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Abstract 
Gearbox fault diagnosis is crucial for ensuring the reliability and efficiency of industrial machinery. This 
study proposes a novel approach by analyzing multidimensional vibration signals under varying load 
conditions (0Nm to 30Nm) to enhance pitting fault classification accuracy. The vibration signals were 
decomposed into Multidimensional Intrinsic Mode Functions (IMFs) using Noise-Assisted Multivariate 
Empirical Mode Decomposition (NA-MEMD), allowing for a more detailed representation of fault-
induced vibrations. To select the most informative IMFs, Improved Multiscale Permutation Entropy 
(IMPE) with a standard deviation-based thresholding method was applied, ensuring the retention of 
relevant features. For time-frequency analysis, the Short-Time Fourier Transform (STFT) was used to 
generate heat maps, providing insights into the transient behaviour of faults. From the Time-Frequency 
Representation (TFR), the Z-axis was identified as the most sensitive to fault-related vibrations, making 
it the optimal direction for classification. A deep learning-based classification framework was then 
developed to distinguish between healthy and faulty gearbox conditions, leveraging Convolutional 
Neural Networks (CNNs) for automated feature extraction and classification. Furthermore, the proposed 
method was benchmarked against established deep learning architectures, VGG16 and ResNet-50, to 
evaluate its performance. By integrating multidimensional vibration analysis, entropy-based feature 
selection, and deep learning, this research establishes a robust and efficient fault diagnosis framework. 
The findings highlight the importance of multidimensional signal processing in predictive maintenance, 
providing a foundation for more reliable gearbox condition monitoring in industrial applications. 
 
Keywords: “Multidimensional Vibration signal”, “NA-MEMD”, “IMPE”, “STFT”, “Deep learning approach”, 
“Fault classification”. 
 

1. Introduction 
Gears are essential components in industrial 
systems, enabling precise torque transmission and 
speed regulation. However, challenging 
operational conditions often result in various 
mechanical faults, including wear, pitting, 
fractures, surface fatigue, and tooth breakage. 
Among these, pitting is particularly problematic 

due to its subtle onset and the severe mechanical 
failures that can arise if left undetected. This 
failure mode is primarily induced by excessive 
stress from factors such as gear misalignment and 
high-load transmission. Industry standards define 
hardened gear failure as occurring when pitting 
affects 0.5% of the total active tooth flank area or 
4% of an individual active tooth flank (Li et al., 
2020). Given its critical impact on machinery 
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performance, pitting detection and diagnosis 
remain key research areas. The adoption of 
advanced gearbox condition monitoring 
techniques is instrumental in identifying potential 
faults at an early stage, preventing catastrophic 
failures, and ensuring the uninterrupted operation 
of industrial systems (Alper et al., 2023;). The 
detection of gearbox faults typically involves the 
use of condition monitoring techniques such as 
thermography, oil analysis, acoustic emission, 
and vibration analysis(Goswami & Nandan Rai, 
2023). In gearbox condition monitoring, vibration 
signals collected from multiple sensors undergo 
decomposition into Intrinsic Mode Functions 
(IMFs) using methods such as EMD, EEMD, 
CEEMD, MEMD, and NA-MEMD. While 
traditional univariate methods (EMD, EEMD, 
CEEMD) analyze each signal in isolation, they 
inherently neglect inter-signal dependencies, 
which may limit the effectiveness of fault 
detection. MEMD and NA-MEMD address this 
limitation by decomposing multi-channel signals 
collectively, preserving inter-signal relationships 
and offering deeper insight into fault dynamics. 
Moreover, NA-MEMD exhibits enhanced noise 
suppression capabilities compared to MEMD, 
further refining fault detection accuracy in 
complex gearbox systems (Ahrabian et al., 2012; 
Rehman & Mandic, 2010; Xu et al., 2022). To 
diagnose pitting faults, researchers have applied 
time-domain features, EMD, FFT, and STFT, 
primarily analyzing single vibration signals. 
However, industrial applications often involve 
multi-sensor setups where single-signal analysis 
may fail to capture inter-signal correlations, 
potentially limiting the effectiveness of fault 
detection and necessitating more advanced multi-
sensor diagnostic strategies (Sánchez et al., 2018) 
(Häderle et al., 2024)(Happi et al., 2023). To 
address this issue, this study employs NA-MEMD 
to generate multidimensional IMFs, facilitating 
an advanced multidimensional analysis of pitting 
faults in gear systems.  

