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Microgrids equipped with local distributed energy resources (DERs) and islanding capabilities have been shown
to enhance the resilience in modern power systems by mitigating disturbances. However, the size and location
of distributed energy resources are critical factors in determining their economic and technical viability. In this
study, we model random contingencies alongside commonly studied generation and demand uncertainties to guide
investment decisions, improving system defenses against unexpected outage events whilst maintaining economic
and technical optimality. We develop distributionally robust optimization models for the two-stage stochastic
programming optimal design and operations problem under simultaneous continuous supply-demand uncertainty,
and discrete random contingencies. The solution methods rely on known tractable reformulations of distributionally
robust optimization (DRO) problems that allow us to solve the problem using off-the-shelf commercial solvers.
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1. Introduction

The resilience of power systems is regularly
challenged by increasingly frequent and severe
high-impact low-probability (HILP) environmen-
tal events (Seneviratne, S.I et al., 2023), e.g., hur-
ricanes, wildfires, etc., causing widespread power
outages and economic losses (Ciapessoni et al.,
2023). Climate change alters the hazard profile
of a region not only across their intensity, fre-
quency, but also its duration, timing and spatial
extent (Ranasinghe et al., 2023). Consequently, it
is primordial to safeguard critical infrastructures
(CIs) against events that will occur with previ-
ously unseen seasonality, speed of onset, and ge-

ographical extent. In June 2024, Hurricane Beryl
broke meteorological records, being “the earliest
Category 5 hurricane observed in the Atlantic
basin on record, and only the second Category 5
hurricane to occur in July after Hurricane Emily
in 2005” (Papin (2024)).

Building upon growing need for resilience, we
focus our work on power system resilience, which
can be defined as “the ability to limit the ex-
tent, severity and duration of system degradation
following an extreme event.” (Ciapessoni et al.
(2023)). In practice, large investments in DER
for local generation, storage and control decreases
vulnerability and increases response rate to large
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Fig. 1. Resilience curve. System performance as an
indicator of resilience throughout system disturbance

system shocks (Panteli and Mancarella, 2015).
Such networks are often called microgrids (Mar-
nay et al., 2015), crucially having the capability
to operate off-grid in islanded mode. Successful
large-scale microgrid experiments have already
been conducted, see Enedis (2011); Vogel et al.
(2024).

From a methodological point of view, resilience
is best captured by sequential decision-making
frameworks, such as reinforcement learning, or
multi-stage optimization frameworks (Ouyang
and Fang, 2017; Kamruzzaman et al., 2021; Zhao
et al., 2022). When fine-grained operations of
the network are not of interest, graph-based ap-
proaches can also be used to assess network re-
silience (Herrera et al., 2016). In fact, it is of-
ten the case that resilience is pictured as system
performance in time fig. 1, where the system is
disturbed at time t=0 and system performance is
an indicator of resilience during each phase.

DRO is a mixed framework, combining the
probability modeling from stochastic program-
ming (SP) with the worst-case approach of robust
optimization (RO) (Kuhn et al., 2024). The un-
certainty set is replaced by an ambiguity set P ,
modelling a probability distribution that is itself
uncertain, where the term “ambiguity” refers to
the unknown nature of the distribution (Ellsberg,
1961). The family of distributions P is arbitrar-
ily described through moments, support or other
properties. Kuhn et al. (2025) presents the recent
key findings of the field. A survey of DRO litera-
ture can also be found at (Rahimian and Mehrotra,
2022).

DER sizing and location (Prakash and Kha-
tod, 2016) has a vast literature, in which uncer-
tain parameters range from distributed generators
output, load, emissions and price of the electric-

ity. Fewer have focused on the defender-attacker-
defender model (Wang et al., 2014; Billionnet
et al., 2016; Yang et al., 2021; Shi et al., 2023),
and even less integrate standard N-k security con-
straints (Chalil Madathil et al., 2018; Bagheri
and Zhao, 2019) with the operational model of
the power network. We place our contribution in
this line of work, by developing a DRO model
for microgrid sizing and siting of DERs consid-
ering continuous supply-demand uncertainty and
discrete random contingencies on system compo-
nents.

