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Uncertainty quantification (UQ) remains critical in addressing complex engineering challenges, especially in safety-
critical systems where scarce data and mixed uncertainties prevent robust decision making.  This paper presents a 
data-driven model updating framework to address the NASA and DNV Challenge 2025 on Optimisation under 
Uncertainty using the invertible normalising flow-based neural networks, which emphasises high-dimensional 
systems with limited observational data and hybrid aleatory-epistemic uncertainties. Our methodology explicitly 
deals with the aleatory and epistemic uncertainties separately through a two-step model updating framework based 
on a preliminary sensitivity analysis. The aleatory variables are calibrated first globally and then the epistemic 
variables are calibrated locally. To process the time series response data, multihead transformer is adopted as the 
conditional network in the normalising flow-based model updating framework, which can summarise the complex 
data into fixed-length vector. The following design optimisation problems are tackled by the Particle Swarm 
Optimisation (PSO) with a Fully Connected Neural Networks (FCNNs)-based surrogate model. This work bridges 
machine learning with classical UQ methodologies, offering a practical pathway for safety-critical system design 
under aleatory-epistemic uncertainties. 
Keywords: uncertainty quantification, model updating, design optimisation, normalising flow. 

1. Introduction & Problem Description 

The NASA and DNV Challenge on Optimisation 
Under Uncertainty (Agrell et al. 2025) is a 
challenge problem presented by both NASA 
Langley Research Centre and DNV Group 
Research and Development for researchers to 
explore the shared challenge in UQ across various 
sectors such as the practical development of 
safety-critical vehicle systems. The Challenge 
2025 can be regarded as the enhanced version of 
the previous NASA Multidisciplinary 
Uncertainty Quantification Challenge 2014 
(Crespo and Kenny 2019) and the NASA Langley 
UQ Challenge on Optimisation under Uncertainty 
(Crespo, Kenny, and Giesy 2014). All the three 
challenges share the similar key aspects of model 
calibration and uncertainty reduction given sparse 
data, and reliability-based design in the presence 
of both aleatory and epistemic uncertainty. 
The problem framework centers on a black-box 
physical system characterized by an 8-

dimensional input vector , 
where: 
�  (2 parameters) refers to aleatory variables 

with unspecified probability distribution  
�  (3 parameters) denotes epistemic 

variables with unknown true values  
�  (3 parameters) constitutes control 

variables with fixed user-defined values 
All the three categories of parameters are 
standardised into a relevant range in . 
The system response comprises six time series 

 
sampled at 60 time points ( ), 
forming a 60×6 multivariate time series. As 
illustrated in Fig 1, the response depends on both 
deterministic inputs and stochastic elements 
governed by a random seed , effectively 
rendering the output a stochastic process even 
under fixed input conditions. 
Numerical simulations require simultaneous 
specification of  and seed , whereas physical 
system observations are obtained by setting only 
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the control variables . In the latter case,
values are automatically sampled from ,
assumes its true (but unknown) value ,

and follows its inherent probability distribution. 
This dual modeling framework creates distinct 
data generation paradigms for computational and 
experimental scenarios, establishing a realistic 
testbed for uncertainty quantification 
methodologies.

Fig 1. Schematic figure of the black box model for
NASA UQ 2025 Challenge.

The NASA UQ Challenge 2025 consists of two 
categories of problems, namely: 1) uncertainty 
quantification and 2) design optimisation, which 
involve a series of subproblems.  In the first 
problem about uncertainty quantification, the 
uncertainty models (UMs) are initialised by the 
given range of the input parameters. The initial 
UMs are then calibrated in two steps given the 
observation data from the real system. In the
second problem about design optimisation, a cost 
function and another constraint are determined for 
optimisation. A series of optimisation process are 
carried out to define different about 
performance-based design, reliability-based 
design and the constrained design.