In gearbox fault diagnosis, Short-Time Fourier 
Transform (STFT) is widely used for time-
frequency analysis. Unlike the Fourier Transform, 
which provides only frequency data, STFT 
reveals frequency variations over time, improving 
fault detection (Benkedjouh et al., 2018; Happi et 
al., 2023). Applying the STFT to vibration data 
decomposes the signal into localized frequency 
components over time, generating a spectrogram. 

This spectrogram represents the signal as an 
image, where colour intensity corresponds to 
amplitude variations across frequencies and time. 
Such a transformation enables deep learning 
models, particularly Convolutional Neural 
Networks (CNNs), to extract meaningful 
vibration features for precise fault detection and 
classification(Joseph et al., 2024; Lee et al., 
2023). 

 Convolutional Neural Networks (CNNs) have 
emerged as a powerful deep learning framework, 
achieving remarkable success in various fields, 
including image recognition, facial recognition, 
handwriting analysis, action recognition, material 
classification, and speech processing(Guo et al., 
2018;). A key advantage of CNNs in image 
recognition is their ability to process raw image 
data directly, minimizing the need for complex 
pre-processing. This efficiency is attributed to 
CNNs' unique architecture, which employs local 
weight sharing to enhance feature extraction. 
Additionally, CNNs have demonstrated 
significant potential in medical diagnostics(Zhao 
& Jia, 2016), showcasing their strength in 
analyzing both images and multivariate time-
series data(Navathe et al., 2016). This highlights 
their capability for advanced diagnostic and 
prognostic applications. Despite these 
advantages, CNNs remain underutilized in the 
fault diagnosis of mechanical systems, presenting 
an opportunity for further exploration in industrial 
applications. CNNs perform image classification 
by autonomously extracting relevant features. 
Unlike traditional methods that necessitate 
manual feature computation and selection for 
condition classification, CNNs enable the 
development of learning models without human 
intervention. Essentially, when an image 
encapsulates vibration signal characteristics—
such as frequency components, amplitude, and 
sensor positioning—the CNN model can 
independently compute these features, ensuring 
consistent and reliable classification(Joseph et al., 
2024; Lee et al., 2023).  

The literature reveals a critical gap in leveraging 
multivariate signal analysis and image-based 
processing for pitting fault diagnosis in 
gearboxes. Most methods focus on univariate 
data, ignoring multi-dimensional sensor 
correlations crucial for accurate fault detection. 
While spectrogram-based deep learning aids fault 
classification, its application to multidimensional 
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vibration signals for pitting detection remains 
underexplored. Bridging this gap could 
significantly improve diagnostic accuracy and 
system reliability.  

In this study, NA-MEMD is employed to 
decompose multidimensional vibration signals 
into Multidimensional Intrinsic Mode Functions 
(IMFs) obtained from experimental data. 
Improved Multiscale Permutation Entropy 
(IMPE) is then applied to identify the most 
effective IMFs in each direction. Subsequently, 
the STFT is performed on these selected IMFs to 
extract time-frequency representations and 
generate corresponding 2D spectrogram images. 
Finally, the most relevant fault axis is determined, 
and fault classification is conducted using the 
proposed Convolutional Neural Network (CNN) 
model. 

This paper is structured as follows: Section 2 
delves into the fundamental technical aspects, 
setting the groundwork for the study. Section 3 
introduces the proposed methodology, detailing 
the approach taken. Section 4 presents a 
comprehensive analysis of the results, 
accompanied by a critical discussion. Finally, 
Section 5 encapsulates the key findings and 
conclusions of the research. 

2.  Theoretical background 
2.1 NA-MEMD 
The strategy of augmenting data processing with 
additional noise channels for enhanced 
performance is known as noise-assisted 
multivariate empirical mode decomposition (NA-
MEMD). With modal alignment and its behaviour 
as a dyadic filter-bank in the presence of white 
Gaussian noise, the MEMD algorithm benefits 
from the noise channels, which serve as a reference 
in the time-frequency space, helping to achieve 
more precise IMF estimates and enhancing the 
time-frequency analysis. The NA-MEMD 
algorithm follows a structured six-step process as 
outlined in the reference (Zhang et al., 2017, 2021).  

