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Over the last decade, the use of digital twins (DTs) has expanded significantly across a variety of sectors. They often 
take various forms, with an emphasis on the underlying technologies (IoT, Cloud Computing, AI, virtual reality, 
etc.). However, one question remains: once deployed, will these digital twins be utilized in a manner that is both 
cost-effective and sustainable? Digital twins originated in maintenance applications, which is where these 
technologies are currently the most mature. Previous work shows that in the literature, most articles concern 
predictive maintenance applications, which implies the frequent use of artificial intelligence and therefore the 
management of large volumes of data. However, in recent years, we have seen the emergence of virtual reality 
technologies for training and augmented reality for intervention assistance, which require both significant hardware 
and software resources.  
 
The aim of this article is to propose a qualitative methodology for classifying industrial maintenance digital twins. 
This methodology will enable the assessment of the economic and environmental costs of DTs, making it possible 
for decision makers to ask the right questions even at the earliest stages of the DT's conception. This is especially 
helpful since, at those early stages, designers often lack quantitative information. This approach offers a more 
accessible starting point for eco-design, unlike more quantitative methods, such as Life Cycle Assessment (LCA), 
which require higher precision in data collection and a significant amount of time. This qualitative methodology 
will be applied to recent literature, providing a preliminary analysis of the digital twins currently in operation.  
 
Keywords: Digital Twin, Industrial Maintenance, Economic and ecological impacts. 
 

1. Introduction 
The integration of Digital Twins (DTs) into 
industrial maintenance marks a transformative shift 
in managing equipment and processes, driven by 
the ongoing evolution of Industry 4.0. Despite 
numerous efforts to define DTs, a standardized and 
universally accepted definition remains elusive 
(Abdullahi, Longo, and Samie 2024). DTs can be 
described as dynamic virtual replicas of physical 

systems that facilitate real-time monitoring, 
simulation, and optimization (Soori, Arezoo, and 
Dastres 2023). These technologies are integral to 
predictive maintenance (Viaron, Julien, and 
Hamzaoui 2024), enabling industries to anticipate 
failures, minimize downtime, and optimize 
resource utilization. However, the increasing 
adoption of DTs also raises pressing concerns 
about their ecological and economic implications. 
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From an ecological standpoint, the adoption 
of Digital Twins (DTs) demands significant data 
processing and equipment acquisition, which 
drives up energy consumption. Additionally, the 
production and disposal of the sensors and IoT 
devices that power DT systems raise concerns 
about electronic waste and the sustainability of 
materials. On the economic front, while DTs are 
recognized for minimizing downtime and enabling 
proactive maintenance, their implementation 
comes with high initial costs for hardware, 
software, and workforce training. These trade-offs 
underscore the importance of carefully assessing 
the balance between the benefits of DT technology 
and its sustainability and cost-efficiency 
objectives. 

Based on our recent research, there has been 
no comprehensive study on the direct ecological 
and economic impacts of Digital Twins. For this 
reason, we propose an initial qualitative review that 
is broad enough to be applied across various 
Digital Twin applications. Unlike more 
quantitative methods, such as Life Cycle 
Assessment (LCA), which demand higher 
precision and granularity, this approach offers a 
more accessible starting point. 

This paper introduces in part 2 the context 
and previous works, then proposes in part 3 an 
initial framework for qualitatively assessing the 
ecological and economic impacts of Digital Twins 
(DTs) through three key criteria: DT maturity, 
physical equipment acquisition, and the user 
experience. This approach is applied in part 4 to 
representative maintenance DT examples from 
literature, and its limitations and perspectives are 
discussed in part 5 before the conclusion. 
 
2. Context   
 
Multiple studies have been conducted not only to 
define but also to classify Digital Twins, with the 
aim of proposing a standardized methodology for 
their conception. Among these, we can find the 
typology of DTs proposed by Julien and Martin 
(2020), the 5D model introduced by Tao, Zhang, 
and Nee (2019), the extended version proposed by 
Hamzaoui and Julien (2022), and the Digital Twin 
Capabilities Periodic Table (“Digital Twin 
Capabilities Periodic Table,” n.d.). These 
frameworks offer valuable perspectives on the 
structure, functionality, and applications of Digital 
Twins, providing a solid understanding of the key 

elements that characterize this technology and 
consequently, contribute to the ecological and 
economic impacts of the DT.  

