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Anomalies are data that deviate significantly from expected patterns, often indicating defects or irregularities.
Detecting such anomalies is especially important in manufacturing, where visual anomaly detection (VAD) based
on image data plays an essential role in quality control.

By automating defect detection, VAD greatly reduces the time and costs associated with manual inspections. This
has led to extensive research and the development of various approaches. While modern methods rely on deep
learning (DL) techniques, earlier approaches are based on simpler statistical analyses.

This paper examines whether deep learning is necessary for detecting simple defects, such as scratches on metal
surfaces. The results show that while Al-based methods achieve near-perfect detection accuracy, traditional methods
using simple statistical features can still reach up to 89% accuracy. Additionally, these traditional approaches are far
more efficient, requiring only a fraction of the inference time. This highlights their potential as a lightweight and
effective solution, particularly in real-time or resource-constrained scenarios.
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1. Introduction situations where the analyzed object displays a
uniform appearance, such as metallic or plastic
surfaces.

This paper presents a comparative study of
traditional and modern methods for VAD which
is a notable gap in literature. The comparison
highlights the trade-offs between the simplicity of
traditional approaches and the accuracy offered
by advanced techniques. The analysis is based
on images of metallic surfaces with and without
scratches.

Anomaly detection (AD) is an important topic
in various fields, which enables the automation
of processes that traditionally relies on manual
human inspection. Automated systems for AD do
not only improve efficiency but also reduce errors
in diverse applications ranging from industrial
quality control to medical diagnostics. Anomalies
can be categorized into logical anomalies, such as
incorrect packaging counts, and structural anoma-
lies, which involve deviations in the physical or
visual structure of objects. This paper focuses 2. Visual Anomaly Detection
exclusively on structural anomalies.

Despite its potential, AD poses significant
challenges due to the highly variable nature of
anomalies. Modern state-of-the-art methods have
demonstrated remarkable performance, achieving
high detection rates on benchmark datasets. These
advanced approaches use automated feature ex-
traction based on deep learning, which requires
substantial computational resources.

In contrast, traditional methods rely on hand-
crafted features. While less sophisticated, we ex-
pect them to be both efficient and effective in

VAD can be divided into three distinct subtasks,
as illustrated in Figure 1. Anomaly detection,
anomaly classification, and anomaly segmenta-
tion. Anomaly detection identifies whether an im-
age contains any irregularities. Anomaly classifi-
cation categorizes the detected irregularities into
predefined classes. Finally, anomaly segmenta-
tion precisely localizes the anomalies within the
image. But those terms are not uniformly used
in literature. Some authors group the task re-
ferred to here as detection within classification,
treating detection as a special case of segmenta-
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tion (Prunella et al. (2023)). In general, not all
approaches address these three sub-tasks inde-
pendently. Some methods combine detection and
classification into one step (Klardk et al. (2024);
Niu et al. (2020)). Other approaches first divide
the image into patches and then use the classifica-
tion results of these patches to perform segmen-
tation (Roth et al. (2021)). The segmentation of
scratches is often described as a very hard task as
they are often very subtle and have low contrast
to the background of the image (Cao et al. (2021);
Ho et al. (2022)).

Visual Anomaly Detection

Fig. 1. The three different subtasks of VAD. This
paper analyses just the detection ability of the different
methods.

In this paper, only the detection ability of the
different VAD approaches is analyzed. All algo-
rithms are trained on the same input image data
to learn the characteristics of scratch-free metal
surfaces from the training set. Each approach then
assigns an anomaly score to every image in the test
set, which is used to classify the image as either
anomalous or scratch-free.

2.1. Learning paradigms for VAD

VAD methods can be categorized into supervised
and unsupervised approaches. There are also in-
termediate approaches which aim to balance the
strengths and limitations of both techniques, but
they are not as commonly used.

Supervised approaches require labeled datasets
containing both normal and anomalous images.
These methods rely on the explicit identification
of anomalies during training, often resulting in
high detection accuracy for known defect types.
However, they face two major challenges: first, the
model needs to have a strong ability to generalize
to be able to detect unseen anomalies. Second, get-
ting enough representative and also labeled data is
difficult and costly, which limits their applicability
in real-world scenarios (Yang et al. (2022)).

