propose actionable solutions. This
approach significantly reduces the time required
for RCA while enhancing the accuracy and
consistency of the results. The findings from the
case study validate the effectiveness of this
framework, demonstrating its ability to identify
multiple root causes of operational inefficiencies
and propose tailored solutions.

Regarding operator testing, the high satisfaction
scores from the Technology Acceptance Model
(TAM) questionnaire underscore the usability and
practical benefits of this Al-driven RCA
methodology. Specifically, key advantages of this
approach include its adaptability to various
operational contexts, its ability to process and
analyze large volumes of unstructured data, and
its capacity to improve decision-making
processes. Operators and decision-makers benefit
from a simplified task flow, reduced cognitive
load, and actionable insights that are both timely
and data-driven. These attributes are critical in
dynamic and resource-intensive sectors such as
mining, where operational efficiency is
paramount.

However, integrating LLMs and ASR into RCA
is not without challenges. The potential for Al-
generated biases, reliance on high-quality training
data, and the necessity of a human-in-the-loop
approach remain important considerations. These
limitations highlight the need for ongoing
refinement of Al models and methodologies to
ensure robust and contextually relevant outcomes.
Future research should explore domain-specific
training datasets, hybrid intelligence frameworks,
and the integration of additional Al tools to
further enhance RCA processes.

In conclusion, this research contributes to the
growing body of knowledge on Al applications in
engineering by presenting a practical, innovative,
and validated approach to RCA. The integration
of LLMs and ASR has shown significant potential
for advancing decision-making frameworks in
mining and other complex engineering fields. By
addressing the limitations of traditional RCA
methods, this study lays the foundation for future
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advancements in Al-driven problem-solving
methodologies. Specifically, the authors consider
this research a initial step toward developing a
software application capable of guiding RCA
analysis using LLMs and ASR in maintenance,
following a systematic approach.
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