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Reliability engineering predominantly approaches product development by separating a system into individual 
components and working bottoms-up, emphasizing hardware/component reliability. As systems become more 
complex and interconnected, especially with increasing software integration, these methods fail to capture 
interdependencies and integration points critical to system reliability. A Design for Reliability (DfR) framework 
solely focused on hardware neglects the intricate dependencies and risks arising from interactions across 
components.  
A systems engineering approach to reliability emphasizes the entirety of the system, ensuring a comprehensive 
understanding of how different components—hardware, firmware, and software—function together. By 
examining the system holistically, this approach uncovers hidden vulnerabilities such as cross-system 
dependencies, cascading failures, and integration point weaknesses that compartmentalized methods overlook. In 
conventional reliability models, failures are often treated differently across hardware, software, and firmware 
without recognizing the critical importance of their interactions. This lack of unified analysis frequently results in 
missed failure modes caused by combining unique parts that do not arise in component-level assessments. 
Moreover, by focusing only on individual components, organizations may fail to analyze how these components 
contribute to the overall system function and whether they meet the customer's operational needs. A systems 
approach ensures that the customer-facing outputs and functional requirements are prioritized so the end product 
performs reliably under real-world conditions. 
This paper explores case studies in critical and emerging industries, such as aerospace, automotive, and internet-
of-things (IoT), to highlight the limitations of current reliability practices. It proposes a systems-oriented DfR 
methodology that shifts focus from isolated hardware approaches to one that accounts for system 
interdependencies and integration points. This framework enhances system-wide reliability by incorporating 
hardware and software alongside modeling, simulation, and cross-disciplinary collaboration, ensuring resilience 
and addressing customer needs in increasingly complex technological environments.  
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1. Introduction 
Reliability is a cornerstone of product design, 
ensuring that systems perform their intended 
functions consistently over their expected 
lifespans. Failures in reliability can have far-
reaching consequences, as highlighted by high-
profile incidents across industries. For example, 
in 2023, General Motors’ Cruise division 
experienced significant failures with its 
autonomous vehicles. These included 
inappropriate braking, inaccurate path 
predictions, and inability to reset after system 
hangs, leading to accidents and regulatory 
scrutiny (Krisher, 2023; Bursztynsky, 2024; 
Korosec, 2023). Similarly, critical systems like 

Boeing’s Maneuvering Characteristics 
Augmentation System (MCAS) and St. Jude 
Medical’s pacemakers suffered catastrophic 
failures caused by flaws in specific subsystems, 
resulting in global groundings and recalls 
(Osborne, 2017). These examples illustrate that 
product reliability is not merely a function of 
individual components but also of their 
integration within the broader system. 

Historically, reliability engineering 
emerged during World War II to quantify design 
quality and reduce failure probabilities 
(Modarres & Groth, 2023). Over time, industries 
such as nuclear power, aviation, and medical 
devices developed well-established hardware and 
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mechanical reliability methods. However, 
modern products often feature an intricate web 
of interdependent components—hardware, 
software, and communication systems—
operating within a broader context of third-party 
integrations, shared software, and increasingly 
complex supply chains. These dependencies 
introduce new vulnerabilities, from hidden cross-
layer interactions to common-cause failures from 
shared software platforms. 

Complex dependencies make it 
insufficient to evaluate reliability solely at the 
component level. For example, a software flaw 
in a subsystem designed for fault tolerance can 
inadvertently compromise an otherwise robust 
hardware design (Marwedel, 2021). Similarly, 
shared software deployed across different 
products can create unforeseen common-cause 
failures as vulnerabilities propagate through 
interconnected systems (Guo et al., 2017). These 
dynamics highlight the importance of addressing 
dependencies and interactions, often overlooked 
in traditional reliability models. 

The growing complexity of modern 
products necessitates a shift in reliability 
engineering practices. A systems engineering 
approach to design for reliability (DfR) expands 
the focus beyond individual components to 
consider the full product ecosystem, including 
interfaces, communications, and dependencies 
between subsystems. By adopting systems 
thinking, engineers can better assess how 
interconnections and integration influence 
overall reliability. This approach enables not 
only the identification of potential failure modes 
but also the mitigation of cascading failures that 
arise from system-wide interactions. 

This paper explores the need for a 
systems engineering approach to DfR, 
addressing the critical role of high-level 
perspectives in designing reliable products. The 
discussion spans various industries, examining 
case studies and best practices to highlight how a 
systems-focused mindset can address reliability 
challenges. Finally, we propose a framework for 
integrating systems thinking into DfR 
methodologies, providing a roadmap for 
improving product reliability in an era of 
growing complexity. 