In contrast, unsupervised methods need only
non-anomalous images, as they learn the normal
appearance of the object. Anomalies are then iden-
tified as deviations from this learned represen-
tation. This approach is advantageous in scenar-
ios where obtaining labeled anomalies is diffi-
cult or impractical. Unsupervised VAD also en-
ables to detect new beforehand unseen anomalies
(Bergmann et al. (2021)).

Intermediate methods, such as semi-supervised
techniques, address these challenges by for exam-
ple making us of partially labeled datasets. While
promising, these approaches are less commonly
applied in VAD due to their reliance on specific
problem settings and additional implementation
complexity.

Acquiring sufficient and representative data re-
mains a fundamental challenge across all VAD
approaches, as anomalies are inherently rare and
diverse (Prunella et al. (2023)). Consequently un-
supervised VAD methods are widely used in both
industrial applications and research settings; ac-
cordingly, this paper focuses on unsupervised ap-
proaches.

2.2. Traditional Methods

In this study, traditional” methods refer to VAD
approaches that rely on statistical measures ex-
tracted from an image. These methods are com-
putationally efficient, as they use straightforward
mathematical formulations. To provide a diverse
perspective, the selected methods were divided
into two categories: descriptive features, which di-
rectly represent raw image properties, and compu-
tational features, which involve simple mathemat-
ical calculations. Overall, those measures where
not inherently designed for VAD but are explored
here for this purpose

The descriptive features include Pixel Intensity
and Histogram Comparison. The computational
features, represented by the Structural Similarity
Index (SSIM) and Gray-Level Co-occurrence Ma-
trix Entropy (GCME).

Pixel intensities refer to the numerical values
that represent the brightness or color intensity of
a pixel in a digital image (Gonzalez (2007)). It is
used to calculate the mean intensity value for an
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image patch. Deviations from the reference mean,
which are based on the provided training images,
indicate anomalies.

Histogram Comparison involves comparing the
intensity distribution of an image patch to a ref-
erence histogram obtained from training images.
The histogram represents the frequency of pixel
intensity values within the image patch (Burger
and Burge (2013)). Deviations between the patch
histogram and the reference histogram are mea-
sured using the chi-square distance (Pele and Wer-
man (2010)). Patches with large distances are
classified as anomalies. The chi-square distance
between two histograms H; and Hj is calculated
as:

(Ha [i] — Holi))?

AR AT

XP(Hi, Hy) =

The index ¢ in Eq. (1) refers to a specific bin
in the histograms H; and Hs. Each bin corre-
sponds to a range of pixel intensity values. The
summation iterates over all bins in the histograms
to compute the overall chi-square distance.

The SSIM was introduced by Wang et al.
(2004). It quantifies image similarities by analyz-
ing luminance, contrast, and structural properties.
For each image patch, the similarity to a reference
patch is measured. Anomalies are indicated by
patches with low SSIM scores. The general for-
mula for SSIM is provided in Eq. (2).

SSIM(z,y) = U(x,y) - c(z,y) - s(z,y) ()

The components [(x,y), c¢(z,y), and s(x,y)
correspond to luminance (Eq. (3)), contrast
(Eq. (4)), and structural similarity (Eq. (5)), re-
spectively.
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These components are calculated based on the
mean intensities (y1, and ), standard deviations
(0, and o), and covariance (0.,) between the

Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

image patches x and y. The constant C' is used
to avoid division by zero. The SSIM provides a
comprehensive measure of image similarity.

The GCME is a statistical measure introduced
by Haralick et al. (1973) to describe the texture of
an image based on the Gray-Level Co-occurrence
Matrix (GLCM) which is a measurement for an-
alyzing how pixel intensities are distributed in an
image. Asha et al. (2011) demonstrate its useful-
ness for detecting defects.

The GLCM is a matrix that records how often
pairs of pixel intensities occur next to each other
in a specific spatial relationship. For example, the
GLCM can capture how often a pixel with inten-
sity ¢ is found to the right, above, or diagonally
from a pixel with intensity j. The GCME uses the
GLCM to calculate the randomness, or ’entropy”
in the texture of the image (see Eq. 6) (Haralick
et al. (1973)).

