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Artificial Intelligence (AI) offers great potential to enable the fully automated operation of trains. Mandatory novel
functions to replace the tasks of a human train driver, such as obstacle detection on the tracks, can be realized using
state-of-the-art Machine Learning (ML) approaches. However, the use of AI/ML to implement perception tasks in the
railway context poses a new challenge: How to link AI/ML techniques with the requirements and approval processes
that are applied in the railway domain in practical way? Within the safe.trAIn project we laid the foundation for
the safe use of AI/ML to achieve the driverless operation of a regional train. Based on the requirements for the
certification process in the railway domain, safe.trAIn investigated methods to develop trustworthiness AI-based
functions, taking data quality, robustness, uncertainty, and explainability aspects of the ML model into account. In
addition, the project developed a safety argumentation strategy for an AI-based obstacle detection function of a
driverless regional train. In this paper, we describe the challenges to assess an AI-based obstacle detection function
according to the given regulation in the railway domain. Moreover, we describe our safety assurance strategy applied
to our case study in the safe.trAIn project.
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1. Introduction

With the introduction of driverless train operation
(Grade of Automation (GoA) 4 operation corre-
sponding to SAE level 5 in automotive) a sig-
nificant performance increase of railway systems
can be achieved. This includes the enhancement
of the transport capacity in existing tracks, energy
savings by means of an optimized driving strat-
egy, reduced mechanical wear and tear as well
as increased passenger comfort by means of ho-
mogeneous driving, and increased flexibility for
demand-oriented train services. To enable fully
automated operation of trains, novel functions
must be implemented to replace the tasks of a
human train driver, such as detecting obstacles
on the tracks. Traditional automation technologies
alone are not sufficient to perform an obstacle
detection function for a driverless train. However,
Artificial Intelligence (AI) and Machine Learning
(ML) offers great potential to solve this task. The
problem, which still remains unresolved, is to find
a practical way to link AI/ML techniques with

the requirements and approval processes that are
applied in the railway domain.

We foresee that different tasks need to be ad-
dressed so that an Automated Driving System
(ADS) in rail can be approved for operation, in-
cluding a) Linking requirements originating from
functional safety on system-level (e.g., originating
from EN 50126-1:2018-10 (2018)) to the ML-
based obstacle detection function and formalizing
a sound safety argumentation, b) Providing insight
into the ML behavior and how it relates to data
and further to the safety requirements to provide
evidences for the safety case, and c) addressing
the challenge that ADS also in rail will operate in
an open world, which is difficult to specify a priori
and prone to changes during its lifecycle, hence it
requires agile MLOps cycles including testing &
validation.

As described in Zeller et al.
(2023)), the safe.trAIn project (https://safetrain-
projekt.de/en/) aims to lay the foundation for the
safe use of AI/ML for the driverless operation
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of rail vehicles and thus addresses these key
technological challenges that hinder the adoption
of unmanned rail transport. Therefore, safe.trAIn
creates a safety argumentation for an AI-based
obstacle detection function of a driverless regional
train based on the requirements for the certifica-
tion process in the railway domain. Furthermore,
the project investigates methods to assess AI-
based functions, taking into account the robust-
ness, performance, and transparency aspects of the
AI/ML models. These methods are integrated into
a comprehensive and agile, development, testing,
and Verification & Validation (V&V) cycle for AI-
based functions in trains. The feasibility of the
assurance methods developed in safe.trAIn was
evaluated with a case study – limited in scope to
certain functions and AI specific aspects, in which
an example safety case for a regional driverless
train was created and assessed.

In this paper, we present the main results of
the safe.trAIn project to cope with the challenges
mentioned above. Thereby, we focus on (a) the so-
called Landscape of AI Safety Concerns (LAISC),
which guides the creation of a sound safety ar-
gumentation and (b) a process for the continuous
development and safety assurance of ML-based
systems in the railway domain in which evidences
for the safety case are created.

The rest of the paper is organized as follows:
In Section 2, we summarize relevant related work.
Section 3, introduces the concept of Landscape of
AI Safety Concerns, a methodology to guide the
creation of a safety argument for AI-based sys-
tems. In Section 4, we introduce the safe MLOps
process for ML-based systems in the railway do-
main as defined in the safe.trAIn project. After-
wards, we introduce the safety argumentation in
safe.trAIn which is based on the combination of
the Landscape of AI Safety Concerns and the safe
MLOps process. At the end, we summarize the
main results of the paper and provide an outlook
on future research work.

