
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P5438-cd

Systems Engineering Approach to DfR

Ryan Aalund
Risk, Reliability, and Resiliency Characterization (R3C) Lab, Department of Systems Engineering, Colorado State
University. Fort Collins, CO 80523, USA. E-mail: ryan.aalund@colostate.edu

Vincent P. Paglioni
Risk, Reliability, and Resiliency Characterization (R3C) Lab, Department of Systems Engineering, Colorado State
University. Fort Collins, CO 80523, USA. E-mail: vincent.paglioni@colostate.edu

Reliability engineering predominantly approaches product development by separating a system into individual
components and working bottoms-up, emphasizing hardware/component reliability. As systems become more
complex and interconnected, especially with increasing software integration, these methods fail to capture
interdependencies and integration points critical to system reliability. A Design for Reliability (DfR) framework
solely focused on hardware neglects the intricate dependencies and risks arising from interactions across
components.
A systems engineering approach to reliability emphasizes the entirety of the system, ensuring a comprehensive
understanding of how different components—hardware, firmware, and software—function together. By
examining the system holistically, this approach uncovers hidden vulnerabilities such as cross-system
dependencies, cascading failures, and integration point weaknesses that compartmentalized methods overlook. In
conventional reliability models, failures are often treated differently across hardware, software, and firmware
without recognizing the critical importance of their interactions. This lack of unified analysis frequently results in
missed failure modes caused by combining unique parts that do not arise in component-level assessments.
Moreover, by focusing only on individual components, organizations may fail to analyze how these components
contribute to the overall system function and whether they meet the customer's operational needs. A systems
approach ensures that the customer-facing outputs and functional requirements are prioritized so the end product
performs reliably under real-world conditions.
This paper explores case studies in critical and emerging industries, such as aerospace, automotive, and internet-
of-things (IoT), to highlight the limitations of current reliability practices. It proposes a systems-oriented DfR
methodology that shifts focus from isolated hardware approaches to one that accounts for system
interdependencies and integration points. This framework enhances system-wide reliability by incorporating
hardware and software alongside modeling, simulation, and cross-disciplinary collaboration, ensuring resilience
and addressing customer needs in increasingly complex technological environments.

Keywords: Design for Reliability (DfR), Systems Engineering, Reliability, Product Development.

1. Introduction
Reliability is a cornerstone of product design,
ensuring that systems perform their intended
functions consistently over their expected
lifespans. Failures in reliability can have far-
reaching consequences, as highlighted by high-
profile incidents across industries. For example,
in 2023, General Motors’ Cruise division
experienced significant failures with its
autonomous vehicles. These included
inappropriate braking, inaccurate path
predictions, and inability to reset after system
hangs, leading to accidents and regulatory
scrutiny (Krisher, 2023; Bursztynsky, 2024;
Korosec, 2023). Similarly, critical systems like

Boeing’s Maneuvering Characteristics
Augmentation System (MCAS) and St. Jude
Medical’s pacemakers suffered catastrophic
failures caused by flaws in specific subsystems,
resulting in global groundings and recalls
(Osborne, 2017). These examples illustrate that
product reliability is not merely a function of
individual components but also of their
integration within the broader system.

Historically, reliability engineering
emerged during World War II to quantify design
quality and reduce failure probabilities
(Modarres & Groth, 2023). Over time, industries
such as nuclear power, aviation, and medical
devices developed well-established hardware and

619

620 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

mechanical reliability methods. However,
modern products often feature an intricate web
of interdependent components—hardware,
software, and communication systems—
operating within a broader context of third-party
integrations, shared software, and increasingly
complex supply chains. These dependencies
introduce new vulnerabilities, from hidden cross-
layer interactions to common-cause failures from
shared software platforms.