N N
GCME = — > "> " P(i,j)log P(i,j)  (6)
i=1 j=1

P(i,7) represents the normalized value from
the GLCM, which indicates the probability of
pixel pairs with intensities ¢ and j occurring in
the defined spatial relationship. The parameter N
refers to the number of gray levels in the image,
determining the size of the GLCM.

The GLCM captures the structural arrange-
ment of textures, while the GCME summarizes
this structure in a single value. High GCME val-
ues indicate complex, random textures, while low
GCME values point to simple, uniform patterns.

In practice, anomalies are detected by compar-
ing the GCME of test patches with that of refer-
ence patches. Large deviations in GCME values
suggest irregularities, such as scratches or mate-
rial inconsistencies, making this approach partic-
ularly effective for analyzing textured surfaces.

The algorithms for each approach are pro-
grammed with a focus on simplicity. While their
current implementation can be optimized for effi-
ciency, their purpose is to demonstrate the general
utility of simple image features for VAD. The use
of patches instead of calculating one value for
the whole image improves the sensitivity of the
methods, allowing them to capture subtle devia-
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tions in texture, intensity, or structural properties
that might otherwise be missed. This patch-based
approach is not intended for precise spatial local-
ization of anomalies but rather enhances the al-
gorithms’ overall ability to detect deviations from
the normal reference.

2.3. Al-based Method

There has been significant progress in the develop-
ment of Al-based VAD methods. However, chal-
lenges remain, including the lack of standardized
benchmarks (Zhang et al. (2024)) and the trade-
off between detection accuracy and inference time
(Prunella et al. (2023)).

A common practice is to use feature extraction
based on pretrained convolutional neural networks
(CNN), such as ResNet, originally trained for
image classification tasks. To effectively detect
both small and large defects, multi-scale features
extracted from different layers of these networks
are often utilized (Yang et al. (2022)).

This paper focuses primarily on traditional
methods; therefore, only one Al-based algorithm
was selected for settings a baseline. PatchCore, in-
troduced by Roth et al. (2021), is chosen because
it achieves state-of-the-art detection accuracy on
many datasets and stands out for its efficiency.
Unlike many other deep learning methods, Patch-
Core does not require extensive training. Instead,
it extracts features directly from a pretrained CNN
and uses these to identify anomalies, which leads
to very low trainings times compared to other Al-
based VAD approaches.

3. Dataset

The dataset used in this study was intentionally
kept simple, as this is the first comparison being
conducted. Starting with a straightforward dataset
allowed for a clear and controlled evaluation of
the methods before moving on to more complex
cases in future work. To achieve this, a custom
dataset was created, building on earlier work by
Hinz et al. (2019). In their study, knife surfaces
were captured under consistent boundary condi-
tions. The images were then uniformly cropped to
ensure standardized input for further analysis.

Fig. 2. Comparison of an image of the dataset with
and without a scratch

Building upon these images, a representative
dataset for VAD was created. The dataset consists
of 250 images used for training and an addi-
tional 150 images reserved for testing. The test
set includes 50 images of scratch-free metallic
surfaces and 100 images displaying surfaces with
scratches, all with a resolution of 2000x2000 pix-
els (compare Fig. 2). The size of the scratches
varies, ranging from small ones that cover approx-
imately a quarter of the image to larger ones that
extend nearly across the entire image. Although
the lighting conditions were consistent across all
images, the overall coloration of the images is
not entirely uniform, with slight variations de-
pending on the specific curvature of the blade
section being photographed. Hence, we are faced
with the challenge that not every dark spot can
simply be classified as a scratch. This requires a
robust generalization of the models to distinguish
actual anomalies from natural variations in surface
appearance which also a much more realistic sce-
nario. But it is important to note that in our data,
the surfaces were only very slightly curved.

The size of this dataset aligns closely with
the well-established MVTecAD dataset from
Bergmann et al. (2021), which on average con-
tains 242 images for training, 31 defect-free test
images, and 84 anomalous test images.