2. Related Work

The use of AI technologies introduces new
sources of systematic failures and, thus, unique
challenges in system assurance. Existing safety

standards such as IEC 61508-1:2010-04 (2010) or
EN 50126-1:2018-10 (2018) in the railway do-
main do not address the development and assur-
ance of ML models yet. Only the EN 50716:2023-
11 (2023) describes the challenges of AI-based
functions on an abstract level in Annex C.

There are first standards related to safety and
AI in other domains. The ISO/PAS 8800:2024-12
(2024) specification, an automotive safety stan-
dard for AI, describes the development of an as-
surance argument. To develop the assurance argu-
ment, an AI safety lifecycle consisting of 4 phases
is defined: Selection of AI approach and AI sys-
tem design, Data specification and collection for
training and test, AI safety analysis, and AI sys-
tem verification and validation. In these phases,
evidences for the assurance argument are created.
However, the standard does not specify AI safety
requirements, which must be fulfilled.

The assurance of AI-based systems is still an
active field of research, with various aspects be-
ing explored, e.g., in the ”ExamAI” project pre-
sented in Adler and Klaes (2022), the ”Assuring
Autonomy International Programme” introduced
in Hawkins et al. (2021), the project ”KI Ab-
sicherung” (safe AI for automated driving) de-
scribed in Burton et al. (2022) or the Interna-
tional Workshop for Autonomous System Safety
(IWASS)” series as depicted in the whitepaper by
Correa-Jullian et al. (2023). A thorough survey
on assuring ML-based systems is provided by
Ashmore et al. (2021). In their work, the authors
segment the ML life cycle into four phases, sug-
gesting desiderata for each and discussing avail-
able assurance methods and associated challenges.
Also Schwalbe and Schels (2020) presents a sur-
vey on specific considerations for safety argu-
mentation targeting DNNs, organized into four
development phases. The Assurance of Machine
Learning in Autonomous Systems (AMLAS) pro-
cess, described Hawkins et al. (2021), also em-
ploys the AI life cycle as a framework, defining
assurance patterns to derive from top-level safety
goals the evidence that needs to be generated in
the AI life cycle. Thereby, the AMLAS approach
remains generic, as it does not presume specific
AI capabilities and shortcomings. An application
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of the AMLAS process for a pedestrian detec-
tion system in the automotive domain is pre-
sented in Borg et al. (2023). Even this case study
with a very restricted Operational Design Domain
(ODD) shows that the resulting safety argumenta-
tion is huge and it is not clear if it is complete and
detailed enough.

Roßbach et al. (2024) presents an approach for
evaluating AI components in autonomous railway
applications in terms of safety. This approach fo-
cuses on the following 4 pillars: Ontology & ODD
specification, test case generation, evaluation of
the AI component, and monitoring at runtime.
Again, the four activities provide evidences for the
safety case of the autonomous railway application.
However, when using this approach, it is not clear
if the resulting safety case is complete.

Other approaches in this area, such as Houben
et al. (2022), Schnitzer et al. (2024a), and Willers
et al. (2020) focus on the specific AI proper-
ties. However, the focus of these works is on the
identification of AI-related safety concerns and
required actions to manage them, but not on the
derivation of a convincing assurance case. For
instance, Schwalbe et al. (2020) systematically es-
tablishes and refines safety requirements to argue
the sufficient absence of risk arising from SOTIF
functional insufficiencies for autonomous vehicle.
Parts of this work can also be reused for the safety
assurance of a driverless train, but certification
requirements in the railway are different from the
automotive domain.

3. Landscape of AI Safety Concerns

In this section, we briefly outline the concept of
the so-called Landscape of AI Safety Concerns
(LAISC), a methodology to systematically sup-
port safety assurance of AI-based autonomous
systems. For a more detailed description of
LAISC, we refer to Schnitzer et al. (2024b). The
methodology focuses on AI/ML-specific proper-
ties that cause traditional methods for assuring
safety to lose effectiveness when applied to AI-
based systems. In alignment with Willers et al.
(2020) and Schnitzer et al. (2024b), we refer to
these properties as AI Safety Concerns (AI-SCs),
defined as ”AI-specific, underlying issues that

may negatively impact the safety of a system.”
The core concept of LAISC relies on addressing