Complex dependencies make it
insufficient to evaluate reliability solely at the
component level. For example, a software flaw
in a subsystem designed for fault tolerance can
inadvertently compromise an otherwise robust
hardware design (Marwedel, 2021). Similarly,
shared software deployed across different
products can create unforeseen common-cause
failures as vulnerabilities propagate through
interconnected systems (Guo et al., 2017). These
dynamics highlight the importance of addressing
dependencies and interactions, often overlooked
in traditional reliability models.

The growing complexity of modern
products necessitates a shift in reliability
engineering practices. A systems engineering
approach to design for reliability (DfR) expands
the focus beyond individual components to
consider the full product ecosystem, including
interfaces, communications, and dependencies
between subsystems. By adopting systems
thinking, engineers can better assess how
interconnections and integration influence
overall reliability. This approach enables not
only the identification of potential failure modes
but also the mitigation of cascading failures that
arise from system-wide interactions.

This paper explores the need for a
systems engineering approach to DfR,
addressing the critical role of high-level
perspectives in designing reliable products. The
discussion spans various industries, examining
case studies and best practices to highlight how a
systems-focused mindset can address reliability
challenges. Finally, we propose a framework for
integrating systems thinking into DfR
methodologies, providing a roadmap for
improving product reliability in an era of
growing complexity.

2. Systems Thinking

Systems thinking is an approach to problem-
solving that views a system as a whole rather
than focusing solely on its individual

components. It emphasizes understanding the
relationships, interdependencies, and feedback
loops within the system to reveal how changes in
one part can impact the entire system. This
holistic perspective is especially valuable in
complex systems, where isolated analysis may
overlook emergent behaviors or cascading
effects. By addressing the components and their
interactions, systems thinking enables more
effective decision-making, design, and
management across various fields.

2.1. Frameworks
Systems thinking is more than systems
engineering. It is a holistic mindset that bridges
the practical application of systems engineering
to an abstract understanding of the highly-
dimensional problem space (Camelia & Ferris,
2016). Systems thinking, in various
conceptualizations, is found across disciplines
from biology to engineering, and accordingly,
there are different ways to understand the
philosophy and application of systems thinking.
This section will review the conceptualizations
of systems thinking that are most relevant to
systems engineering and embedded systems. For
a richer understanding of the complexities of
various systems thinking frameworks, readers
are encouraged to refer to (Camelia & Ferris,
2016).

2.2. Systems thinking philosophy
In almost all modern conceptualizations, the
philosophical underpinnings of systems thinking
are recognized as originating in the “Eastern”
philosophies of Asia, the Pacific, and Africa. In
contrast with the mechanistic, reductionist view
of the world offered in Western philosophy, the
tendency among Eastern philosophies was, and
is, to view the world as a cohesive, organic, and
inseparable whole (Camelia & Ferris, 2016).
Modern science and engineering inherited the
mechanistic view of its Western philosophy
roots, decomposing the complex world into
discrete blocks to be studied independently and
stitched back together to get an approximation of
the whole picture (Capra, 1976). This approach
allows us to develop a highly detailed
understanding of parts at the expense of
understanding the whole.

The mechanistic approach to
understanding a system is appropriate when the
parts of the system are independent or weakly
connected, and the system behaviors can be

621Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

described through simple cause-and-effect
relationships (Kellam, Walther, & Babcock,
2009). However, embedded systems feature non-
linear interactions between many highly
interconnected components, feedback loops,
emergent behaviors, and environmental
interaction. These characteristics indicate that
embedded systems will not be understood with a
mechanistic approach. Systems Thinking is
necessary to capture the complexity of
embedded systems fully.

2.3. Applying systems thinking
Multiple theories related to Systems Thinking,
including Tektology, General Systems Theory
(GST), Cybernetics and System-of-Systems
theory, have found salience in various fields.
Cybernetics and System-of-Systems theories are
the most relevant to engineering systems and
form the basis for the functionalist
methodologies of systems engineering (Camelia
& Ferris, 2016). Functionalist methodologies
approach systems by using the system's logic to
understand the internal relationships and
ultimately enable the prediction of system
behavior. This is precisely the capability desired
by reliability engineers to enable intervention
planning.

