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System maintenance is crucial to ensure the safety, reliability, and performance of modern systems. Effective main-
tenance reduces downtime, prevents unexpected failures, and extends the lifespan of equipment. With continuing
monitoring though the deployment of digital twins we can develop new data driven approaches that are more efficient
than traditional maintenance policies. Digital twin technology provides a real-time virtual model of a physical
system, enabling continuous monitoring, diagnosis, and advanced analytics. In this study, we propose a framework
combining predictive and prescriptive pipelines, utilizing machine learning techniques to tackle optimization
problems. Specifically, we explore methods such as Smart Predict-then-Optimize (SPO) and we compare with
the traditional approaches Predict-then-Optimize (PTO) for system maintenance. Different maintenance policies,
including Condition-Based Maintenance (CBM), periodic CBM, and predictive maintenance, are applied within
this framework. An illustrative example of battery maintenance demonstrates the practical implementation of these
methodologies. By leveraging data-driven approaches, this framework enhances decision-making and helps prevent
costly disruptions in critical systems.

Keywords: smart-predict-then-optimize, artificial intelligent, digital twin, system maintenance, industry 4.0/5.0
reliability/safety,system health management.

1. Introduction

In the era of Industry 4.0, the integration of dig-
ital twins (DTs) Grieves (2003) has revolution-
ized the way complex systems are monitored,
managed, and maintained. A digital twin is a
virtual representation of a physical system, en-
riched by real-time data and predictive algorithms
to replicate the behavior and performance of its
real-world counterpart. This technology offers un-
precedented opportunities for improving system
maintenance strategies, particularly in reducing
costs and enhancing reliability. Maintenance op-
erations, traditionally reactive or based on fixed
schedules, are now evolving toward predictive and
condition-based approaches, leveraging insights
from digital twins to make data-driven decisions.

One of the key challenges in system mainte-

nance is achieving a balance between minimiz-
ing the total cost of maintenance and maximizing
system reliability. Maintenance activities, such as
inspections and repairs, incur significant costs,
including labor, downtime, and replacement parts.
However, neglecting timely maintenance can lead
to catastrophic failures, reduced productivity, and
safety hazards. To address this, it is essential to
develop optimization strategies that leverage the
predictive capabilities of digital twins to perform
maintenance actions based on the predicted State
of Health (SoH) and/or Remaining Useful Life
(RUL) of system components. By doing so, main-
tenance operations can be strategically planned to
ensure system reliability while optimizing costs.

In this paper, we propose a novel approach
to balance cost efficiency and system reliabil-
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ity in condition-based maintenance using Smart-
Predict-and-Optimize (SPO). SPO serves as a
comprehensive framework designed to facilitate
maintenance decisions under the inherent un-
certainties of predicting system State of Health
(SoH).

This paper is organized as follows: Section 2
reviews related work on data-driven maintenance
optimization techniques. Section 3 presents the
problem description. Section 4 introduces the sys-
tem model and presents its components. Section
5 presents maintenance optimization schemes, fo-
cusing on the use of estimators to drive main-
tenance decisions. In Section 6, we present our
proposed SPO-based scheme. Section 7 provides
numerical analysis and results, illustrating the
effectiveness of the proposed approach. Finally,
Section 8 concludes the paper, summarizing the
key findings and outlining potential directions for
future research.

2. Related work

Data driven optimization methods have been de-
veloped in order to better account for uncertainty
in data. In the domain of maintenance, most work
propose fitting stochastic processes Cai et al.
(2023) and solving a stochastic optimization prob-
lem.

SPO framework was first introduced in El-
machtoub and Grigas (2020) as a novel frame-
work addressing optimization cost efficiency. The
main challenge of this approach is its computa-
tional complexity. However, it has the advantage
of working in contexts where the decision rely
on prediction models. Authors propose decision-
aware prediction through the integration of a SPO
loss function. A loss function is a mathematical
function that measures the discrepancy between
a model’s predicted output and the actual target
value. Using a custom SPO loss to fit a prediction
model will force it to adapt its outputs to the op-
timization objective function. This framework has
been applied to several domains (see for example
Jiang and Ji (2024); Chu et al. (2023)) but very
few papers have tackled maintenance optimization
like Tian et al. (2023). In these works, predic-
tion models are designed to estimate optimization

costs.
To our knowledge, our proposed study is the

first to analyze the impact of SPO-like scheme
when the prediction model estimates a variable
that do not appear in the objective function of the
optimization problem but has a direct impact on
perceived costs. We also analyze the impact of
the parameters chosen on the design of effective
decision modules.