the gap in safety assurance for AI systems by
demonstrating that all AI-SCs are sufficiently mit-
igated, building upon the contributions of Houben
et al. (2022), Schnitzer et al. (2024a), Schwalbe
et al. (2020), and Willers et al. (2020), which
provided a comprehensive overview of known AI-
SCs identified in the literature. From this, a list
of AI-SCs, relevant to the use case of a driverless
train, was derived in the safe.trAIn project, which
is depicted in Fig. 1. Note, that building upon a
list such as given in Schnitzer et al. (2024a) is a
good starting point, since it represents the state-of-
the-art and is comparable with established hazard
identification methods. However, such lists do not
claim to be complete. Therefore, we recommend
expanding the list if use case or domain-specific
conditions reveal additional AI safety concerns.

Having a list of relevant AI-SCs, a central part
of the LAISC approach is generating evidence
using state-of-the-art metrics and mitigation meth-
ods to demonstrate the absence of all AI-SCs.
To employ a systematic approach, it is crucial
to orchestrate the metrics and mitigation methods
throughout the AI lifecycle, as AI-SCs manifest
and require actions at different stages. For in-
stance, data quality related AI-SCs should be ad-
dressed during the data collection and preprocess-
ing steps, whereas other issues, such as concept
drift, may arise only after deploying the system.

Another significant challenge is making ver-
ifiable claims about the absence of AI-SCs, as
they are typically described at a relatively abstract
level, while the evidence provided by the met-
rics and mitigation methods is very specific. For
example, the AI-SC (17) ”Lack of robustness”
is a typical issue for the majority of AI appli-
cations, but specific requirements for robustness
vary significantly depending an use case’s con-
ditions, such as the operational environment. For
example, weather conditions such as fog or heavy
rain significantly impact the operational safety of
a regional driverless train, while these conditions
are generally not a concern for autonomous vehi-
cles operating within factory buildings.

To address the issue of varying levels of ab-
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Fig. 1. List of AI-SCs (adopted from Schnitzer et al. (2024a) and slightly modified), laying the foundation for the
Landscape of AI Safety Concerns in the safe.trAIn project.

straction, the LAISC methodology employs a two-
layered approach: first, AI-SCs must be decom-
posed and tailored to use-case-specific conditions
to create more concrete sub-goals; second, Ver-
ifiable Requirements (VRs) need to be specified
to enable a clear evaluation of whether the ev-
idence generated by the metrics and mitigation
methods is adequate to fulfill the respective sub-
goals. While this process establishes a sound and
logical argumentation pattern, defining Verifiable
Requirements remains challenging. This step typ-
ically involves defining thresholds for metrics and
mitigation methods, yet the impact of certain AI-
SCs (or even sub-goals) on safety at the system
level may not be clearly determinable. Therefore,
this step requires the application of expert judg-
ment. Ultimately, we recommend that this step
be performed by a team consisting of domain
experts, safety engineers, and AI specialists to en-
sure a multi-expertise perspective. Notably, not all
AI-SCs are equally important for demonstrating
the safety of AI-based systems. Nevertheless, by
defining Verifiable Requirements, it is possible to
effectively manage and prioritize which AI-SCs
are particularly critical for a specific use case.

4. Safe MLOps Process

In this section, we briefly outline the safe MLOps
process specified in the safe.trAIn project to de-
velop and assess safe AI-based functions for
driverless trains. For more details, see Zeller et al.
(2024b). As depicted in Fig. 2, the process inte-
grates 3 parts: (a) the system engineering lifecycle
(based on the development process of EN 50126-
1:2018-10 (2018), (b) the data & ML lifecycle
(based on ISO/IEC 23053:2021-06 (2022) and the
AMLAS process), and (c) the safety assurance
lifecycle (also based on the EN 50126-1).

In the Dev phase, the development is extended
with a process to develop and verify ML models
that implement functions of the driverless train,
such as obstacle detection (Data & ML Life-
cycle). Since we need to assess ADS in terms of
safety, additional process steps are incorporated
into the data & ML lifecycle to assess data quality
and ensure the performance of the ML model
in terms of safety, reliability, transparency, and
robustness. Thereby, pieces of evidence (quanti-
tative & qualitative) for the ML model are created
and incorporated into the system safety case.

Moreover, the Operational Design Domain
(ODD) is specified in the Dev phase. The ODD is
a representative model of the real world in which
an ADS is intended to operate. The definition of
ODD is a crucial part of the development process
for an AI-enabled system. This is due to the fact
that the ODD is the basis for several critical devel-
opment activities, such as defining system-level
requirements, test & verification, and building a
well-founded safety case, see Weiss et al. (2024).