Approaching the logic of a system
requires analysts to apply systems thinking,
which can be done through the recursive
application of discrete rules, as synthesized by
(Camelia & Ferris, 2016):

(i) Question the system boundary: Identify
the components and functions within
the system and those external (to the
system) phenomena relevant to system
function. This is especially important in
embedded systems, where system
boundaries can be fuzzy.

(ii) Question the system logic: Develop the
system's structure that connects its
components, subsystems, functions, and
objectives. This is critical in embedded
systems, which feature complex logic.

(iii) Question the system interrelationships:
Determine how components,
subsystems, and functions interact with
each other, including feedback loops
and hidden dependencies. These
interrelationships may be rich, non-
linear, and even emergent in complex
systems.

(iv) Adopt multiple perspectives: Build the
system model with a diverse (in terms
of experience, expertise, background,
etc.) team to ensure that no aspect of the
system is overlooked and minimize the
effects of biases. This is critical in
embedded systems, where expertise is
needed in hardware, software,
communications, and peripheral
functions.

(v) Consider dynamic characteristics:
Determine how the system's function
and/or structure may evolve. Embedded
systems can significantly feature
emergent behavior as various pieces are
updated and new functionality is added.
The emergent behaviors must be
included in the system model.
Engineers can capture component-

specific information and higher-level system
characteristics that impact performance and
reliability by iteratively applying the above rules
when conceptualizing, modeling, and analyzing
embedded systems.

2.4. Systems Engineering
Systems engineering (SE) is the main approach
used to apply systems thinking concepts to real,
complex systems. The iterative SE process is
often visualized by models such as the Systems
V-model (Figure 1) or Spiral Model. Systems
Engineering implements the five components of
applied systems thinking identified in Section
2.3 (Camelia & Ferris, 2016). While risk
analysis can be incorporated within SE, and
risk/reliability analysis can take a systems-level
view, a true fusion of the two fields is not well
defined (Perreault, et al., 2024).

Fig. 1. System Thinking V-Model with DfR
Integration. This enhanced V-Model integrates
systems thinking tenets to improve reliability across

622 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

design phases. The left side represents system
definition and development, while the right side
ensures verification and validation, reinforcing cross-
functional collaboration, failure analysis, and adaptive
reliability planning.

3. A Systems-Level Approach to Reliability

As we have seen, component-level approaches to
system reliability fail to capture the full
complexity of system behaviors. System
reliability is not necessarily guaranteed by
simply employing high-reliability components.
While this remains essential to ensuring
reliability, engineers must account for the
intricate dependencies and interconnections that
define modern products. The challenge lies in
developing methodologies that address these
complexities, as traditional approaches often fail
to capture system-level interactions fully. Here,
we offer preliminary insights into the
characteristics of a successful systems-level
approach to reliability.

System Boundary and Logic. One of
the most critical aspects of a robust reliability
assessment is the careful definition of the system
boundary and a thorough understanding of
system logic. Defining the boundary of a product
can be particularly challenging. For instance,
should peripheral elements—such as optional
accessories or third-party components—be
included in the analysis? While including such
elements ensures a comprehensive assessment, it
also increases the scope and complexity of the
evaluation.

Determining system logic involves
understanding the nonlinear relationships and
interdependencies within the product. Processes
from software reliability approaches, which
often handle complex systems, can be adapted to
map these dependencies. Thieme et al. (2020a,
2020b) provide a taxonomy of software failures
related to functions, interactions, output values,
and timing. Extending this taxonomy to physical
components and their interactions is crucial for
capturing cascading, hidden, and value-related
dependencies. Such an approach facilitates the
identification of failure propagation paths, a
critical step in building reliable systems. Future
research will further refine these systems-level
methodologies for reliability assessments.

Adopt Multiple Perspectives. Modern
products are inherently multifaceted, requiring
software, hardware, communications,
manufacturing, and implementation expertise.