We apply this approach to model a defender-
attacker-defender model, where the defender is
the utility planner, the attacker is nature as in un-
certainties of supply-demand and random contin-
gencies, and the defender is the microgrid opera-
tor. Our approach merges planning decisions with
simulated operation, hence conflating the duties of
utilities and network operators, but also arguably
their interests. Utilities might prefer economic
profit at the expense of network resilience, with
the opposite being true for operators. Framing
our problem with a cooperative mindset, utilities
provide a service to operators, investing in DER to
reduce operators’ costs whilst insuring adequate
investment in generation capacity. We denote its
value the price of resilience, that is the cost of
improving the system’s resilience against unex-
pected events compared to the baseline cost of
maximizing utilities’ economic profits.

Our contributions are twofold: (i) we present
and reformulate an original distributionally robust
optimization model for the optimal design and
operations of microgrids under simultaneous con-
tinuous supply-demand uncertainty ξ and discrete
random contingencies Z; (ii) we propose a novel
framing of the defender-attacker-defender model,
where the defender is the utility planner, the at-
tacker is nature, and the defender is the microgrid
operator.

The rest of the work is structured as follows. A
technical description of the network model and its
operations is provided in section 2. Ambiguity sets
for uncertain variables are detailed in section 3.
In particular, we detail the reformulation steps of
the tri-level problem into a single-stage tractable
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program in section 3.1.

2. Modelling

Let Eq. (P) be the full problem

min
x∈X

max
PZ∈PZ

∫
Z

max
Pξ∈Pξ

∫
Ξ

Q(x, ξ, z)dPξdPZ (P)

where X ⊆ RI is the feasible region of the
first stage, x are investment decisions, Z random
vector of the power line status with support Z , and
ξ the random vector of the supply-demand with
support Ξ. PZ is the ambiguity set of Z and Pξ of
ξ. D(x) is the investment cost function, O(y) the
operations cost and the second stage Q(x, ξ, Z) is

Q(x, ξ, Z) = min
y∈Y

O(y) (1)

Y =

⎧⎨
⎩
y : Sξx+ VZy = gξ

Tx+Wy ≤ h

x ∈ X

⎫⎬
⎭ (2)

with Y ⊆ RJ the nonempty feasible region of
the second stage. We assume relatively complete
recourse, that is for every x ∈ X , there exists a
solution to Eq. (1). Matrices Sξ, VZ and vector gξ
are subscripted with ξ and Z to indicate that they
are random with respect to ξ and Z.

We denote by υ(x) our inner problem without
decisions x, defined

υ(x) := max
PZ∈PZ

∫
Z
ψ(x, z) dPZ (3)

s.t. ψ(x, z) := max
Pξ∈Pξ

EPξ
Q(x, ξ, z). (4)

2.1. Network model

The distribution network (DN) is modeled by a
connected undirected graph G = (N , E), with
N = {∅, 1, . . . , N} the set of N nodes, N+ the
set of N (+) = N − 1 nodes without its root node
∅ (substation).

The radial network is connected to the main
grid by the root node. Power injections occur at
the point of common coupling (PCC) indicated
by ∅, with active and reactive power injections
respectively p∅,t (kW) and q∅,t (VAr). Active and
reactive power transactions are allowed with fixed
costs C∅ (e/kW) and variable costs V P

∅ and V Q
∅

(e/kWh). The fixed part is expressed with respect

to a reference power P∅ (kW). The system oper-
ator negotiates these costs in the power purchase
agreement with a supplier. For example, V∅ can
be the day-ahead market cost of electricity. For
simplicity, we assume that V∅ are constant over
the time horizon T .