2. Systems Thinking 

Systems thinking is an approach to problem-
solving that views a system as a whole rather 
than focusing solely on its individual 

components. It emphasizes understanding the 
relationships, interdependencies, and feedback 
loops within the system to reveal how changes in 
one part can impact the entire system. This 
holistic perspective is especially valuable in 
complex systems, where isolated analysis may 
overlook emergent behaviors or cascading 
effects. By addressing the components and their 
interactions, systems thinking enables more 
effective decision-making, design, and 
management across various fields. 

2.1. Frameworks 
Systems thinking is more than systems 
engineering. It is a holistic mindset that bridges 
the practical application of systems engineering 
to an abstract understanding of the highly-
dimensional problem space (Camelia & Ferris, 
2016). Systems thinking, in various 
conceptualizations, is found across disciplines 
from biology to engineering, and accordingly, 
there are different ways to understand the 
philosophy and application of systems thinking. 
This section will review the conceptualizations 
of systems thinking that are most relevant to 
systems engineering and embedded systems. For 
a richer understanding of the complexities of 
various systems thinking frameworks, readers 
are encouraged to refer to (Camelia & Ferris, 
2016). 

2.2. Systems thinking philosophy 
In almost all modern conceptualizations, the 
philosophical underpinnings of systems thinking 
are recognized as originating in the “Eastern” 
philosophies of Asia, the Pacific, and Africa. In 
contrast with the mechanistic, reductionist view 
of the world offered in Western philosophy, the 
tendency among Eastern philosophies was, and 
is, to view the world as a cohesive, organic, and 
inseparable whole (Camelia & Ferris, 2016). 
Modern science and engineering inherited the 
mechanistic view of its Western philosophy 
roots, decomposing the complex world into 
discrete blocks to be studied independently and 
stitched back together to get an approximation of 
the whole picture (Capra, 1976). This approach 
allows us to develop a highly detailed 
understanding of parts at the expense of 
understanding the whole.   

The mechanistic approach to 
understanding a system is appropriate when the 
parts of the system are independent or weakly 
connected, and the system behaviors can be 
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described through simple cause-and-effect 
relationships (Kellam, Walther, & Babcock, 
2009). However, embedded systems feature non-
linear interactions between many highly 
interconnected components, feedback loops, 
emergent behaviors, and environmental 
interaction. These characteristics indicate that 
embedded systems will not be understood with a 
mechanistic approach. Systems Thinking is 
necessary to capture the complexity of 
embedded systems fully.   

2.3. Applying systems thinking 
Multiple theories related to Systems Thinking, 
including Tektology, General Systems Theory 
(GST), Cybernetics and System-of-Systems 
theory, have found salience in various fields. 
Cybernetics and System-of-Systems theories are 
the most relevant to engineering systems and 
form the basis for the functionalist 
methodologies of systems engineering (Camelia 
& Ferris, 2016). Functionalist methodologies 
approach systems by using the system's logic to 
understand the internal relationships and 
ultimately enable the prediction of system 
behavior. This is precisely the capability desired 
by reliability engineers to enable intervention 
planning.   

Approaching the logic of a system 
requires analysts to apply systems thinking, 
which can be done through the recursive 
application of discrete rules, as synthesized by 
(Camelia & Ferris, 2016):  

(i) Question the system boundary: Identify 
the components and functions within 
the system and those external (to the 
system) phenomena relevant to system 
function. This is especially important in 
embedded systems, where system 
boundaries can be fuzzy.  

(ii) Question the system logic: Develop the 
system's structure that connects its 
components, subsystems, functions, and 
objectives. This is critical in embedded 
systems, which feature complex logic.  

(iii) Question the system interrelationships: 
Determine how components, 
subsystems, and functions interact with 
each other, including feedback loops 
and hidden dependencies. These 
interrelationships may be rich, non-
linear, and even emergent in complex 
systems.  

(iv) Adopt multiple perspectives: Build the 
system model with a diverse (in terms 
of experience, expertise, background, 
etc.) team to ensure that no aspect of the 
system is overlooked and minimize the 
effects of biases. This is critical in 
embedded systems, where expertise is 
needed in hardware, software, 
communications, and peripheral 
functions.  

(v) Consider dynamic characteristics: 
Determine how the system's function 
and/or structure may evolve. Embedded 
systems can significantly feature 
emergent behavior as various pieces are 
updated and new functionality is added. 
The emergent behaviors must be 
included in the system model.  
Engineers can capture component-

specific information and higher-level system 
characteristics that impact performance and 
reliability by iteratively applying the above rules 
when conceptualizing, modeling, and analyzing 
embedded systems. 