2. Methodology Overview
The goal of Problem 1 is to obtain the UMs of the 
aleatory variables and the epistemic variables 
against the response data from the real system. 
Thus, the calibrated UMs will constitute a two-
dimensional probability distribution for and 
3 reduced intervals for . Because the response 
data is six-dimensional time series, the traditional 
model updating approaches such as the Bayesian 
approach might not be compatible or might need to 
be integrated with other data pre-processing 
methods in order to build up the likelihood function
(Bi et al. 2022).
In this study, a novel conditional normalising flow
(CNF)-based model updating framework is 
employed. The conditional normalising flow is a

type of flow-based deep generative model consists 
of a conditional network and an invertible neural 
network (INN). The conditional network is 
responsible for summarise the observations into 
fixed size condition vectors and inject them into the 
INN and the INN is accountable for bijective 
transformation between complex input space and 
latent space (generally standard Gaussian 
distribution) with the guidance of the conditions.
The CNF-based model updating framework (as 
shown in Fig. 2) establishes a bidirectional 
mapping between input parameter distributions 
and latent representations through an integrated 
architecture combining an Invertible Neural 
Network (INN) with a conditional feed-forward 
network (Ardizzone et al. 2019). During forward 
training, input parameters sampled from prior 
distributions are processed through numerical 
simulations to generate corresponding outputs, 
which the conditional network encodes into 
transformation parameters for the INN. This 
enables the INN to learn a bijective mapping 
between the input parameter space and a Gaussian 
latent space while preserving simulation data 
relationships through conditional coupling. In the 
inverse inference phase, the trained network 
probabilistically inverts this mapping by 
propagating latent samples through the inverted 
INN conditioned on observed data features, 
thereby recovering posterior parameter 
distributions that synthesize prior knowledge with 
observational evidence. This dual-directional 
framework achieves efficient model updating 
bypassing the likelihood estimation in Bayesian 
model updating, simultaneously maintaining 
computational tractability and preserving complex 
parameter-data interdependencies learned during 
joint training.

Fig 2. Architecture of CNF-based model updating 
framework.

The so-called conditional affine coupling layers 
(cACLs) (Ardizzone et al. 2019) serves as 
fundamental units in the architecture of the CNFs,
as shown in Fig 3. The input vector is split into 
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two parts with random size and propagated 
through the cACL to the latent space. The 
conditional network is integrated in the cACL to
assure the information of observation data is 
included in the training process and can guide the 
inverse generation process. The and 
indicate scaling and translation functions, which 
can be arbitrary functions or neural networks.

Fig 3. Conditional affine coupling layers (cACLs) in 
the forward training direction.

3. Calibration of the Uncertainty Models 
(Problem 1)

3.1. Sensitivity Analysis
Before carrying out the calibration process, a 
sensitivity analysis was performed to observe 
how the output responses vary based on different 
input parameters including 

. By taking the initial input 
vector of the black box model as

, where 
the first two parameters refer to the aleatory 
parameters, the following three refer to the 
epistemic parameters, the three after refer to the 
control parameters and the random seed 
parameter at last, one input parameter is adjusted
at a time and run the forward black box model 
provided to collect the corresponding output 
responses to discover any changes caused by the 
variation of the input. The input parameters are 
adjusted from 0 to 1 with a step length of 0.1 and 
the random seed variable is selected as integers 
from 1 to 10. The different plots of various 
colours in Fig 4 represent response data of the 60 
time-steps.
The results indicate that, the aleatory parameters 
have significant impact on response data. For the 
first aleatory variable, , all six output features 
are affected strongly by this parameter. It causes 
an increase from 0 to around 3.35 in first three 
response features and an increase from 0 to 4000, 
1750, and 3400 to the latter three response 

features, respectively. The first three responses 
reach the upper bound of around 3.5 when 
reaches roughly 0.3 or larger. For the second 
aleatory variable, , the first three responses on 
all time steps increase as the increase of the ,
while the response data on some time steps of the 
latter three responses decrease along the increase 
of .
The epistemic parameters, on the other hand, have 
impact on response data but is considerably 
smaller than the aleatory parameters. All three 
epistemic parameters have almost no effect on the 
response and . The first two epistemic 
parameters, and , have little effect on the 
other 4 responses, while a negligible effect on 
the other 4 responses either.
For the control variables, unlike the other 
parameters lead to a trend of either increase or 
decrease monotonically on the response data, they 
will make the response differently incremental 
and decremental before and after a certain point.
As the changes it causes increase first 
and then decrease and the other 5 responses 
decrease and later increase, where the inflection 
point occurs at approximately . The 
second control variable has similar impact on 