As the pieces of evidence generated during
the execution of the data & ML lifecycle are
generated continuously, the development of the
system safety case needs to be iterative. To cre-
ate the safety case iteratively as part of the safe
MLOps process, model-based techniques such as
the Goal Structuring Notation (GSN) presented in
Kelly (2004) or Claim-Argument-Evidence (CAE)
described in Bloomfield and Bishop (2010) are
used to specify the safety argumentation and the
evidence created during the development and as-
surance process (see Sec. 5).

After a successful independent assessment of
the safety case, the ML-based system (train) is put
into operation (the Ops phase), in which safety-
relevant parameters must be monitored.
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Fig. 2. Safe MLOps Process for ML-based ADS Systems

The MLOps lifecycle is crucial as it determines
when AI-SCs manifest and also when they can
be mitigated. For systematic mitigation of AI-SCs
and generation of evidence for the safety case, AI-
SCs and metrics/mitigation methods are assigned
to the phases of the safe MLOps process. To
efficiently perform these mitigation methods, the
MLOps process is implemented in safe.trAIn us-
ing a Git-based workflow and the appropriate tool
support to achieve the required degree of automa-
tion. For more details see Zeller et al. (2024a).

5. Safety Argumentation in safe.trAIn

In order to demonstrate the safety of an ML-based
obstacle detection function in the context of ADS
in the railway domain, we need to show that all AI
Safety Concerns are sufficiently mitigated. There-
fore, all Verifiable Requirements derived from the
LAISC for the specific use case are mapped to one
or multiple phases of the safe MLOps process,
in which a specific metric/mitigation method is
applied. Moreover, if possible, a threshold is de-
fined which allows experts to judge whether the
requirements are met or not.

For many of the AI-SCs in the LAISC, existing
methods can be used to demonstrate that the con-
cerns are fulfilled for the use case of an ML-based
obstacle detection system in the railway domain.
There are many metrics and methods available to
demonstrate during the ”ML Model Training &
Verification” phase that the AI-SCs (14) ”Over-

and underfitting”, (15) ”Lack of explainability”,
and (17) ”Lack of robustness” are sufficiently mit-
igated by generating training curves, conducting
performance analyses as described in Schlosser
et al. (2024), performing robustness tests as pre-
sented in Tocchetti et al. (2025), and doing ex-
plainability evaluations as shown in Linardatos
et al. (2021). Moreover, the data-related AI-
SCs (8) ”Discriminative data bias”, (9) ”Inac-
curate data labels”, (10) ”Insufficient data rep-
resentation”, and (11) ”Inappropriate data split-
ting” can be mitigated by applying state-of-the-
art approaches (partly developed in the safe.trAIn
project), such as the ones described in Shahinfar
et al. (2020), Ben Saad et al. (2024), Cheng et al.
(2018), Geerkens et al. (2024), Sieberichs et al.
(2024), and Gannamaneni et al. (2024) during
the ”Data Acquisition & Preparation” phase of
the MLOps process. Many of these methods can
be automated in the MLOps pipeline and hence
the evidences for the safety case are generated
automatically as described in Zeller et al. (2024a).
However, some of the metrics require a human-
in-the-loop, since experts need to judge whether
the data calculated by the metrics reach a defined
goal/threshold. For example, QI2 presented in
Geerkens et al. (2024) provides three-dimensional
histograms that quantify the local (non-)linearity
of the data, which must be analyzed by human
experts.

In contrast, other AI-SCs of the LAISC, such
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as (2) ”Inadequate planning of AI performance
requirements”, (3) ”Insufficient AI development
documentation”, (6) ”Choice of untrustworthy
data source”, (7) ”Missing data understanding”,
and (13) ”Poor model design choices”, can be
mitigated with process-based evidences (such as
reviews) and sufficient documentation during the
”Data & ML Life-cycle”. In addition, the AI-
SC (19) ”Integration issues” can be mitigated by
applying existing and well-established develop-
ment practices of safety-critical software during
the ”ML/SW Integration” phase. Please note that
process-based evidences cannot be created auto-
matically in an MLOps pipeline, but within the
pipeline the required documentation can partly be
generated automatically.