As mentioned before, one of the principal chal-
lenges in VAD is the collection of enough rep-
resentative data for training and evaluation. That
is why the dataset analyzed in this study was
designed to be comparable in structure to often-
cited datasets.
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4. Metrics

One commonly used metric for evaluating the
performance of VAD models is the Area Under
the Receiver Operating Characteristic Curve (AU-
ROC). This metric assesses the trade-off between
the true positive rate (TPR) and the false posi-
tive rate (FPR) across varying decision thresholds
based on the anomaly-score of each image.

The true positive rate (TPR), also referred to as
sensitivity, is defined in Eq. 7:
TP
- TP+FN
where TP denotes the number of true positives and
FN denotes the number of false negatives.

The false positive rate (FPR) is calculated in
Eq. 8:

TPR (N

_FP
- FP+TN
where FP represents the number of false positives
and TN represents the number of true negatives.
The Receiver Operating Characteristic (ROC)
curve plots TPR against FPR at various threshold
values. The AUROC is defined as the area under
this curve (see. Eq. 9).

FPR (8

1
AUROC = / TPR(FPR) d(FPR)  (9)
0

An AUROC value of 1 indicates perfect de-
tection performance, while a value of 0.5 corre-
sponds to random guessing. In contrast, a value
of 0 means systematic misclassification, where
anomalous samples are consistently classified as
normal, and normal samples as anomalous. Val-
ues between O and 1 represent varying levels of
detection performance, with higher values indicat-
ing better discrimination between anomalous and
normal samples. Due to its ability to assess perfor-
mance across all thresholds, AUROC is a reliable
metric for benchmarking VAD models (Bergmann
et al. (2021)).

Additionally, the training and inference time
needs to be evaluated as well. While training time
is less critical for practical applications, infer-
ence time plays an important role, especially in
real-time or resource-constrained scenarios where
quick and efficient decision-making is essential.
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5. Methodology

The previously described dataset of metallic sur-
faces is analyzed using an unsupervised approach.
Each model is trained exclusively on scratch-free
images to learn the normal appearance of the sur-
face. During testing, the model is presented with
a test set which contains non-anomalous images
and images with scratches.

Using the difference between the learned nor-
mal appearance and the image being analyzed,
the model assigns an anomaly score ranging
from O to 1. These anomaly scores are used to
compute the AUROC value.

Two key comparisons are conducted: the AU-
ROC for VAD and the inference time of each
model. These evaluations aim to assess both the
detection accuracy and the computational effi-
ciency of the approaches.

6. Results

In figure 3 the ROC curves for all models are
shown, illustrating their ability to distinguish im-
ages with or without scratches. The area under
each curve indicates the overall classification per-
formance, while the curves themselves show the
trade-off between true positive and false positive
rates across different decision thresholds. These
thresholds are based on the anomaly scores of the
images.

PatchCore achieves a nearly perfect result, with
its curve approaching the top-left corner. SSIM
shows limited performance, with its curve close to
the diagonal which represents random guessing.
GCME demonstrates moderate performance, with
its curve lying above the diagonal but flattening
in the second half. This flattening may indicate
that the model performs well on images with
clear and pronounced scratches but struggles to
identify subtle or small defects. Images with mi-
nor scratches may have anomaly scores that are
not distinct enough from non-scratched images,
making them harder to classify correctly at higher
thresholds. Histogram comparison and pixel aver-
age perform similarly well, with curves closer to
the top-left corner.

In addition to detection accuracy, computa-
tional efficiency was analyzed by comparing both
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ROC Curve Comparison
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Fig. 3. The anomaly detection performance can be

visualized using ROC curves. The AUROC values in-
dicate the overall detection accuracy, with PatchCore
achieving the highest AUROC. Traditional methods
such as Pixel Average and Histogram Comparison also
perform well. GCME shows potential with moderate
accuracy but is still not reliable for this task. SSIM
demonstrates poor overall accuracy, barely better than
random guessing

training and inference times, as visualized in Fig-
ure 4. The AUROC value is plotted against infer-
ence time per image, with circle sizes representing
the training time required for each model. For the
PatchCore model, input images had to be resized
to 1000x1000 pixels due to memory limitations,
as higher resolutions could not be processed.