2.2. Microgrid design

Investment decisions are taken with respect to dis-
tinct technology choices for generators and battery
energy storage systems (BESSs). Different techni-
cal characteristics are chosen to balance the trade-
offs between investment costs and operational
flexibility. Each potential investment k ∈ K is de-
scribed by its rated active power capacity Pk, that
is the designed fully loaded power output in watt,
as opposed to the actual active power output pk,t.
The investment cost Ik (e/kW), operating cost
OMk (e/kW), and the variable cost Vk (e/kWh)
are given for each investment. Additionally for
energy storage technologies, we take into account
their rated energy capacity Es (Wh), computed
from its design minimum hours of operation Hs

(h), e.g., 3 hours. The operating cost OMk is the
sum of a power cost CP

s (e/kW) and an energy
cost CE

s (e/kWh) times the design hours of op-
eration Hs.

The investment costs D(x) are the total capital
costs Ik and estimated operating costs OMk of
the planned installed capacity xkPk and reference
active power purchase P∅. The operations costs
O(y) are the total variable costs Vk of the active
power generation pk,t and complex power trans-
actions p∅,t and q∅,t over the time horizon T .
For energy storage technologies, the active power
generation ps,t is the sum of the charging and
discharging power p+s,t and p−s,t. Without network
reconfiguration, the network will not be fully con-
nected after a failure event. Hence, we track load
shedding due to unmet demand at node level by
positive slack variables |lsPu,t| and |lsQu,t|. They are
penalized by fixed costs V P

ls and V Q
ls (e/kWh).

Each technology provides the characteristics of
a reference unit. Each decision for technology
k is taken with respect to the number of units
xk ∈ {Nk,min, . . . , Nk,max} and the connection
node xk,u ∈ 0, 1, with Nk the maximum number
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of units for technology k. An installed technology
can be connected once at any non-root node u ∈
N+ (Eq. (5)). Conversely, each network node can
welcome up only one connection (Eq. (6)). Any
connection must also lead to a nonzero installed
capacity (Eq. (8)) and reciprocally (Eq. (7)). Let
K denote the set all of investments technologies,
then the above constraints are formulated by the
following equations∑

u∈N
xk,u ≤ 1 ∀k ∈ K (5)

∑
k∈K

xk,u ≤ 1 ∀u ∈ N (6)

xk ≤ Nk,max

∑
u∈N

xk,u ∀k ∈ K (7)

xk ≥ Nk,min

∑
u∈N

xk,u ∀k ∈ K (8)

xk ∈ {0, . . . , Nk,max} ∀k ∈ K (9)

xk,u ∈ {0, 1} ∀k ∈ K, ∀u ∈ N (10)

where xk,u = 1 indicates that technology k is
connected at node u, and xk = n indicates that
no unit of technology n is installed. All variables
xk,∅ are fixed at 0. The first-stage feasible set is
then defined by X = {x : Eqs. (5) to (10)}.

The following system components are listed
for investment: dispatchable generators G, nondis-
patchable generators G† and battery energy stor-
age systems S .

2.3. Grid operations

The microgrid is operated on the time horizon
T = 1, . . . , T . All physical units are converted to
the standard per unit notation when possible. Let
K = G ∪ G† ∪ S designate all technologies listed
for investment.

We assume nondispatchable generation capac-
ity to have no variable costs V †g . We also consider
that a small amount of dispatchable generation
capacity is already installed, denoted in generator
set GN , with power output pNk,t (kW) and rated
apparent power capacity SNk (kW). Their loca-
tions xNg,u are predetermined, where xNg,u = 1.
They have fixed operating costs OMN

k (e/kW)
and variable costs V Nk (e/kWh).

We are given observations of generation pro-

files p†g,t, q
†
g,t of nondispatchable renewable en-

ergy sources (RESs) g ∈ G† and load profiles
dPu,t, d

Q
u,t at buses u ∈ N

2.4. Power Flow

We model the power flow using the AC
LinDistFlow equations (Baran and Wu, 1989b).
We assume that the network phases are balanced
and that flows are bidirectional. Line status vari-
ables zu,t are binary, with zu,t = 1 indicating
that line u is operational. Power flow variables
are constrained by the operational status of each
line zu,t. We write the active and reactive power
flows to node u as Pu,t, Qu,t, the voltage mag-
nitude squared vu,t and power injections p̃u,t,
q̃u,t at node u, the line’s resistance Ru and reac-
tance Xu. In case of unmet demand, we introduce
positive slack variables in each direction ls+P

u,t ,
ls−P
u,t , ls+Q

u,t , ls−Q
u,t to penalise the unmet demand.