2.4. Systems Engineering 
Systems engineering (SE) is the main approach 
used to apply systems thinking concepts to real, 
complex systems. The iterative SE process is 
often visualized by models such as the Systems 
V-model (Figure 1) or Spiral Model. Systems 
Engineering implements the five components of 
applied systems thinking identified in Section 
2.3 (Camelia & Ferris, 2016). While risk 
analysis can be incorporated within SE, and 
risk/reliability analysis can take a systems-level 
view, a true fusion of the two fields is not well 
defined (Perreault, et al., 2024).  

Fig. 1. System Thinking V-Model with DfR 
Integration. This enhanced V-Model integrates 
systems thinking tenets to improve reliability across 
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design phases. The left side represents system 
definition and development, while the right side 
ensures verification and validation, reinforcing cross-
functional collaboration, failure analysis, and adaptive 
reliability planning. 

3. A Systems-Level Approach to Reliability 

As we have seen, component-level approaches to 
system reliability fail to capture the full 
complexity of system behaviors. System 
reliability is not necessarily guaranteed by 
simply employing high-reliability components. 
While this remains essential to ensuring 
reliability, engineers must account for the 
intricate dependencies and interconnections that 
define modern products. The challenge lies in 
developing methodologies that address these 
complexities, as traditional approaches often fail 
to capture system-level interactions fully. Here, 
we offer preliminary insights into the 
characteristics of a successful systems-level 
approach to reliability. 

System Boundary and Logic. One of 
the most critical aspects of a robust reliability 
assessment is the careful definition of the system 
boundary and a thorough understanding of 
system logic. Defining the boundary of a product 
can be particularly challenging. For instance, 
should peripheral elements—such as optional 
accessories or third-party components—be 
included in the analysis? While including such 
elements ensures a comprehensive assessment, it 
also increases the scope and complexity of the 
evaluation. 

Determining system logic involves 
understanding the nonlinear relationships and 
interdependencies within the product. Processes 
from software reliability approaches, which 
often handle complex systems, can be adapted to 
map these dependencies. Thieme et al. (2020a, 
2020b) provide a taxonomy of software failures 
related to functions, interactions, output values, 
and timing. Extending this taxonomy to physical 
components and their interactions is crucial for 
capturing cascading, hidden, and value-related 
dependencies. Such an approach facilitates the 
identification of failure propagation paths, a 
critical step in building reliable systems. Future 
research will further refine these systems-level 
methodologies for reliability assessments. 

Adopt Multiple Perspectives. Modern 
products are inherently multifaceted, requiring 
software, hardware, communications, 
manufacturing, and implementation expertise. 

Developing a comprehensive reliability model 
requires input from each of these domains and 
systems engineers to integrate their perspectives 
into a unified framework. Collaborative efforts 
ensure that the system model accurately reflects 
dependencies between components, subsystems, 
and functions, providing a holistic view that 
minimizes oversights and blind spots. 

Definition and Distinction. A systems 
engineering approach to reliability is a holistic 
method that views the product as an 
interconnected whole rather than as a collection 
of discrete components. This approach contrasts 
with traditional hardware-focused methods, 
which adopt a bottom-up perspective by 
focusing on individual components and 
assuming system reliability is simply the 
aggregate of component reliabilities. Systems 
engineering, by contrast, emphasizes the 
interdependencies among components and 
integration points, identifying how interactions 
and interfaces can impact overall performance. 

By adopting this broader perspective, 
engineers can address critical aspects of system 
reliability, such as communication pathways, 
interdependencies, and cascading effects. While 
still allowing for detailed analyses of individual 
components, a systems approach ensures these 
analyses are contextualized within the larger 
system (Shneiderman, 2020). This mirrors how 
end users interact with a product—as an 
integrated whole rather than as separate parts—
reinforcing the importance of a unified, systems-
level perspective. 

Designing Reliability into Products. A 
robust methodology for achieving reliable 
systems begins with clearly defining system 
boundaries and identifying key interactions. The 
following sections outline eight key activities in 
a design-for-reliability (DfR) approach, drawing 
from systems engineering principles and systems 
thinking rules (Camelia & Ferris, 2016). These 
activities provide a framework for building 
resilient products that address modern reliability 
challenges. 