From an ecological and economic 
perspective, a study by ADEME (the French 
Agency for Ecological Transition) and Arcep (the 
French Regulatory Authority for Electronic 
Communications, Postal Services, and Press 
Distribution) on the environmental impact of 
digital technology in France (“Etude ADEME – 
Arcep sur l’empreinte environmental du 
numérique en 2020, 2030 et 2050” 2023) reveals 
that nearly 80% of the environmental impact of 
digital products and technologies comes from 
physical equipment such as IoT devices and 
computer screens. The remaining 20% is 
distributed between data processing and storage, 
networks and communication. This categorization 
is also known as the “three-tier architecture.”  

The "three-tier architecture” outlines the 
environmental impact of digital technologies 
across three core components:   

� Equipment, this first tier encompasses all 
end-user devices, such as smartphones, 
computers and IoT devices, with 
significant impacts stemming from their 
production, usage, and disposal.  

� The second tier, data centers, refers to 
facilities responsible for processing and 
storing digital data, which are energy-
intensive due to high electricity 
consumption and cooling requirements.  

� The last tier, networks, includes the 
infrastructure enabling data transmission, 
such as mobile networks, fiber-optic 
cables, and internet systems, which 
demand substantial energy.  

By combining these findings, we assume 
that most Digital Twins, with the highest 
ecological and economic impact, are those 
requiring substantial equipment and advanced 
levels of interoperability, typically representing 
the most mature versions of this technology. 
Therefore, we conclude that the maturity of a 
Digital Twin is a critical factor driving its 
economic and ecological impacts.  

As nearly 80% of the ecological impacts of 
Digital Twins are linked to the equipment or 
physical components they require, their 
ecological impact can vary greatly; for instance, a 
DT that operates on existing computers and 
utilizes data from preinstalled sensors has a lower 
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ecological footprint than one that necessitates 
acquiring new equipment. In conclusion, the 
extent of new equipment acquisition is a key 
factor driving the environmental impact of DTs. 

Additionally, the user experience, as defined 
in the Digital Twin Capabilities Periodic Table 
(“Digital Twin Capabilities Periodic Table,” n.d.), 
may also vary from a simple dashboard and basic 
visualizations to a complete immersive 
environment and gamification. Thus, it plays a 
significant role in determining the ecological 
footprint of a DT, especially because advanced 
user experience will often require more hardware 
and software resources.  

In conclusion, the three key factors 
identified as most impactful from both an 
ecological and economic standpoint are the 
maturity of the DT, the extent of new equipment 
acquisition, and the user experience.  

3. Assessment methodology   

3.1. DT Maturity  
DT maturity has been defined in numerous ways 
across different studies. In our proposed 
methodology, we draw inspiration from the 
definition of DT maturity put forward by 

Hamzaoui and Julien (2024), which outlines five 
levels of maturity. (Fig. 1) 
 

� Digital Mirror: In this first level, the 
physical object and its behavior are 
represented, there is also no direct 
interaction between the physical and 
digital components.  

� Digital Shadow: This level tracks the 
physical object’s data and activities, 
offering a one-way representation of its 
changes. 

� Control DT: At this stage, the physical 
object and its digital counterpart are 
integrated, enabling two-way 
communication and feedback loops for 
partial or full control. 

� Cognitive DT: The DT evolves to predict 
future behaviors and outcomes based on 
real-time data. 

� Collaborative DT: The highest level, 
where the DT autonomously makes 
decisions and controls the physical 
object without needing human 
intervention.

 
 

 
 
 
 
 
 
 
 

Fig. 1. The five levels of DT maturity according to Hamzaoui and Julien (2024)

3.2. Equipment acquisition 
We hypothesize that a Digital Twin requiring 
more extensive new equipment acquisition for its 
implementation will have greater ecological and 
economic impacts. Accordingly, we propose five 
levels of equipment acquisition from L1 to L5, 
with each level representing progressively higher 
impacts. 

� L1: No new equipment is acquired. The 
DT relies entirely on preexisting 
equipment and uses data collected by it. 

� L2: New sensors and other IoT 
technologies are acquired, but no new 
user terminals are introduced. A user 
terminal refers to devices such as 
computers, tablets, smartphones, or 
similar devices. 
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� L3: A maximum of one simple user 
terminal is acquired (e.g. PC screens, 
computers, or tablets). 