, where the inflection 
point occurs at roughly . However, it 
barely has effect on and . The has 
monotonical impact on ,
with , increase and ,
decrease along the increase of . It nearly has 
no effect on and either.
The random seed parameter serve as a random 
noise generator that add extra noise on the model 
response. Its variation will have some effect on 
the response, but there is no obvious regularity.
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(1)

(2)

(3)

(4)
Fig. 4. Sensitivity analysis for the input parameters 

(1) , (2) , (3) and (4) .

3.2. Observation Data Acquisition
To obtain the response data from the real system, 
which serves as the target in the model updating 
process, the three control variables need to be 
determined manually. In this case, a total number 
of 10 groups of control variables are selected 
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based on the sensitivity analysis above. For each 
of the three control variables, 10 values are 
chosen based on the sensitivity analysis above. 
For and , the samples are selected 
symmetrically of the inflection points, and the 
intensity of sampling is determined by the 
variation rate of the response. Thus, the samples 
result in vectors = [0.075, 0.15, 0.225, 0.35,
0.4, 0.45, 0.575, 0.65, 0.725, 0.9], = [0.1, 0.275,
0.35, 0.425, 0.55, 0.6, 0.65, 0.775, 0.85, 0.95].
The are sampled uniformly as = [0.05, 
0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95].
The Latin Hypercube Sampling is adopted to 
determine the final 10 combinations according to 
the sampled vectors. The response data is 
generated accordingly by entering all the chosen 
control variables to the system provided by the 
organisers and 100 sets of 6-dimensional time 
series data are generated based on one single set 
of control variables.

Table 1. Sampled 10 groups of control variables 
for observation data acquisition.

Number
1 0.225 0.1 0.05
2 0.65 0.775 0.65
3 0.9 0.425 0.15
4 0.725 0.275 0.75
5 0.15 0.95 0.85
6 0.075 0.6 0.25
7 0.4 0.55 0.95
8 0.45 0.35 0.45
9 0.35 0.65 0.55

10 0.575 0.85 0.35

3.3. Model Updating (Problem 1)
Based on the understanding of the problem, a two-
step model updating is carried out with the 
aleatory parameters to be calibrated firstly and the 
epistemic parameters to be calibrated afterward.
The initial UMs for the two aleatory parameters 
are set as uniform distributions from 0 to 1, and 
the epistemic parameters are set as intervals from 
0 to 1. The two UMs for the aleatory parameters 
are first updated with the initial UMs as prior and
given the real response data from the real system 
as the target. The three UMs for the epistemic 
parameters are then calibrated by setting the prior 
distribution follow the updated UMs in the first 
step and given the real response data from the real 
system as the target. 

The CNF architecture is designed to contain 6 
cACLs with the multihead transformer as the 
conditional network. The multihead transformer 
(Vaswani et al. 2017) architecture processes 60-
time-step sequences of 6-dimensional inputs 
through two encoder layers, each featuring a 4-
head self-attention mechanism and a feedforward 
network with a size of 256, with model 
dimensions unified to 64. Residual connections, 
layer normalisation, and 0.1 dropout maintain 
stability while capturing hierarchical patterns 
through scaled attention weights and nonlinear 
feature transformations.
In the training phase of the first step of model 
updating, the training data is generated by using
the local computational model provided by the 
organisers. The aleatory variables and the 
epistemic variables are sampled from their initial 
UM introduced before. The control variables are 
sampled randomly from the interval from 0 to 1 
as well. The random seed parameter is fixed 
because the involvement of extra noise may affect 
the training of the CNF. A number of 30,000 sets 
of training data were collected. After training, the 
networks are optimised automatically so that they 
can build a bijective mapping between the input 
and latent variables accurately. 
In the inference phase of the first step of model 
updating, 10 groups of obtained observation data 
are concatenated together as the conditional data. 
The well-trained CNF can operate inversely to 
infer the distribution of input parameters by 
sampling randomly from the latent distribution 
with given observation data as the condition.
There are 1000 observation data utilised in the 
model updating process, implying 10,000 samples 
of the aleatory parameters are obtained via the 
inverse application of the CNF architecture, 
where 10 samples are generated inversely based 
on a single set of observations. The PDFs of the 
aleatory parameter UMs, , are estimated and 
illustrated in Fig 5.