3.1. System definition and boundary 
identification 

(i) Define the System Boundary: A clear 
and well-defined system boundary is 
critical to understanding what elements 
fall within the scope of a reliability 
assessment. This requires engineers to: 
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a. Identify Components and 
Functions: Clearly identify all 
components, subsystems, and 
external factors that impact system 
performance. For instance, in a 
consumer electronics product, both 
internal hardware and external 
power sources may need to be 
included in the boundary. 

b. Question the System Boundary: 
Regularly evaluate whether the 
system boundary reflects all 
relevant elements as the product 
evolves, ensuring critical factors 
are not overlooked. 

(ii) Determine System Logic: 
Understanding system logic involves 
mapping how components, subsystems, 
and external factors interact to achieve 
the product's intended function. This 
includes: 
a. Develop System Logic: Define the 

logical relationships between 
components, including physical 
connections, functional 
dependencies, and data flows. 

b. Question the System Structure: 
Continuously assess and update the 
system logic as new dependencies 
or design changes emerge, ensuring 
an accurate understanding of how 
the product operates as a whole. 

3.2. Modeling and simulation 
(iii) Create Comprehensive Models: 

Understanding the system logic, 
developed in activity (2) above, is 
critical to constructing usable models of 
the system, which themselves are 
crucial to identifying and propagating 
component failures to understand 
system reliability. However, the 
complex interactions inherent in many 
products mean that traditional reliability 
modeling, e.g., reliability block 
diagrams (RBDs), do not adequately 
describe the system dependencies or 
behavior, necessitating the inclusion of 
more flexible techniques such as 
functional modeling. Comprehensively 
modeling embedded systems means 
engineers must:  
a. Develop Detailed Models: Build 

detailed models that reflect the 

product’s physical, functional, and 
behavioral characteristics. These 
models should include interactions 
between components and 
subsystems, as well as 
environmental and operational 
factors. 

b. Adopt Multiple Perspectives: 
Involve cross-disciplinary teams to 
capture diverse viewpoints and 
ensure critical aspects of the system 
are not overlooked. 

(iv) Simulate System Behavior: 
Determining the system logic and 
creating system models will not 
necessarily uncover all behaviors of the 
system, which may be emergent with 
time and thus not determinable at an 
early stage in design or operation. 
Simulating system behavior is critical to 
validating the system logic and models 
and identifying dynamic and emergent 
system behaviors that might have 
essential reliability effects. This 
includes: 
a. Use Simulations: Test these models 

and identify reliability issues under 
different scenarios without costly 
and time-consuming physical 
testing. For instance, the RelIoT 
framework (Ergun, et al., 2020) is a 
reliability simulator for IoT 
networks that incorporates power, 
performance, and temperature 
models, which are required to 
model reliability.  

b. Consider Dynamic Characteristics: 
Ensure that simulations account for 
the system's dynamic 
characteristics, including emergent 
behaviors as various pieces are 
updated and new functionality is 
added.  

3.3. Error detection and handling 
(v) Implement Error Detection and 

Handling Mechanisms: Today’s 
systems feature hardware and software 
components tightly coupled to perform 
various tasks, and risks/errors may 
propagate widely. In some cases, 
system errors may not be readily 
apparent, leading to dire consequences 
for users or other reliant systems. 
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Modern products require robust 
mechanisms to identify and manage 
errors, preventing them from 
propagating and causing system-wide 
failures. This involves: 
a. Design Error Detection 

Mechanisms: Incorporate 
diagnostics and monitoring tools to 
detect anomalies and address 
failures proactively. 

b. Question System Interrelationships: 
Examine how errors in one 
subsystem might affect others, 
ensuring the system is resilient to 
cascading failures. 

3.4 Integration and testing 
(vi) Ensure Proper Integration: The 

reliability of a system is not a simple 
function of the component reliabilities 
but must also include the multimodal 
dependencies and interconnections 
between the components. Simply 
integrating highly reliable components 
does not necessarily guarantee a reliable 
system. Instead of focusing on 
components, systems engineering 
requires a focus on integrating 
components to ensure system reliability. 
This means that engineers must:   
a. Focus on Integration Points: 

Evaluate the interfaces and 
connections between subsystems to 
detect and resolve potential issues. 
For example, firmware and 
hardware mismatches might lead to 
timing errors compromising 
performance. 

b. Conduct Comprehensive Testing: 
Perform rigorous testing, including 
stress and scenario-based tests, to 
validate the integrated system's 
functionality and reliability. 