� L4: A maximum of one “augmented” 
user terminal is acquired. An 
“augmented” user terminal combines a 
simple user terminal (e.g. a computer, 
tablet, or PC screen) with XR 
equipment, such as a VR headset or AR 
devices. 

� L5: Multiple user terminals, either 
simple or “augmented”, are acquired. 
 

3.3. The User Experience (UX) 

As noted earlier, the user experience is a key 
factor influencing the ecological footprint of a 
DT. Based on the Digital Twin Capabilities 
Periodic Table (“Digital Twin Capabilities 
Periodic Table,” n.d.), we have identified five 
distinct levels of user experience. Like the 
previous two factors, each level reflects 
progressively higher impacts. 
 

� L1: The DT offers basic visualizations, such 
as static dashboards or simple graphs that 
display the results of simulations or data 
monitoring. These visualizations provide a 
basic overview without interactivity. 

� L2: Advanced visualizations providing more 
detailed information, such as layered data 
displays, charts, and interactive elements that 
allow the user to explore the data in greater 
depth.  

� L3: Integration of 3D models enhancing the 
visualizations and enabling the user to 
interact with as well as manipulate the virtual 
representation of the physical object or 
system.  

� L4: Extended Reality (XR) is introduced, 
incorporating Virtual Reality (VR) or 
Augmented Reality (AR) technologies. XR 
provides a more immersive user experience, 
allowing users to engage with the DT in a 
virtual environment or through augmented 
views of the real-world system. 

� L5: The user experience includes 
gamification elements, turning the 
interaction with the DT into a more 

interactive and engaging experience. This 
could involve game-like scenarios enhancing 
user participation and understanding. 
 

Table 1. The evaluation grid used to evaluate the 
impacts of a DT. 

 Maturity Equipment  UX 
L1 Mirror No new 

equipment 
Basic 
visualizations 

L2 Shadow IoT Advanced 
visualizations 

L3 Control One simple 
user 
terminal 

3D 
modelisation 

L4 Cognitive One 
augmented 
user 
terminal 

Extended 
Reality (XR) 

L5 Collaborative Multiple 
user 
terminals 

Gamification 

 

3.4. Evaluation proposal 
To interpret the ecological and economic impacts of 
a DT, we propose to assign scores based on the three 
criteria: DT maturity, equipment acquisition, and 
user experience, with each factor having levels from 
1 to 5. The total score (TS), as the sum of the three 
factors, ranges from 3 to 15, where higher scores 
indicate greater ecological and economic impacts.  
Scores can be categorized as follows:  
 

� Low Impact DT: TS  6 
� Medium Impact DT: 7  TS 10 
� High Impact DT: TS  11 

Low-impact DTs are less resource-intensive 
and cost-efficient, representing early-stage versions 
of a DT or sustainability-focused implementations. 
Moderate-impact DTs achieve a balance between 
performance and sustainability, while high-impact 
DTs demand significant resources and investment 
for advanced functionalities such as augmented 
reality or gamification. These scores offer a valuable 
initial framework for decision-making, aligning 
industry needs with sustainability objectives and 
desired performance outcomes. 

However, since the three previous factors 
contribute differently to the ecological and 
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economic impacts of a DT, we propose applying 
weights similar to those suggested by the “three-tier 
architecture” by attributing 80% to the equipment 
acquisition criteria. For the remaining 20%, we 
assigned equal weights to the other two factors as an 
initial approach, given that determining specific 
weights for these factors is less straightforward. 

Table 2. Initial proposed weights 

 Maturity Equipment  UX 
Weight 10% 80% 10% 
 

By incorporating the weights, the new 
evaluation method calculates the weighted total 
score (WTS) using the following formula “Eq.(1)”:  

  
The weighted total score reflects the relative 

contributions of the three factors to the overall 
ecological and economic impacts of the DT. The 
total score ranges from 1 to 5, with higher scores 
indicating greater impacts. 
Interpretation of the scores: 
 

� Low Impact DT: WTS  2.3 
� Medium Impact DT: 2.4  WTS 3.7 
� High Impact DT: WTS 3.8  

 

4. Application examples  
4.1. Cognitive DT in predictive maintenance 
In the following section, we apply the proposed grid 
to a DT example presented by Li et al. (2024), 
which describes a Digital Twin-Driven Intelligent 
Operation and Maintenance platform for large-scale 
hydro-steel structures. This platform integrates real-
time monitoring, 2D/3D visualization, predictive 
maintenance, and intelligent decision-making to 
optimize the management of hydraulic engineering 
systems. It is applied to structures such as radial 
gates, spillways, and flood discharge orifices. By 
leveraging IoT data, advanced models, and virtual-
real interaction, the platform enhances safety, 
reduces equipment failure rates, and improves 
maintenance efficiency. 