3. Problem description

Given noisy monitoring data of a system, we
aim to evaluate the robustness of Condition-based
maintenance policies in ensuring overall system
safety while minimizing costs.

Condition-based MaintenanceNF EN 13306
(2018) is an umbrella term for a class of mainte-
nance policies where decisions to repair or replace
components are taken based on estimations of
system performance status. These estimations are
often called health indicators, and can come in
any number (say that the system is equipped with
100 sensors, providing a indicator vector in R100)
and form (continuous, binary, categorical...).

It is often practical to summarize and condense
the information contained in those health indica-
tors into a single real-valued quantity called the
system State of Health (SoH). Typically, the SoH
is normalized so that SoH = 1 indicates a system
in perfect condition and SoH = 0 corresponds to
definitive failure. Thereafter, one of the objectives
of devised maintenance policies is to prevent the
SoH from reaching 0.

Traditional approaches typically train the SoH

estimator in an offline manner, independently
from the maintenance policy. The main limitation
of these approaches, no matter how sophisticated
the policy, is that its quality is heavily dependent
on the accuracy of the SoH estimator. For in-
stance, if the SoH estimator is biased to over-
estimate SoH (meaning the system is deemed
healthier than it actually is), then catastrophic
failure can occur. On the other hand, if SoH is
frequently underestimated, then a typical mainte-
nance scheme will be unnecessarily costly, with
superfluous repair operations being scheduled.



1486 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

4. System model

In practice, the health indicators used to estimate
SoH are typically costly or unpractical to monitor
in a perfectly continuous fashion. Instead, one
performs inspections at given times (say, after 2
weeks of installing a new machine, then every 2
months thereafter). These inspections carry a cost,
denoted cI representing the time, materials and
human labor expended to record the health indi-
cators and estimate SoH . Hopefully, cI is much
lower than repair costs cR, and even more than
failure cost cF .

In this paper, we suppose inspection happens at
a regular time interval so we don’t have to account
for cI . Hence, we have a system that operates over
discrete time steps, denoted by t = 0, 1, 2, . . . , T ,
where T is the time horizon.

Our system is represented in Figure 1 and com-
prises three main components: (1) a prediction
module that produces estimates of SoH noted
ŜoH(t) for each time step t , (2) an optimization
module that uses ŜoH(t) and produces an optimal
policy over time period T , and (3) an evaluation
module that applies produced policy over T with
real SoH(t) values and compute incurred cost.

We differentiate between two maintenance opti-
mization schemes: the traditional approach called
Predict-then-Optimize (PTO) and our proposed
scheme based on Smart-Predict-Then-Optimize
(SPO) approach and called by the same name.

5. Maintenance optimization schemes

Each of the Predict-then-Opitmize (PTO) and
Smart-Predict-Then-Optimize (SPO) have two
main components: prediction and optimization. In
the PTO case, prediction is done first then mainte-
nance policy is optimized based on the prediction
as follows.

5.1. Prediction

For any regression model, whether based on poly-
nomial fitting, traditional machine learning or
deep learning, the SoH estimator is trained using
a simple loss function, such as

L(ŜoH(t), SoH(t)) = ||ŜoH(t)− SoH(t)||22,

where ŜoH(t) denotes the estimated SoH at
timestep t.

5.2. Optimization

Using SoH estimation over T , we study three
condition-based maintenance models.

The most basic and commonplace form of
condition-based maintenanceAli and Abdelhadi
(2022) that we call CBM consists in defining a so-
called repair threshold τR > 0 s.t. taken action at
time t is:

{
Repair if SoH(t) ≤ τR

Do nothing if SoH(t) > τR

Given a long-term time horizon T , the goal is then
to find τ∗R s.t. :

τ∗R = argminτR∈]0,1[

T∑
t=0

cR(t) + cF (t)

= argminτR∈]0,1[CT (τR)

where ∀t ∈ {1..T}, a repair cost cR(t) = cR +

(t−tF )
2 if decision to repair is taken at timestep t

(cR(t) = 0 otherwise), and a failure cost cF (t) =
cF if failure occurs at timestep t, 0 otherwise.
Using (t − tF )

2 in cR(t) allows the optimisation
to have a unique solution and forces the policy to
choose the lowest value possible before failure if
cF > cR. Given ŜoH(t) built using historical
data, this means that τ∗R should be the lowest
strictly positive value of ŜoH(t). By abuse of
notation, we will use cT (x) (or even cT (x, y)) to
express the total cost as a function of x (and y)
depending on the variable in question.