3.5. Analysis and continuous improvement 
(vii) Analyze Simulation and Test Results: A 

critical aspect of designing reliability 
into embedded systems is using the 
results of analyses to address reliability 
issues before system deployment. This 
means that, throughout the system 
lifecycle, engineers should develop 
insights from simulations and tests and 
use those insights to mitigate reliability 

concerns. This practice weaves all of 
the systems thinking questions together 
as a microcosm of the iterative 
reliability analysis process.   
a. Use Analysis Techniques: Interpret 

the results of simulations and tests 
using various analysis techniques. 
These techniques help pinpoint the 
causes of reliability issues, predict 
system behavior, and develop 
strategies for improving reliability.  

(viii) Implement Continuous Improvement: 
Reliability engineering is an iterative 
process throughout the product 
lifecycle. This includes: 
a. Monitor and Improve: 

Continuously monitor the product 
in the field and use real-world data 
to refine models and improve 
designs. 

b. Adopt Multiple Perspectives: 
Ensure that iterative improvements 
incorporate input from diverse 
stakeholders, minimizing bias and 
maximizing robustness. 

A systems-level approach to reliability 
ensures that interdependencies, cascading 
effects, and emergent behaviors are accounted 
for, enabling the development of robust and 
resilient products. By integrating the eight key 
actions outlined above into the product 
development lifecycle, engineers can design 
products that perform reliably and adapt to the 
complexities of modern systems and their 
operating environments. 

3.6 Considerations for AI-Based Reliability 
Analysis 
Artificial intelligence (AI) has gained significant 
traction in reliability engineering thanks to its 
ability to detect hidden patterns, anticipate 
failures, and optimize maintenance schedules 
based on large datasets. In certain domains, such 
as predictive maintenance for industrial 
equipment (Kong & Pecht, 2018) or anomaly 
detection in sensor networks, machine learning 
algorithms have proven successful at reducing 
downtime and identifying early warning signals 
of component degradation (Pang et al., 2021). 
When paired with robust data-collection 
infrastructures, these AI-driven models can 
automate many reliability assessments, allowing 
engineers to focus more on system-level 
decision-making. 
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However, these successes often center 
on subsystems or operational data rather than 
entire product ecosystems, which require 
rigorous verification and validation (V&V). 
Many AI approaches, function as “black boxes,” 
making them difficult to audit in safety-critical 
or regulated environments that demand high 
traceability. Without explicit, interpretable 
models, demonstrating correctness or 
pinpointing the root cause of AI-driven decisions 
remains challenging. As a result, purely AI-
based approaches may not meet the evidence 
requirements for certifications or reliability 
guarantees—particularly in applications where 
human safety or mission-critical operations are 
at stake. Nonetheless, research in explainable AI 
(XAI) is advancing (Gunning & Aha, 2019; 
Barakat et al., 2021), and such techniques can 
help bridge the transparency gap by providing 
insights into model reasoning that are more 
amendable to industrial and regulatory scrutiny. 

In the long term, AI’s continued 
evolution promises to become a major asset in 
analyzing complex interactions, discovering 
novel failure modes, and streamlining reliability 
models. As methods for explainability, model 
transparency, and certification improve, AI-
driven tools will likely merge more fully with 
systems engineering frameworks. For a broader 
overview of AI’s role in embedded systems 
reliability, refer to  (Aalund & Paglioni, 2025). 
As AI rapidly evolves, future developments may 
overcome today’s limitations and  fully integrate 
with the holistic, systems thinking mindset 
essential for designing reliable systems. 

4. Conclusion 

In conclusion, modern systems' increasing 
complexity and interconnected nature necessitate 
a shift from traditional hardware-focused 
reliability engineering to a more holistic, 
systems-oriented approach. The traditional 
methods, which treat system components in 
isolation, are insufficient for addressing the 
intricate dependencies and interactions that 
characterize advancing technologies. By 
adopting a systems engineering approach, we 
can better understand and manage the complex 
behaviors and issues arising from component 
interactions, improving reliability.  

This paper has highlighted the critical 
need for a systems-level perspective in reliability 
assessments, emphasizing the importance of 
considering the entire system as an integrated 

whole. Through comprehensive modeling, 
simulation, and analysis techniques, we can 
predict system behavior under various 
conditions, identify potential points of failure, 
and develop strategies for mitigating reliability 
issues.  

The incidents involving autonomous 
vehicles, aviation, and medical industries 
underscore the urgency of ensuring the reliability 
of today’s systems, particularly in critical 
infrastructure. By embracing a systems thinking 
framework, engineers can capture component-
specific information and higher-level system 
characteristics that impact performance and 
reliability.  

Ultimately, a systems-oriented approach 
to reliability will enhance our ability to 
anticipate and address the challenges posed by 
these systems' growing complexity and 
criticality, ensuring their safe and reliable 
operation in an increasingly connected world.  
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