PatchCore achieves the highest AUROC but
requires the longest inference and training times,
despite analysing smaller images, as reflected by
its position and large circle size.

The Pixel average method achieves high per-
formance with very short inference times and
minimal training effort, making it computation-
ally very efficient. The Histogram approach per-
forms similarly but requires slightly more infer-
ence time. GCME, while showing moderate clas-
sification performance, has relatively high infer-
ence time for a traditional method, reflecting its
computational intensity.

SSIM is computationally efficient with short in-
ference times, but its poor performance makes the
speed less meaningful for practical applications.

AUROC vs Evaluation Time
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Fig. 4. Comparison of AUROC values and inference
times per image for different models. The circle sizes
represent the training time required for each model.
PatchCore achieves the highest AUROC but with the
longest training and inference times. Pixel Average
and Histogram Comparison provide a balance between
high AUROC and computational efficiency. SSIM and
GCME show low accuracy with short computational
times

Table 1 provides a detailed comparison of the
AUROC, training time, and inference time for all
models. PatchCore, the only Al-based approach,
achieved the highest AUROC of 0.99, demon-
strating excellent detection accuracy. However, it
required significantly longer training (103.93 sec-
onds) and inference times (0.51 seconds) com-
pared to the traditional methods, highlighting its
computational demands.

Among the traditional methods, Pixel Aver-
age and Histogram Comparison performed par-
ticularly well. Pixel Average achieved an AU-
ROC of 0.89 and excelled in computational ef-
ficiency, requiring only 2.12 seconds for train-
ing and 0.01 seconds for inference. Histogram
Comparison had a slightly lower AUROC of 0.88
but was still very efficient, with training and
inference times of 2.15 seconds and 0.05 sec-
onds.

In contrast, SSIM and GCME showed lower
AUROC values of 0.61 and 0.74, respectively,
suggesting they are less suited for detecting
scratches on metallic surfaces. Despite this, they
demonstrated relatively short training and infer-
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Table 1.

of AUROC, training time, and inference time.

Comparison of model performance in terms

Model AUROC Training Inference
Patchcore 0.99 103.93 s 0.51s
SSIM 0.61 244 s 0.15s
GCME 0.74 2.39s 031s
Histogram 0.88 2.15s 0.05 s
Pixel Average 0.89 2.12s 0.01's

ence times. SSIM required 2.44 seconds for train-
ing and 0.15 seconds per image for inference,
while GCME required 2.39 seconds for training
and 0.31 seconds per image for inference.

These findings highlight the trade-offs between
accuracy and computational efficiency. While Al-
based methods like PatchCore achieve the highest
accuracy with an AUROC of 0.99, they come with
significantly longer training (103.93 seconds) and
inference times (0.51 seconds). In contrast, tra-
ditional methods such as Pixel Average and His-
togram Comparison strike a good balance of de-
tection performance and speed, making them vi-
able options for real-time or resource-constrained
applications.

7. Summary and Outlook

This study underscores the value of traditional
methods for visual anomaly detection, highlight-
ing that statistical features should not be under-
estimated. Despite their simplicity, these meth-
ods can achieve strong predictive performance,
with significantly lower computational demands.
While Al-based approaches achieve higher detec-
tion accuracy, this comes at the cost of substan-
tially increased training and inference times, as
well as greater memory requirements. Although
Al algorithms are expected to become increas-
ingly optimized through continued advances in
hardware, model architectures, and training tech-
niques, such improvements may gradually narrow
the current gap in computational efficiency.

One key limitation observed with PatchCore,
the Al-based method, is its high memory demand.
In contrast, traditional statistical methods, due to
their simplicity, are far less restricted by such con-
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straints, making them more flexible in scenarios
with high-resolution image data or limited hard-
ware resources.

Although traditional methods are mathemati-
cally straightforward, their evaluation offers sig-
nificant flexibility. For example, the performance
of GCME and SSIM could potentially be im-
proved by exploring alternative parameter config-
urations or applying different comparison tech-
niques. This highlights the importance of optimiz-
ing these methods, as their effectiveness can vary
depending on the chosen parameters and evalua-
tion strategies.