Instead of simply defining τR, periodic
condition-based maintenanceQuatrini et al. (2020)
named pCBM allows joint optimization of τr with
an inspection interval parameter denoted ΔI . This
decision scheme consists in ∀t:
{

Repair if SoH(t) ≤ τR or t modΔI = 0

Do nothing otherwise

Given a long-term time horizon T , the goal is
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Fig. 1.: Our proposed pipeline

then to find (τ∗r ,Δ
∗
I) s.t. :

(τ∗r ,Δ
∗
I) = argminτr∈]0,1[,ΔI∈N∗

T∑
t=0

cR(t) + cF (t)

= argminτr∈]0,1[,ΔI∈N∗CT (τr,ΔI)

In other words, the goal of this scheme is to
calibrate repair threshold and inspection interval
together in order to minimize the long-term total
maintenance cost CT (τR,ΔI) of the system.

If ΔI is too small, the primary consequence is
to perform unnecessarily many inspection/repair
operations, thereby inflating the total maintenance
cost. Conversely, if τR is too low and/or ΔI is too
large, then the main risk is for system failure to oc-
cur in between two inspections. The first scenario
carries a financial risk, whereas the second carries
a safety risk, which is typically unacceptable in
many critical industrial applications (e.g. aircraft
engines, or public transportation). Given ŜoH(t)

from historical data, this means that τ∗R should be
the lowest strictly positive value of ŜoH(t) and
Δ∗

I the largest period before ŜoH(t) reaches 0.
The condition-based maintenance can be en-

hanced by adding a predictive component respon-
sible for estimating SoH at futur timesteps t +

1, t + 2, ..., T so that a repair operation can be
scheduled in advance, before SoH(t) = 0 or
more commonly before a Remaining Useful Life
(RUL) is exhausted. This scheme is called predic-
tive maintenance (PdM) and consists in, given a
time horizon T , finding time steps t over which
a maintenance action should be scheduled. This

translated in the following objective :

(xt, ..., xT ) = argminxt∈{0,1}
T∑

t=0

cR(t) + cF (t)

= argminxt∈{0,1}CT (xt)

where a binary variable xt = 1 if a repair action is
scheduled at time t and xt = 0 otherwise. In this
case, SoH prediction is used to estimate the time
series at hand to model the evolution of the SoH

in future time steps. If cR < cF , the optimal policy
will decide to repair xt = 1 when ̂SoH(t+ 1) =

0.

6. Our proposed SPO-based scheme

Smart Predict then Optimize (SPO), as mentioned
in Section 2 is a method that refines the prediction
based on the decision-making task through an
iterative process between prediction and optimiza-
tion.

In this work, we use this method to propose a
direction for building robust maintenance policies,
where SoH estimator and maintenance policy are
integrated in a single pipeline.

In our adaptation of the Smart Predict and Opti-
mize (SPO) scheme, we propose to learn a policy-
adjusted SoH estimator ŜoHP s.t.

L( ̂SoHP (t), SoH(t)) = λ ∗ || ̂SoHP (t)− SoH(t)||22
+(1− λ) ∗ LSPO+( ̂SoHP (t), SoH(t))

where λ ∈ [0, 1] and LSPO+( ̂SoHP (t), SoH(t)) is
calculated using the SPO+ loss defined in Elmach-
toub and Grigas (2020) as follows:

LSPO+( ̂SoHP (t), SoH(t)) =

maxτ{CT (SoH(t), τ)− 2 CT ( ̂SoHP (t), τ)}
+2 CT ( ̂SoHP (t), τ∗)− CT (SoH(t), τ∗)
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where CT (SoH(t), τ) is the optimization cost
computed for a given SoH(t) data and mainte-
nance strategy τ , and τ∗ is the optimal mainte-
nance policy.

Then, the maintenance policy itself is optimized
to minimize total cost CT based on ŜoHP (t).