Developing a comprehensive reliability model
requires input from each of these domains and
systems engineers to integrate their perspectives
into a unified framework. Collaborative efforts
ensure that the system model accurately reflects
dependencies between components, subsystems,
and functions, providing a holistic view that
minimizes oversights and blind spots.

Definition and Distinction. A systems
engineering approach to reliability is a holistic
method that views the product as an
interconnected whole rather than as a collection
of discrete components. This approach contrasts
with traditional hardware-focused methods,
which adopt a bottom-up perspective by
focusing on individual components and
assuming system reliability is simply the
aggregate of component reliabilities. Systems
engineering, by contrast, emphasizes the
interdependencies among components and
integration points, identifying how interactions
and interfaces can impact overall performance.

By adopting this broader perspective,
engineers can address critical aspects of system
reliability, such as communication pathways,
interdependencies, and cascading effects. While
still allowing for detailed analyses of individual
components, a systems approach ensures these
analyses are contextualized within the larger
system (Shneiderman, 2020). This mirrors how
end users interact with a product—as an
integrated whole rather than as separate parts—
reinforcing the importance of a unified, systems-
level perspective.

Designing Reliability into Products. A
robust methodology for achieving reliable
systems begins with clearly defining system
boundaries and identifying key interactions. The
following sections outline eight key activities in
a design-for-reliability (DfR) approach, drawing
from systems engineering principles and systems
thinking rules (Camelia & Ferris, 2016). These
activities provide a framework for building
resilient products that address modern reliability
challenges.

3.1. System definition and boundary
identification

(i) Define the System Boundary: A clear
and well-defined system boundary is
critical to understanding what elements
fall within the scope of a reliability
assessment. This requires engineers to:

623Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

a. Identify Components and
Functions: Clearly identify all
components, subsystems, and
external factors that impact system
performance. For instance, in a
consumer electronics product, both
internal hardware and external
power sources may need to be
included in the boundary.

b. Question the System Boundary:
Regularly evaluate whether the
system boundary reflects all
relevant elements as the product
evolves, ensuring critical factors
are not overlooked.

(ii) Determine System Logic:
Understanding system logic involves
mapping how components, subsystems,
and external factors interact to achieve
the product's intended function. This
includes:
a. Develop System Logic: Define the

logical relationships between
components, including physical
connections, functional
dependencies, and data flows.

b. Question the System Structure:
Continuously assess and update the
system logic as new dependencies
or design changes emerge, ensuring
an accurate understanding of how
the product operates as a whole.

3.2. Modeling and simulation
(iii) Create Comprehensive Models:

Understanding the system logic,
developed in activity (2) above, is
critical to constructing usable models of
the system, which themselves are
crucial to identifying and propagating
component failures to understand
system reliability. However, the
complex interactions inherent in many
products mean that traditional reliability
modeling, e.g., reliability block
diagrams (RBDs), do not adequately
describe the system dependencies or
behavior, necessitating the inclusion of
more flexible techniques such as
functional modeling. Comprehensively
modeling embedded systems means
engineers must:
a. Develop Detailed Models: Build

detailed models that reflect the

product’s physical, functional, and
behavioral characteristics. These
models should include interactions
between components and
subsystems, as well as
environmental and operational
factors.

b. Adopt Multiple Perspectives:
Involve cross-disciplinary teams to
capture diverse viewpoints and
ensure critical aspects of the system
are not overlooked.

(iv) Simulate System Behavior:
Determining the system logic and
creating system models will not
necessarily uncover all behaviors of the
system, which may be emergent with
time and thus not determinable at an
early stage in design or operation.
Simulating system behavior is critical to
validating the system logic and models
and identifying dynamic and emergent
system behaviors that might have
essential reliability effects. This
includes:
a. Use Simulations: Test these models

and identify reliability issues under
different scenarios without costly
and time-consuming physical
testing. For instance, the RelIoT
framework (Ergun, et al., 2020) is a
reliability simulator for IoT
networks that incorporates power,
performance, and temperature
models, which are required to
model reliability.

b. Consider Dynamic Characteristics:
Ensure that simulations account for
the system's dynamic
characteristics, including emergent
behaviors as various pieces are
updated and new functionality is
added.