The analysis in this study is conducted on sim-
ple structural anomalies. It is unclear how well
these findings translate to more complex datasets
with greater variability in defect types or more
challenging anomalies. Additionally, this work
only examined the detection of anomalies and did
not explore classification or segmentation, which
are also important in real-world tasks.

Future research should further explore the po-
tential of traditional methods by testing a wider
range of statistical features and algorithms. Hy-
brid approaches, combining traditional methods
with Al-based techniques, are a promising direc-
tion as they could merge the efficiency of tradi-
tional methods with the accuracy and flexibility of
Al models.

References

Asha, V., N. U. Bhajantri, and P. Nagabhushan
(2011). Glcm-based chi-square histogram dis-
tance for automatic detection of defects on pat-
terned textures. International Journal of Com-
putational Vision and Robotics 2(4), 302.

Bergmann, P., K. Batzner, M. Fauser, D. Sattleg-
ger, and C. Steger (2021). The mvtec anomaly
detection dataset: A comprehensive real-world
dataset for unsupervised anomaly detection. In-
ternational Journal of Computer Vision 129(4),
1038-1059.

Burger, W. and M. J. Burge (2013). Principles
of Digital Image Processing. London: Springer
London.

Cao, J., G. Yang, and X. Yang (2021). A pixel-
level segmentation convolutional neural net-



Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

work based on deep feature fusion for surface
defect detection. /EEE Transactions on Instru-
mentation and Measurement 70, 1-12.

Gonzalez, R. C. (2007). Digital image process-
ing (3rd ed. ed.). Reading, Massachusetts and
Upper Saddle River, NJ: Addison-Wesley Pub-
lishing Company and Pearson Prentice Hall.

Haralick, R. M., K. Shanmugam, and I. Dinstein
(1973). Textural features for image classifica-
tion. IEEE Transactions on Systems, Man, and
Cybernetics SMC-3(6), 610-621.

Hinz, M., M. Radetzky, L. Hannah Guenther,
P. Fiur, and S. Bracke (2019). Machine learn-
ing driven image analysis of fine grinded knife
blade surface topographies. Procedia Manufac-
turing 39, 1817-1826.

Ho, C.-C., M. A. Benalcazar Hernandez, Y.-F.
Chen, C.-J. Lin, and C.-S. Chen (2022). Deep
residual neural network-based defect detection
on complex backgrounds. IEEE Transactions
on Instrumentation and Measurement 71, 1-10.

Klardk, J., R. Andok, P. Malik, I. Kuric, M. Rito-
msky, I. Klackovd, and H.-Y. Tsai (2024). From
anomaly detection to defect classification. Sen-
sors (Basel, Switzerland) 24(2).

Niu, S., B. Li, X. Wang, and H. Lin (2020). Defect
image sample generation with gan for improv-
ing defect recognition. [EEE Transactions on
Automation Science and Engineering, 1-12.

Pele, O. and M. Werman (2010). The quadratic-
chi histogram distance family. In K. Daniilidis,
P. Maragos, and N. Paragios (Eds.), Computer
Vision — ECCV 2010, Berlin, Heidelberg, pp.
749-762. Springer Berlin Heidelberg.

Prunella, M., R. M. Scardigno, D. Buongiorno,
A. Brunetti, N. Longo, R. Carli, M. Dotoli, and
V. Bevilacqua (2023). Deep learning for au-
tomatic vision-based recognition of industrial
surface defects: A survey. [EEE Access 11,
43370-43423.

Roth, K., L. Pemula, J. Zepeda, B. Scholkopf,
T. Brox, and P. Gehler (2021). Towards total
recall in industrial anomaly detection.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli (2004). Image quality assessment:
from error visibility to structural similarity.
IEEE transactions on image processing : a pub-

lication of the IEEE Signal Processing Soci-
ety 13(4), 600-612.

Yang, J., R. Xu, Z. Qi, and Y. Shi (2022). Visual
anomaly detection for images: A systematic
survey. Procedia Computer Science 199, 471—
478.

Zhang, J., H. He, Z. Gan, Q. He, Y. Cai, Z. Xue,
Y. Wang, C. Wang, L. Xie, and Y. Liu (2024). A
comprehensive library for benchmarking multi-
class visual anomaly detection.

1395