 
Fig. 2. DT of a platform for large-scale hydro-steel 

structures presented by Li et al. (2024) 
 

Classification based on the proposed grid: 
 

� DT Maturity: The platform's integration of 
predictive maintenance positions it at Level 4 
(Cognitive), reflecting its advanced 
functionality and intelligent decision-making 
capabilities. 

� Equipment Acquisition: The platform relies on 
IoT technologies, including sensors for 
vibration, stress, and environmental 
monitoring, aligning with Level 2 (IoT). 

� User Experience: The DT features 2D/3D 
visualizations and VR-enabled inspections but 
does not incorporate gamification, which 
corresponds to Level 4 (Extended Reality 
(XR)). 

 
Table 4. Evaluation of the cognitive DT  

 Maturity Equipment  UX 
Level Cognitive  IoT Extended 

Reality (XR) 
Score 4 2 4 
Weight 10% 80% 10% 
Score * 
weight 

0.4 1.6 0.4 

Based on our initial proposed grid, this Digital 
Twin would receive a total score of 10, placing it in 
the medium impact category. If we now apply the 
proposed evaluation method using the suggested 
weights, the new total score is 2.4, also placing this 
DT in the medium-impact category. This conclusion 
does not differ from our previous evaluation using 
the simple method without weights, highlighting the 
importance of determining the appropriate weights 
to obtain the most realistic results. 
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4.2. Collaborative DT for remote maintenance 
In this case study presented by Oppermann, 
Buchholz, and Uzun (2023), the digital twin is 
integrated into an industrial metaverse application. 
This system enables remote collaboration between 
experts and on-site technicians. Experts interact with 
the digital twin in a virtual reality (VR) environment, 
using it to visualize, annotate, and guide problem-
solving. On-site technicians, equipped with 
augmented or mixed reality (AR/MR) headsets, see 
both the real machine and the digital twin overlaid in 
their view. This setup facilitates real-time 
collaboration, reduces the need for physical travel 
and minimizes downtime.  

 
Fig. 3. Collaborative DT For Remote Maintenance 
(Oppermann and al, 2023) 

Table 5. Evaluation of the collaborative DT  

 Maturity Equipment  UX 
Level Collaborat

ive  
Multiple 
user 
terminals  

Gamification 

Score 5 5 5 
Weight 10% 80% 10% 
Score * 
weight 

0.5 4 0.5 

This example represents a high-impact digital 
twin with an overall weighted score of 5. This DT 
necessitated the acquisition of various XR 
equipment, enabling advanced functionalities and 
enhancing collaborative capabilities. 

5. Discussion and limitations   

To highlight the limits of our proposed evaluation 
methodology of the economic and ecologic impacts 
of DTs, we present in this section an application 

example of the proposed grid to a Dynamic 
Reliability Digital Twin (DRDT) for the predictive 
maintenance of standalone steel industrial 
components (D’Urso et al. 2024). These 
components are prone to fatigue damage caused by 
cyclic mechanical loads, and the DRDT is 
specifically designed to predict their remaining 
useful life (RUL). 

The DRDT does not rely on physical 
equipment, such as sensors or IoT devices, for real-
time data collection. Instead, it operates entirely on 
synthetic data generated through computational 
techniques and physics-based models. By 
combining these models with artificial intelligence, 
the system analyses cumulative fatigue damage and 
provides accurate RUL predictions. As there is no 
direct connection between the Digital Twin and the 
physical entity, the maturity level is classified as a 
digital mirror. Additionally, there is no direct 
information regarding the user experience offered 
by the DT, but we assume it involves basic 
visualization features such as dashboards, as the DT 
version discussed in the article appears recent. The 
DRDT enables optimized maintenance scheduling, 
reducing unnecessary interventions and associated 
costs while enhancing the reliability and efficiency 
of industrial operations. 