Fig 5. Estimated posterior distribution of aleatory 
variables .
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In the second step of the model updating, the 
sampling strategy of the input parameters to 
obtain the training dataset is slightly different
from the last step. The aleatory variables are 
systematically drawn from the posterior 
distribution obtained in the last step, while control 
variables remain fixed according to the 
predefined combinations outlined in Section 3.2. 
All other model parameters maintain their initial 
configuration from the first updating step. 
Notably, distinct training datasets are generated 
for each unique combination of control variables, 
resulting in a comprehensive collection of 10,000 
training data instances. Therefore, 10 rounds of 
model updating according to various training data
and combinations of control variables are carried 
out to obtain 10 sets of various posterior 
distributions of epistemic variables.
For each observational dataset, the inference 
process is executed under the constraint of 
identical control variable configurations used 
during corresponding training phases. The 
optimised CNF generates posterior distributions 
for the three epistemic parameters through inverse 
propagation, producing 100 samples per 
observational dataset. This step results in 10,000 
posterior samples, enabling robust estimation of 
probability density functions as demonstrated in 
Fig 6.
In this case, three groups of results with good 
performance (the predictions are in good 
agreement with the true value in the validation) by
adopting control variables from No. 2, 7, and 9 in 
Table 1 are plotted in Fig 6 below. The resultant 
posterior distributions from these selected 
configurations are demonstrated in Fig 6 to 
illustrate differential inference outcomes.

Fig 6. Estimated posterior distribution of epistemic 
variables .

According to the two-step model updating results, 
the calibrated UMs for the aleatory variables and 
epistemic variables are determined. The aleatory 
variables follow a distribution and their PDFs 
are shown in Fig 5. The intervals for the epistemic 
variables are determined manually by balancing

model updating results to make sure the most 
probable value is in the interval and the interval is 
narrow but informative. The estimated intervals 
are denoted in Table 2 below with the best guess 
of epistemic variables.

Table 2. Calibrated uncertain models ( ) of 
epistemic variables .

Parameters Uncertain Models Best Guess
0.323
0.571
0.223

3.4. Prediction Intervals Determination
(Problem 1.3)
The overall goal for this subproblem is to 
determine the tightest prediction intervals of all 
six outputs corresponding to the identified 
uncertainty models before for a baseline design 

, where the baseline design is set as
. The aleatory variables and the 

epistemic variables are generated randomly from 
the UMs obtained in the last subproblem. For all 

in the interval of , are generated from 
their uncertainty model . A number of 
50,000 sets of response data are generated by 
sampling input parameters from their UMs using 
MCS in each case. The corresponding response 
data are collected and flattened to six-dimensional 
arrays that are sorted from smallest to largest 
without considering the time sequence and 
dimension of response. The infimum of the upper 
bound and the supremum of the lower bound of 
all six-dimensional response data are evaluated 
based on these data. The obtained results for both 

and are indicated in Table 
3.                                                                              

Table 3. Predicted intervals of all response data.