The policy-adjusted SoH estimator directly
takes into account the incurred maintenance cost
of the associated policy to make its prediction.
Training of this estimator and optimization of
the linked maintenance policy becomes an it-
erative process, alternating training/optimization
steps between the two components. It is impor-
tant to notice that we choose to still include the
traditional loss || ̂SoHP (t)−SoH(t)||22, weighted
by a given λ against the maintenance cost objec-
tive, which is weighted by a given 1 − λ. This
hybrid loss corresponds to finding a compromise
between SoH regression accuracy (estimating sys-
tem health as precisely as possible) and mainte-
nance cost efficiency (making the best decisions
possible, given a certain policy). This tradeoff
is crucial so that the physical meaning of this
new metric is preserved : it cannot drift away too
far from the actual SoH without paying a heavy
penalty.

Our intuition is that the estimation of this new
policy-adjusted SoH should yield almost identical
results to a traditional SoH estimator when the
maintenance policy is well-calibrated. However,
when the maintenance policy would make a costly
mistake (e.g. ask for repair when none is needed or
let the system go to failure), then policy-adjusted
SoH is able to strategically ”lie” to the mainte-
nance policy by temporarily drifting away from
the true SoH to prevent that mistake from happen-
ing.

If τR is dangerously low (risk of failure), then
ŜoHP will artificially be underestimated to trig-
ger a repair decision and keep the system safe.
Conversely, if using dynamic inspection intervals
and ΔI is currently too small (superfluous costly
inspections), then ŜoHP can compensate by over-
estimating system health a bit so that the dynamic
inspection interval increases ΔI in the next itera-
tion. ŜoHP should then stop its overestimation.
We will investigate this behavior in the experi-

mental campaign of section 7.

7. Numerical analysis

To evaluate the performance and behavior of our
proposed SPO schemes compared to traditional
PTO schemes, we generate datasets that simulate
battery capacity degradation. We focus on syn-
thetic data because publicly available real-world
datasets are limited and often lack sufficient run-
to-failure data

7.1. Data generation scheme

The data generation process involves simulating a
population of batteries, with each battery having
a typical lifetime measured in cycles. For reach
battery, we draw a lifetime value from a normal
distribution with an average lifetime of 700 (in
our experiments) and a standard deviation of 100.
The lifetime represents the duration (in cycles) a
battery will last before it fails. We use a linear
degradation model that will produce a time series
for SoH for one battery that starts with SoH(t) =

100% for t = 0 and ends with SoH(t) = 0% for
t equals to the battery lifetime value. This should
reflect typical wear and tear. To introduce more
realism into the simulation, noise is added to the
data to model inspection errors. In our experi-
ments, we suppose a noise that follows a Gaussian
distribution, N (0,1). The noise is generated using
a fixed random seed to ensure that the results are
reproducible in future simulations.

For a population of 100 batteries, this produces
batteries that last on average 696 cycles, with a
standard deviation of 98 cycles. The minimum
number of cycles observed is 367 cycles and the
maximum number of cycles is 879 cycles.

7.2. Settings

The generated data is transformed for prediction
into a set of features used by the prediction model.
In this paper, to predict SoH(t), we use the cycle
number, SoH(t − 1) and SoH(t − 2). We then
split the data into a training set and a test set with
a ratio of 80% and 20% respectively.

For the prediction, we implement a Linear Re-
gression(LR) Seber and Lee (2003) model. In the
case of PTO, this model is trained using the loss
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function of section 5.1. For SPO, we use the SPO+
loss function of section 6 with λ = 0.8.

We use training data to produce the optimal
policies of the optimization schemes described in
Section 5.2: CBM , pCBM and PdM .

Test data is used to evaluate the efficiency of the
produced policies.

In this analysis, we consider a long enough
time horizon T = 900 over which a single repair
decision (of replacing the battery) can be made
at a certain t based on the maintenance policy at
hand. Given the decision, we compute the cost
incurred over time horizon T based on whether the
system failed before getting the chance to repair
or not. To test the impact of the cost values, we
define various scenarios, each characterized by a
different order of magnitude difference between
the cost of repair and the cost of failure. These
scenarios are represented in table 1.

Table 1.: Cost structure for each scenario.

Scenario 1 2 3 4 5 6 7
CR 1 10 100 200 500 1000 2000
CF 1000 1000 1000 1000 1000 1000 1000

7.3. Results

Figures 2 show for each scenario the mean and
standard deviation of the total costs recorded when
the pipeline(see figure 1) is applied on training
data and testing.

Like expected, we can see that average total
cost increases when the gap between cR and cF
decreases. This means that if the cost of failure
is not set high enough, letting the system fail
becomes a possible option for optimization.