3.3. Error detection and handling
(v) Implement Error Detection and

Handling Mechanisms: Today’s
systems feature hardware and software
components tightly coupled to perform
various tasks, and risks/errors may
propagate widely. In some cases,
system errors may not be readily
apparent, leading to dire consequences
for users or other reliant systems.

624 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Modern products require robust
mechanisms to identify and manage
errors, preventing them from
propagating and causing system-wide
failures. This involves:
a. Design Error Detection

Mechanisms: Incorporate
diagnostics and monitoring tools to
detect anomalies and address
failures proactively.

b. Question System Interrelationships:
Examine how errors in one
subsystem might affect others,
ensuring the system is resilient to
cascading failures.

3.4 Integration and testing
(vi) Ensure Proper Integration: The

reliability of a system is not a simple
function of the component reliabilities
but must also include the multimodal
dependencies and interconnections
between the components. Simply
integrating highly reliable components
does not necessarily guarantee a reliable
system. Instead of focusing on
components, systems engineering
requires a focus on integrating
components to ensure system reliability.
This means that engineers must:
a. Focus on Integration Points:

Evaluate the interfaces and
connections between subsystems to
detect and resolve potential issues.
For example, firmware and
hardware mismatches might lead to
timing errors compromising
performance.

b. Conduct Comprehensive Testing:
Perform rigorous testing, including
stress and scenario-based tests, to
validate the integrated system's
functionality and reliability.

3.5. Analysis and continuous improvement
(vii) Analyze Simulation and Test Results: A

critical aspect of designing reliability
into embedded systems is using the
results of analyses to address reliability
issues before system deployment. This
means that, throughout the system
lifecycle, engineers should develop
insights from simulations and tests and
use those insights to mitigate reliability

concerns. This practice weaves all of
the systems thinking questions together
as a microcosm of the iterative
reliability analysis process.
a. Use Analysis Techniques: Interpret

the results of simulations and tests
using various analysis techniques.
These techniques help pinpoint the
causes of reliability issues, predict
system behavior, and develop
strategies for improving reliability.

(viii) Implement Continuous Improvement:
Reliability engineering is an iterative
process throughout the product
lifecycle. This includes:
a. Monitor and Improve:

Continuously monitor the product
in the field and use real-world data
to refine models and improve
designs.

b. Adopt Multiple Perspectives:
Ensure that iterative improvements
incorporate input from diverse
stakeholders, minimizing bias and
maximizing robustness.

A systems-level approach to reliability
ensures that interdependencies, cascading
effects, and emergent behaviors are accounted
for, enabling the development of robust and
resilient products. By integrating the eight key
actions outlined above into the product
development lifecycle, engineers can design
products that perform reliably and adapt to the
complexities of modern systems and their
operating environments.

3.6 Considerations for AI-Based Reliability
Analysis
Artificial intelligence (AI) has gained significant
traction in reliability engineering thanks to its
ability to detect hidden patterns, anticipate
failures, and optimize maintenance schedules
based on large datasets. In certain domains, such
as predictive maintenance for industrial
equipment (Kong & Pecht, 2018) or anomaly
detection in sensor networks, machine learning
algorithms have proven successful at reducing
downtime and identifying early warning signals
of component degradation (Pang et al., 2021).
When paired with robust data-collection
infrastructures, these AI-driven models can
automate many reliability assessments, allowing
engineers to focus more on system-level
decision-making.

625Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

However, these successes often center
on subsystems or operational data rather than
entire product ecosystems, which require
rigorous verification and validation (V&V).
Many AI approaches, function as “black boxes,”
making them difficult to audit in safety-critical
or regulated environments that demand high
traceability. Without explicit, interpretable
models, demonstrating correctness or
pinpointing the root cause of AI-driven decisions
remains challenging. As a result, purely AI-
based approaches may not meet the evidence
requirements for certifications or reliability
guarantees—particularly in applications where
human safety or mission-critical operations are
at stake. Nonetheless, research in explainable AI
(XAI) is advancing (Gunning & Aha, 2019;
Barakat et al., 2021), and such techniques can
help bridge the transparency gap by providing
insights into model reasoning that are more
amendable to industrial and regulatory scrutiny.

In the long term, AI’s continued
evolution promises to become a major asset in
analyzing complex interactions, discovering
novel failure modes, and streamlining reliability
models. As methods for explainability, model
transparency, and certification improve, AI-
driven tools will likely merge more fully with
systems engineering frameworks. For a broader
overview of AI’s role in embedded systems
reliability, refer to (Aalund & Paglioni, 2025).
As AI rapidly evolves, future developments may
overcome today’s limitations and fully integrate
with the holistic, systems thinking mindset
essential for designing reliable systems.

4. Conclusion

In conclusion, modern systems' increasing
complexity and interconnected nature necessitate
a shift from traditional hardware-focused
reliability engineering to a more holistic,
systems-oriented approach. The traditional
methods, which treat system components in
isolation, are insufficient for addressing the
intricate dependencies and interactions that
characterize advancing technologies. By
adopting a systems engineering approach, we
can better understand and manage the complex
behaviors and issues arising from component
interactions, improving reliability.

This paper has highlighted the critical
need for a systems-level perspective in reliability
assessments, emphasizing the importance of
considering the entire system as an integrated

whole. Through comprehensive modeling,
simulation, and analysis techniques, we can
predict system behavior under various
conditions, identify potential points of failure,
and develop strategies for mitigating reliability
issues.

The incidents involving autonomous
vehicles, aviation, and medical industries
underscore the urgency of ensuring the reliability
of today’s systems, particularly in critical
infrastructure. By embracing a systems thinking
framework, engineers can capture component-
specific information and higher-level system
characteristics that impact performance and
reliability.

Ultimately, a systems-oriented approach
to reliability will enhance our ability to
anticipate and address the challenges posed by
these systems' growing complexity and
criticality, ensuring their safe and reliable
operation in an increasingly connected world.

References
Aalund, R, and Paglioni, V. "Enhancing Reliability in

Embedded Systems Hardware: A Literature
Survey." IEEE Access 13 (2025): 17285–17302.
https://doi.org/10.1109/ACCESS.2025.3534138.

Aalund, R., and V. P. Paglioni. “Enhancing Reliability
in Embedded Systems Hardware: A Literature
Survey.” IEEE Access 13 (2025): 17285–17302.
https://doi.org/10.1109/ACCESS.2025.3534138.

Barakat, B., W. Abualhaija, and R. Taghipour.
“Explainable AI for Prognostics and Health
Management: A Review on Methods, Challenges,
and Opportunities.” Reliability Engineering &
System Safety 209 (2021): 107485.

Bursztynsky, J. “Cruise Recalls Autonomous Vehicle
Fleet.” Fast Company, August 22, 2024.
https://www.fastcompany.com/91177678/cruise-
recalls-autonomous-vehicle-fleet.

Camelia, F., and T. L. J. Ferris. “Systems Thinking in
Systems Engineering.” INCOSE International
Symposium 26 (2016): 1657–1674.
https://doi.org/10.1002/j.2334-
5837.2016.00252.x.

Capra, F. “Modern Physics and Eastern Mysticism.”
Journal of Transpersonal Psychology 8, no. 1
(1976): [Page range if known].

Ergun, K., W. Song, K. Lee, Z. Yan, L. J. Zhang, and
H. Chen. “RelIoT: Reliability Simulator for IoT
Networks.” In Internet of Things – ICIOT 2020.
Lecture Notes in Computer Science, vol. 12405,
edited by W. Song, K. Lee, Z. Yan, L. J. Zhang,
and H. Chen, 78–91. Cham: Springer, 2020.
https://doi.org/10.1007/978-3-030-59615-6_5.