During ”System V&V” phase, the AI-SC (5)
”AI-related hardware issues” can be mitigated by
testing an AI-based function in a hardware-in-
the-loop environment and showing an acceptable
inference time when operating the ML component
integrated in the system in the target hardware.
Moreover, the AI-SC (20) ”Operational data is-
sues” is mitigated by testing the AI component in
the field under operational conditions, e.g., using
dedicated test tracks for autonomous cars/trains or
run the AI-based function in a so-called shadow
mode during normal operation.

In order to demonstrate that the AI-SC (4)
”Inappropriate degree of transparency to stake-
holders” is mitigated, documenting the MLOps
and data management along the entire lifecycle
of the system and providing an end-user manual,
describing the basics of decision-making process
of the ML model is necessary.

For the AI-SC (1) ”Inadequate specification
of ODD”, Weiss et al. (2024) introduced a new
approach for the definition and maintenance of
an ODD during the development of safety-critical
AI-based ADS in safe.trAIn. With this process-
based approach, we provide a set of heterogeneous
evidences to argue the sufficient completeness and
consistency of the ODD in the ”System Design”
phase. Since an inadequately defined ODD poses
a major safety concern for the entire development,
it is important to mitigate this AI-SC.

However, there are AI-SCs in the LAISC for

which no sufficient mitigation method or metric
is available to show the fulfillment of the derived
Verifiable Requirement. Thereby, the mitigation
of the following AI-SCs could not be demon-
strated in the safe.trAIn project:

Regarding AI-SC (12) ”Problems with syn-
thetic data (Gap between synthetic data and real
data)” there are approaches available in the lit-
erature to measure the reality gap between real
and synthetic data and a theoretical argument
has been created on how to handle the concern,
see Schnitzer et al. (2024b). However, to the
best of our knowledge there are no publications
that demonstrate the absence of this AI-SC suf-
ficiently. Also in safe.trAIn it was not possible
demonstrate this.

To demonstrate the mitigation of the AI-SC
(16) ”Unreliability in corner cases”, methods are
needed to identify the corner cases of a defined
ODD to show then sufficient performance of
the ML model on these corner cases during the
”Model Evaluation” and ”System V&V” phases.
Moreover, during the phase ”System Operation
& Monitoring in the field” an reliable Out-of-
Distribution (OoD) detection method is needed,
which is reliably detecting scenarios that have not
been part of the ML model training.

The AI-SC (18) ”Uncertainty concerns” re-
quires to demonstrate that the different kinds of
uncertainty (domain, aleatoric, and epistemic) de-
fined in Brando et al. (2023) are mitigated suffi-
ciently during the development and a reliable run-
time monitoring approach is available. This topic
was not addressed during the safe.trAIn project.

In order to mitigate the AI-SC (21) ”Data drift”,
we require a runtime monitor which is capable of
detecting significant model performance decrease
and identifying significant changes in operational
distributions automatically during operation in the
field in real-time. For both tasks, methods are
available in the literature, but the methods have
not yet been applied to the use case of safe.trAIn.

The AI-SC (22) ”Concept drift” is not relevant
for the use case in the safe.trAIn project, since
we assume that the obstacles to be detected by
the driverless train are not changing significantly
over time (e.g., a human will not evolve during the
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lifetime of a regional train).

6. Conclusions and Outlook

In order to assess an AI-based obstacle detection
function of a driverless regional train in terms
of safety, we developed a safety argumentation
strategy in the safe.trAIn project. This strategy is
guided by the so-called Landscape of AI Safety
Concerns. The LAISC defines a set of AI-specific
issues that may negatively impact the safety of
a system - the so-called AI Safety Concerns. To
demonstrate the safety of the obstacle detection
function, we need to show that all AI Safety Con-
cerns are sufficiently mitigated. Therefore, met-
rics and mitigation methods are specified. The
methods are assigned to the phases of the safe
MLOps process specified in the safe.trAIn project
to continuously develop and assess AI-based func-
tions for driverless trains. For many of the AI
Safety Concerns, we identified suitable methods
within the safe.trAIn project to demonstrate the
mitigation of the concerns. Many of the methods
can be implemented in a MLOps pipeline and
automatically create evidences for the safety case.

However, for some of the concerns in the
LAISC for which no sufficient mitigation method
or metric was identified during the project. Future
work is to identify suitable methods and metrics
and to evaluate their capabilities to sufficiently
demonstrate the mitigation of the concerns for an
AI-based obstacle detection function of a driver-
less regional train.
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