For both training and test data, the SPO

schemes show lower costs compared to the PTO

schemes. We also highlight that SPO schemes
show very low standard deviation values and
hence have more stable total costs for all datasets.
Since in PTO, prediction is done offline, it
makes it suitable on average but fail to deal with
steeper that average SoH curves (i.e., degradation
curves).

(a) Results for the training dataset

(b) Results for the test dataset

Fig. 2.: Average and standard deviation of total
cost for all time series per scenario.

This also is shown in figures 3 where the to-
tal number of failure of PTO based schemes is
higher than the ones based on SPO.

Looking at total costs and total number of fail-
ures, all SPO schemes have close values.

Table 2 presents prediction error. Since in PTO,
linear regression uses MSE as a loss function,
LR model for PTO is the same across all PTO
schemes and all scenarios. For SPO, prediction
is directly tied to the optimization scheme con-
sidered, so it is more likely that a different pre-
diction model is produced by each optimization
scheme(CBM, pCBM and PdM). We can see that
SPO schemes can degrade the quality of the pre-
diction to better serve the optimization model. In
scenarios 1, 2, 3, and 4, given that cR is much
lower than cF , the overall behavior remains simi-
lar for SPO PDM, as shown by the MSE and MAE
results. In Scenario 6, the costs of repair and fail-
ure are equal, so it is more beneficial for the sys-
tem to fail. In Scenario 7, both pCDM and CDM
indicate that failure is cheaper than repair, making
failure the more cost-effective option. From the
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(a) Results for the training dataset

(b) Results for the test dataset

Fig. 3.: Total number of failure per scenario.

results in Table 2, among all SPO schemes, SPO
PDM seem to be the best at keeping MSE and
MAE the lowest over all scenarios. This means
that SPO PDM respects the most the “physical”
meaning of the SoH indicator.

8. Conclusion and perspectives

In this paper, we propose an adaptation of
the Smart Predict-then-Optimize framework to
tackle maintenance optimization. We compare
the performance given by this approach with
the traditional Predict-then-Optimize method. In
our comparison, we consider three maintenance
strategies : Condition-Based Maintenance, peri-
odic Condition-Based Maintenance, and predic-
tive maintenance. We show through numerical
experiments that Smart Predict-then-Optimize im-
proves performance by reducing total costs. This
is because the scheme can adapt prediction objec-
tives to effectively account for uncertainty, align-
ing them with the specific decision-making strat-
egy employed. SPO models are hence “safer” and
more robust than PTO ones.

Table 2.: Prediction Mean Square Error(MSE) and
Mean Absolute Error(MAE) for each model per
scenario

Scenario LR Model MSE MAE
for (×10−3) (×10−2)

all PTO 0.148 0.969
1 SPO CBM 4.686 5.698
1 SPO pCBM 3.765 5.117
1 SPO PDM 0.774 2.068
2 SPO CBM 2.106 3.848
2 SPO pCBM 2.106 3.848
2 SPO PDM 0.774 2.068
3 SPO CBM 36.222 15.690
3 SPO pCBM 4.308 5.282
3 SPO PDM 0.774 2.068
4 SPO CBM 42.733 17.170
4 SPO pCBM 15.466 10.248
4 SPO PDM 0.774 2.068
5 SPO CBM 21.585 12.098
5 SPO pCBM 148.108 31.702
5 SPO PDM 0.774 2.068
6 SPO CBM 0.148 0.971
6 SPO pCBM 0.148 0.971
6 SPO PDM 0.148 0.971
7 SPO CBM 1.927 3.349
7 SPO pCBM 1.021 2.600
7 SPO PDM 1.021 2.600

From a methodological perspective, as a fu-
ture work, our aim is to explore the behavior
of SPO when other types of prediction models
are involved, such as machine learning or deep
learning. Different models interact with loss func-
tions in distinct ways, influencing their ability to
converge effectively. By systematically comparing
multiple models, we can identify the most suitable
approach that balances accuracy, efficiency, and
alignment with specific problem constraints.

We can also extend our approach that deals with
a static inspection period to allow and optimize
a dynamic one. Inspections can then be more or
less frequent depending on system health. When
considering an inspection cost, this improvement
aims to reduce total costs by inspecting as sparsely
as possible while maintaining overall safety.

Another research perspective is to tackle multi-
objective optimization. In this work, we use a
single-objective formulation of the maintenance
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optimization problem, mixing failure cost with
financial cost. In applications where safety is
paramount, this should not be done and the two
criteria need to remain somewhat separate as
safety criterion is to be prioritized over financial
cost.
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