Table 6. Evaluation of the DRDT  

 Maturity Equipment  UX 
Level Mirror No new 

equipment 
Basic 
visualizations 

Score 1 1 1 
Weight 10% 80% 10% 
Score * 
weight 

0.1 0.8 0.1 

  
The weighted total score for this DT is 1, 

classifying it as a low-impact DT. This classification 
is partially accurate, given that there is no direct link 
between the DT and the physical entity, and the 
system does not rely on physical equipment. 
However, this last point is not entirely correct, as the 
system utilizes a substantial amount of synthetic data 
as well as artificial intelligence. These elements not 
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only enhance the system's ability to analyze and 
predict the remaining useful life (RUL) of 
components accurately, but also significantly 
increase the ecological and economic impacts of the 
DT. 

Another important aspect to highlight is that 
the proposed methodology provides an initial image 
of the current impacts of DTs. Thus, an updated 
version of our assessment methodology should 
include the assessment of the impacts of the DT 
across its entire life cycle.  This limit explains the 
significant differences observed between the three 
case studies, as shown in Fig. 4. where we compare 
three DTs in different maintenance applications: the 
DRDT for predictive maintenance, the cognitive DT 
for intelligent decision-making and the collaborative 
DT for remote maintenance.  
Fig. 4. Representation of the evaluation of the three DT 
examples  

Therefore, the proposed grid represents an 
initial framework that requires further development. 
To refine its applicability, it should be tested not 
only on examples from the literature but also in real 
industrial applications. This process will help 
identify key factors, weights and nuances that are 
essential for enhancing the grid’s relevance. By 
doing so, it can be made more versatile, applicable 
to a broader range of Digital Twin use cases across 
diverse industries, and more effective in providing 
valuable insights. 

In addition, in our proposed methodology, we 
assume that an increase in economic costs aligns 
with higher ecological impacts, which is not always 
the case. Therefore, our proposed grid must evolve, 
not only to include additional relevant criteria and 
accurate weights, but we also foresee the need to 

differentiate ecological and economic impacts by 
potentially employing two separate grids. 

Lastly, qualitative approaches, such as the one 
proposed in this article, come with the risk of 
questioning whether the results of this assessment 
are reliable enough to support decision-making. This 
is particularly true when considering that the 
benefits provided by the digital twin are not weighed 
against its environmental and economic impacts. 
This limitation highlights that not all aspects of this 
innovative technology are currently addressed in the 
proposed assessment methodology.  

Conclusion  

To summarize, our proposed methodology aims to 
qualitatively evaluate the economic and ecological 
costs of Digital Twins (DTs) based on three key 
criteria that we assume significantly influence these 
costs. The first factor is DT maturity, as a more 
mature DT typically offers better and more 
advanced functionalities, such as prediction and 
enhanced decision-making, which require 
substantial amounts of data. The second factor is the 
amount of new equipment acquisition, representing 
nearly 80% of the ecological costs, since we assume 
that a DT operating on existing hardware has a lower 
ecological footprint compared to one that requires 
acquisition of new equipment. Lastly, the user 
experience provided by the DT plays a critical role 
in determining both the ecological and economic 
footprint. For example, a DT that offers basic 
visualizations, such as dashboards for simulation 
results, has a lower impact than one integrating 
virtual or augmented reality technologies. 

To assess the ecological and economic impacts 
of a DT, we propose assigning scores based on the 
previous three criteria: DT maturity, equipment 
acquisition, and user experience. Each factor is 
ranked across five levels, ordered by increasing 
ecological and economic impacts. The total score is 
the sum of each criterion’s score, ranging from 3 to 
15, with higher scores indicating greater ecological 
and economic impacts. This approach supports 
decision-makers by helping them ask the right 
questions, and subsequently, provide them with a 
more accessible and quicker starting point for eco-
design. In contrast to more quantitative methods like 

0
1
2
3
4
5

DT Maturity

Equipment
Acquisition

User
Experience

Cognitive DT DRDT Collaborative DT
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Life Cycle Assessment (LCA), which require 
significant resources, this methodology offers a 
more streamlined alternative. 

Although our proposed evaluation method is 
easily applicable to a wide range of DT use cases, it 
has certain limitations, such as not directly 
addressing data management aspects or taking into 
consideration the full lifecycle of this technology 
and not distinctly separating economic costs from 
ecological impacts, which do not always evolve in 
the same manner.  

In conclusion, our proposed methodology 
provides an initial understanding of the ecological 
and economic impacts of DTs, but it needs further 
development and refinement to become more 
reliable. 
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