Gunning, D., and D. Aha. “DARPA’s Explainable
Artificial Intelligence (XAI) Program.” AI
Magazine 40, no. 2 (2019): 44–58.

626 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Guo, H., C. Zheng, H. H. C. Iu, and T. Fernando. “A
Critical Review of Cascading Failure Analysis
and Modeling of Power Systems.” Renewable
and Sustainable Energy Reviews 80 (2017): 9–
22.

Kellam, N., J. Walther, and A. Babcock. “Complex
Systems: What Are They and Why Should We
Care?” In 2009 Annual Conference & Exposition,
2009.

Kang, M., and M. Pecht. Prognostics and Health
Management of Electronics: Fundamentals,
Machine Learning, and the Internet of Things.
Wiley-IEEE Press, 2018.

Korosec, K. “Cruise Recalls 300 Robotaxis, Issues
Software Update After Crashing Into City Bus.”
TechCrunch, April 7, 2023.
https://techcrunch.com/2023/04/07/cruise-recalls-
300-robotaxis-issues-software-update-after-
crashing-into-city-bus/.

Krisher, T. “General Motors’ Cruise Division Recalls
Vehicles for Software Update After Pedestrian
Incident.” Associated Press, November 8, 2023.
https://apnews.com/article/cruise-general-motors-
pedestrian-recall-software-crash-
bf08c0c6e7914649750b4dde598af5fc.

Marwedel, P. Embedded System Design: Embedded
Systems Foundations of Cyber-Physical Systems,
and the Internet of Things. 4th ed. Springer
Cham, 2021.

Modarres, M., and K. Groth. Reliability and Risk
Analysis. 2nd ed. Boca Raton, FL: CRC Press,
2023.

National Highway Traffic Safety Administration.
Safety Recall Report: NHTSA Recall No. 24E-
067. Washington, DC: U.S. Department of
Transportation, August 19, 2024.
https://static.nhtsa.gov/odi/rcl/2024/RCLRPT-
24E067-9924.PDF.

O’Kane, S. “Cruise Recalls AV Fleet as NHTSA
Probe Closes.” TechCrunch, August 22, 2024.
https://techcrunch.com/2024/08/22/cruise-recall-
av-fleet-nhtsa-probe-closed/.

Osborne, C. “FDA Issues Recall of 465,000 St. Jude
Pacemakers to Patch Security Holes.” ZDNet,
August 29, 2017.
https://www.zdnet.com/article/fda-forces-st-jude-
pacemaker-recall-to-patch-security-
vulnerabilities/.

Pang, G., C. Shen, L. Chen, and A. van den Hengel.
“Deep Learning for Anomaly Detection: A
Review.” ACM Computing Surveys 54, no. 2
(2021): Article 38, 1–38.

Perreault, D., E. Gallegos, V. Paglioni, and T.
Bradley. “Usability Challenges of Failure Mode
and Effects Analysis (FMEA) within the V-
Model.” In INCOSE Human-Systems Integration
Conference 2024, Jeju, Korea, 2024.

Shneiderman, B. “Bridging the Gap Between Ethics
and Practice: Guidelines for Reliable, Safe, and
Trustworthy Human-Centered AI Systems.”

ACM Transactions on Interactive Intelligent
Systems 10, no. 4 (2020): 1–31.

Thieme, C. A., A. Mosleh, I. B. Utne, and J. Hegde.
“Incorporating Software Failure in Risk
Analysis—Part 1: Software Functional Failure
Mode Classification.” Reliability Engineering &
System Safety 197 (2020): 106803.
https://doi.org/10.1016/j.ress.2020.106803.

———. “Incorporating Software Failure in Risk
Analysis—Part 2: Risk Modeling Process and
Case Study.” Reliability Engineering & System
Safety 197 (2020): 106804.
https://doi.org/10.1016/j.ress.2020.106804.