2.2 Improved MPE 

As a widely adopted complexity metric, 
Permutation Entropy (PE) quantifies the 
irregularity of time series data by assessing ordinal 
pattern distributions. However, its single-scale 
computation restricts its ability to capture 
hierarchical signal characteristics, making it prone 

to noise interference and limiting its resolution in 
detecting subtle changes. Multiscale Permutation 
Entropy (MPE) expands PE by integrating multiple 
time scales via a coarse-graining approach, albeit 
with the drawback of potential information loss. 
Improved Multiscale Permutation Entropy (IMPE) 
further advances MPE by optimizing entropy 
computation, increasing its sensitivity to structural 
complexity and fault identification. This 
enhancement makes IMPE a robust methodology 
for gearbox vibration analysis and predictive 
maintenance. The detailed procedure for 
computing Improved Multiscale Permutation 
Entropy (IMPE) can be referenced from 

. For consistency and clarity, we 
have strictly adhered to the notation and 
methodology presented in the referenced study 

. The IMPE can be 
computed by Equation (1); 

 

 
(

2.3 Short-Time Fourier Transform (STFT) 

The Short-Time Fourier Transform (STFT) is used 
to analyse vibration signals in the time-frequency 
domain, helping detect fault characteristics. It is 
defined by Equation (2) as: 

 

 
(

where  is the window function. The resulting 
spectrogram provides a visual representation of 
frequency variations over time, aiding in fault 
diagnosis. By applying the window function  
the time-domain signal  is divided into 
segments, enabling FFT analysis across NNN 
samples(Joseph et al., 2024).  

2.4 Proposed CNN 

Convolutional Neural Networks (CNNs) are 
widely used for feature extraction and 
classification in image-based fault diagnosis due to 
their ability to capture spatial hierarchies. The 
proposed CNN model is designed to achieve an 
optimal balance between computational efficiency 
and classification accuracy. Table 1 represent the 
Proposed CNN model and the comparison of 
proposed model with other. 
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Table 1 Parameter of Proposed CNN and comparing 
Deep leaning model 

Component VGG16 ResNet-50 Proposed 
CNN 

Number of 
Layers 

16 50 10 

Convolutional 
Filters 
 
 

3×3 
Filters 

3×3 Filters 
& Skip 
Connection 

3×3 Filters 

Activation 
Function 

ReLU ReLU ReLU 

Pooling Max 
Poolin
g 

Max 
Pooling 

Max 
Pooling 

Skip 
Connections 

No Yes No 

Dropout No No Yes 
Parameter 
Count 

~138M ~25M ~1M 

Optimizer SGD Adam Adam 
Data 
Augmentation 

No No Yes 

3. Experiment Setup and Proposed 
Methodology 

The study analysed gearbox performance under 
healthy and faulty conditions (broken tooth and 
pitted gear) at torque levels of 0, 10, 20, and 30 Nm. 
An experimental setup shown in Figure 1 at IIT 
Kharagpur featured a 2-stage, 4-speed spur 
gearbox, monitored using vibration, oil, and sound 
analysis. A tri-axial accelerometer at 1000 RPM 
recorded vibration data at a sampling rate of 20,000 
points/second from the AA’-DD' gear interface for 
5 second. Faults included a pitting in DD', enabling 
detailed analysis of multidimensional vibration 
signals for fault classification. 

(a) (b) 

Figure 1 (a) Multi-stage speed reducer gearbox (b) 
Pitting fault  

 

Figure 2 Proposed Methodology 

Figure 2 presents the proposed methodology 
used in the paper. The multidimensional raw 
vibration data underwent decomposition through 
NA-MEMD, yielding a series of IMFs for each 
loading condition along each axis. Subsequently, 
the IMPE of each IMF was computed. To establish 
a selection criterion, the standard deviation of the 
IMPE values was determined, and IMFs with 
IMPE values exceeding this threshold were 
retained for reconstruction. This selection process 
ensured that a single effective IMF was extracted 
for each axis under each loading condition, 
facilitating a more precise characterization of the 
respective gear condition. After obtaining the 
effective IMF along each axis, the effective IMF 
was analysed using the Short-Time Fourier 
Transform (STFT) for each axis, which provides a 
time-frequency representation (TFR) of the signal. 
STFT involves segmenting the signal into 
overlapping time windows and computing the 
Fourier Transform within each window, thereby 
capturing the variation of dominant frequency 
components over time. Upon identifying the most 
significant axis, STFT is used to process the 
effective IMF, resulting in a heat map. This heat 
map is subsequently sectioned into 200 parts, after 
which the proposed CNN architecture is deployed 
for fault classification.  