Output 
Dimension Scenario Infimum of 

upper bound
Supremum of 
lower bound

1 3.35 0
3.35 0

2 3.35 0
3.35 0

3 3.35 0
3.35 0

4 1841.96 0
722.01 9.61

5 872.46 0
341.41 4.51

6 760.01 0
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296.82 3.93

4. Design Optimisation (Problem 2)
To execute optimisation for the black box model
directly will lead to a massive number of model 
evaluations during the iterations which will cause 
the optimisation computationally expensive and 
time intensive. Therefore, a surrogate model is 
built based on the knowledge of the system. 
Distinct from general surrogate modelling tasks, 
the output features in this term are time sequences,
which is considered the challenge.
In this case, a fully connected neural network 
(FCNN) with two hidden layers is adopted as the 
surrogate. The output features of different time 
steps are concerned separately. Thus, one single 
surrogate is built between the inputs and the 
outputs for one single time step and result in 60 
surrogate models in total. The FCNN surrogate 
model is very time efficient compared to the 
original black model, but the accuracy is cursed 
by the complex correlation between the input and 
output with a and relatively poor 
generalisation capability. Consequently, the 
performance of the following optimisation 
process is directly influenced by the precision of 
the surrogate model.
4.1. Performance-based Design (Problem 2.1)
The objective of this subproblem is to obtain a 
group of performance-based design of that can 
maximise the objective function below.

where refers to the expected value operator
with respect to random processes and .
In this case, the optimisation is carried out in the 
output space , which is considered as 

In Eq (1), the optimisation problem 
is described as double-loop optimisation, 
including determining the that minimise the 
integral in the time domain of the sum in the 
output space of the expectation of the -th 
response given a certain . Then, the control 
variables are optimised maximising the 

minimum mentioned above. The first step of 
optimisation is simplified with numerical model 
evaluations based on input parameters and 
sampled from an interval of and using
MCS. Afterward, Particle Swarm Optimisation 
(PSO) is adopted to prescribe the optimal value 

, iteratively. The captured performance-based 
design is .

4.2. Reliability-based Design (Problem 2.2)
To obtain the reliability-based design , the 
greatest value of system failure probability 
expressed in Eq (2) is minimised as varies in 

.

where is the probability with respect to the 
random processes and ; and the event 

expressed in Eq (3) refers to a failure 
in the -th physical response and the individual 
failure probability are defined as shown in Eq (4).

where the are fixed constants.
The output space is considered as 

. The constants are defined as
. The probability of 

failure of each dimension is determined by
computing the probability of the maximum 
response among all time steps of each dimension
smaller than zero while varies in and 
randomly generated. The system failure 
probability is determined by computing the 
probability of the minimum of the maximum 
response among all time steps of all dimensions
smaller than zero. The PSO is adopted to solve the 
problem and results in a reliability-based design 

.
4.3. -constrained Design (Problem 2.3)
This subproblem describes a constrained 
optimisation problem that solves Problem 2.1 in 
the output space while regarding the constraint
in Eq (5).
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where represents the failure probability and 
and are considered.

The optimisation is carried out the same way as in 
Sec 4.1 while ensuring that the maximum system 
failure probability is no larger than the constraint 

. The constrained PSO algorithm returns the 
results for both scenarios, as shown in Table 4.

Table 4. -constrained design of .

Scenario

5. Conclusion
In this paper, the NASA and DNV Challenge on 
Optimisation Under Uncertainty 2025 is 
successfully tackled and the results are presented 
accordingly.  The first problem of the challenge
regarding uncertainty quantification is solved by 
a two-step data-driven model updating framework 
based on the CNFs, which allows calibrating the 
aleatory and epistemic parameters separately. In 
the process of model updating, the aleatory 
variables are calibrated primarily to obtain their 
UMs and the epistemic variables are updated 
subsequently based on the to obtain their UMs 

. In order to process the time-series response 
data effectively, the multihead transformer is 
employed as the conditional network of the CNF.
On the basis of a preliminary sensitivity analysis,
10 groups of control variables are selected for 
observation data generation to ensure that a full 
scale of response data is included and the model 
updating framework is built accordingly. In 
addition, the CNF-based model updating can 
operate based on observation data of any size even 
though its performance might be affected.
In the second problem regarding design 
optimisation, a surrogate model of the original 
black box model is established to replace the 
time-consuming model evaluation. The inner 
optimisation of epistemic variables is simplified 
by MCS to obtain the ergodic of epistemic 
variables in their UMs. The Particle Swarm 
Optimisation (PSO) is adopted to capture the 
performance-based, reliability-based, and -
constrained design of the control variables. 
However, the performance of the optimisation 
process is limited by the accuracy of the surrogate 
model. The establishment of an accurate and 

efficient surrogate model for a real system with 
time series response remains a challenge.
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