4. Result and Discussion 

Multidimensional vibration data is acquired from 
the gearbox test setup under various loading 
conditions and subsequently decomposed into 
multidimensional IMFs using NA-MEMD. Figure 
3 illustrates the original vibration signal along with 
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its corresponding IMFs along each axis, extracted 
via NA-MEMD for 20Nm at 1000 RPM. 

Figure 3 Original Multidimensional vibration signal 
and Multidimensional IMFs along x, y and z axis. 

Following the generation of multidimensional 
IMFs, the IMPE value for each IMF is calculated 
per axis using Equation (1). The prescribed 
parameters for the IMPE calculation include an 
embedding dimension of 4, a time delay of 2, and 
a scale factor of 5.  Figure 4 shows the IMPE 
values of IMFs along z-axis at 20Nm for faulty 
gear condition, similarly at 20Nm the IMPE values 
for x and y axis were also computed. The standard 
deviation of IMPE is computed after determining 
the IMPE for each IMF along a particular axis. 
IMFs with IMPE values above this threshold are 
reconstructed to obtain the Effective IMF. This 
process results in three Effective IMFs for every 
gear condition at a given loading condition.  

 
Figure 4 IMPE values of IMFs along z-axis at 
20Nm for faulty gear condition 

Following the selection of the optimal effective 
IMF, TFR analysis is performed to extract 
meaningful fault-characteristics. The effective IMF 
is processed through STFT to obtain the 
corresponding TFR plot, facilitating condition 
monitoring. Figure 5,Figure 6 and Figure 7 
illustrates the TFR for the x, y and z-axis 
respectively under various load conditions. The 

time-frequency representation (TFR) analysis of 
faulty gearbox vibration data across different load 
conditions (0Nm, 10Nm, 20Nm, and 30Nm) 
reveals key insights into fault-induced signal 
characteristics.  

 

  
Figure 5 TFR of Effective IMF for x axis (a) 0Nm 
(b) 10Nm (c) 20Nm (d) 30Nm 

(a) (b) 

(c) (d) 
Figure 6 TFR of Effective IMF for y axis (a) 0Nm 
(b) 10Nm (c) 20Nm (d) 30Nm 

(a) (b) 

(c) (d) 
Figure 7 TFR of Effective IMF for z axis (a) 0Nm 
(b) 10Nm (c) 20Nm (d) 30Nm 
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The variations in frequency distribution with 
changing load conditions suggest that fault 
characteristics evolve with torque, emphasizing the 
necessity for load-dependent fault diagnosis 
techniques. From the Figure 5, Figure 6 and Figure 
7 it is shown that the in the z-axis. The TFR of the 
effective IMF in the z-axis across varying load 
conditions (0Nm, 10Nm, 20Nm, and 30Nm) 
demonstrates its superiority in fault 
characterization. The z-axis exhibits a higher 
density of transient peaks, with a significantly 
greater frequency component concentration 
compared to the x and y axes. This suggests that 
fault-induced vibrations predominantly manifest in 
the z-direction, making it the most responsive axis 
for fault detection.  

(a) (b)

(c) (d) 

(e) (f)

(g) (h)
Figure 8 Heat Map of effective IMF of z axis (a) 
Healthy at 0Nm (b) Faulty at 0Nm (c) Healthy at 
10Nm (d) Faulty at 10Nm (e) Healthy at 20Nm (f) 
Faulty at 20Nm (g) Healthy at 30Nm (h) Faulty at 
30Nm 

The observed fluctuations in frequency intensity 
indicate pronounced non-stationary behaviour, 
likely resulting from the impulsive nature of gear 
pitting faults. Moreover, the consistently elevated 
peak intensities in the z-axis further underscore its 

diagnostic relevance. The progressive increase in 
peak occurrences with load suggests that the fault 
signature amplifies under higher operational 
stresses. These findings establish the z-axis as the 
most sensitive and reliable axis for detecting 
gearbox faults, making it the preferred direction for 
vibration-based fault diagnosis. 

After selecting the optimal axis, the next essential 
step is to classify the gear condition as either 
healthy or faulty. This classification is performed 
by generating heatmaps of the effective IMF along 
the z-axis for each loading condition under both 
gear conditions. Figure 9 show the heat map 
healthy and faulty gear at different loading 
condition. The heat map clearly illustrates that the 
frequency components in the faulty condition 
exhibit a significant increase compared to the 
healthy state. This heightened frequency response 
indicates the presence of fault-induced vibrations, 
reinforcing the effectiveness of the proposed model 
in distinguishing between healthy and faulty 
conditions. The observed increase in frequency 
intensity highlights the model’s capability to 
accurately capture fault signatures, demonstrating 
its robustness in gearbox pitting fault diagnosis. 
Furthermore, for classification each heatmap is 
systematically divided into 200 segments. For 
instance, under a 20Nm load in the faulty 
condition, the heatmap is split into 200 segments, 
and this segmentation process is applied to all 
conditions. As a result, a total of 1,600 heatmap 
segments are obtained across the two gear 
conditions and four loading levels. These segments 
are then used as input for the proposed CNN 
model, which is responsible for distinguishing 
between healthy and faulty gear conditions. Figure 
9 presents the structure of the CNN, while its 
architecture and parameter details are elaborated in 
section 2.4. 

 (a) 

(b) 
Figure 9 Architecture of Proposed CNN 
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For fault classification, the 1600 data segments are 
systematically divided into three subsets: the 
training dataset, validation dataset, and testing 
dataset. 70% of the data is allocated for training to 
ensure the model learns the underlying patterns 
effectively. 20% of the data is used for validation, 
allowing fine-tuning of hyperparameters and 
preventing overfitting. Finally, 10% of the data is 
reserved for testing, providing an unbiased 
evaluation of the model's performance in 
classifying faults accurately.  

 
Figure 10 Classification test accuracy 

 
Figure 11 Confusion matrix 

Figure 11  presents the confusion matrix for the 
proposed Convolutional Neural Network (CNN), 
illustrating the model's classification performance 
in fault diagnosis. To further validate the 
effectiveness of the proposed CNN, it is also 
evaluated against VGG16 and ResNet-50, two 
well-established deep learning architectures. The 
hyperparameters and configurations used for these 
deep learning models are detailed in Table 1, 
ensuring a fair comparison. This evaluation 
highlights the robustness of the proposed model in 
distinguishing fault conditions and its comparative 
performance against state-of-the-art architectures. 
The proposed model in Figure 10 achieved 96.25% 
accuracy, surpassing VGG16 and ResNet-50 in 
fault classification. Its superior performance 

highlights its effectiveness in extracting fault 
features from vibration signals, ensuring precise 
and reliable fault diagnosis for industrial 
applications. 

5. Conclusion 

This study presents an advanced gearbox fault 
diagnosis framework utilizing multidimensional 
vibration analysis, entropy-based feature selection, 
and deep learning. Unlike traditional approaches 
that rely on single-axis data, this method 
decomposes vibration signals from all three axes 
using NA-MEMD, preserving essential fault-
related features. The selection of effective IMFs 
using IMPE and standard deviation-based 
thresholding ensures that only the most relevant 
components contribute to fault characterization. 
The STFT-based TFR analysis revealed that the Z-
axis exhibits the highest sensitivity to fault-induced 
vibrations, making it the most informative 
direction for classification. 

To enhance fault detection accuracy, a CNN-
based classification model was developed and 
compared with VGG16 and ResNet-50. The 
proposed model achieved an impressive 
classification accuracy of 96.25%, significantly 
outperforming VGG16 (86.87%) and ResNet-50 
(50.63%). This superior performance underscores 
the effectiveness of the proposed approach in 
capturing fault characteristics with high precision. 
The improved accuracy is attributed to the model’s 
ability to extract relevant features from 
multidimensional vibration signals, leading to 
more reliable classification results. 

By integrating advanced signal decomposition, 
entropy-based feature selection, and deep learning-
based classification, this study establishes a highly 
efficient and robust fault diagnosis framework for 
gearbox monitoring. The results emphasize the 
importance of multidimensional vibration analysis 
in predictive maintenance, providing an effective 
solution for early fault detection in industrial 
gearboxes.  
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