The LinDistFlow model formulation is given by
Eqs. (11) to (17). P∅,t and Q∅,t are fixed at 0.

For accounting the economic costs of load
shedding, we use the notation |lsPu,t| = ls+P

u,t +

ls−P
u,t and |lsQu,t| = ls+Q

u,t + ls−Q
u,t .

2.5. Supply and Demand

For all generators, the power output is constrained
by the rated power capacity Pk. Power transac-
tions at the substation are not subject to maximum
power purchase capacities.

0 ≤ pg,t ≤ Pgxg ∀g ∈ G, ∀t ∈ T (18)

pNg,t ∈ [0, PNk ] ∀g ∈ GN , ∀t ∈ T (19)

p∅,t ∈ R+ ∀t ∈ T (20)

Dispatchable generators provide active pk,t and
reactive power qk,t to the extent of their rated
power capacity Sk.

|qg,t| ≤ xgQg ∀g ∈ G, ∀t ∈ T (21)

qNg,t ∈
[
−QNg ,+QNg

]
∀g ∈ GN , ∀t ∈ T (22)

q∅,t ∈ R ∀t ∈ T (23)

with bounds Qg defined by
√
S2 − P 2. Similarly,

nondispatchable generators are operating in con-
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∑
v∈children(u)

Pv,t = p̃u,t + Pu,t + ls+P
u,t − ls−P

u,t ∀u ∈ N , ∀t ∈ T (11)

∑
v∈children(u)

Qv,t = q̃u,t +Qu,t + ls+Q
u,t − ls−Q

u,t ∀u ∈ N , ∀t ∈ T (12)

vu,t = vparent(u),t − 2(RuPu,t +XuQu,t) ∀u ∈ N+, ∀t ∈ T (13)

vu,t ∈ [V 2
u,min, V

2
u,max] ∀u ∈ N+, ∀t ∈ T (14)

(1− zu,t)Pu,t = 0 ∀u ∈ N+, ∀t ∈ T (15)

(1− zu,t)Qu,t = 0 ∀u ∈ N+, ∀t ∈ T (16)

ls+P
u,t , ls

−P
u,t , ls

+Q
u,t , ls

−Q
u,t ≥ 0 ∀u ∈ N , ∀t ∈ T (17)

stant power factor mode.

q†g,t := p†g,t tan(φg) ∀g ∈ G†, ∀t ∈ T (24)

φg := cos−1(pfg) ∀g ∈ G† (25)

pfk = cos(φ) is the ratio of real power to the
apparent power of generator g, or simply the co-
sine of the phase φ. For our purposes, we take
the values pfg = 0.95. Loads’ power factors pfu
are assumed given at node level, from which the
reactive power demand is derived

dQu,t := dPu,t tan(φu) ∀u ∈ N , ∀t ∈ T (26)

φu := cos−1(pfu) ∀u ∈ N (27)

2.6. Energy Storage

Battery technologies operate according to a sim-
ple energy balance equation (Eq. (28)), capacity
constraints (Eq. (30)) and power limits Eqs. (31)
and (32).

es,t = Δtαses,t−1 (28)

+ η+s p
+
s,t −

1

η−s
p−s,t ∀s ∈ S, ∀t ∈ T +

They are described by self-discharge rate αs

(%/hour), and (dis)charging efficiency parame-
ters η±s (%). Let p±s,t be the power sustained at
time t for (dis)charge, and Δt be the time step
resolution, where Δt = 1 corresponds to 1 h.
BESSs are also operated in constant power factor

mode.

es,1 = 0.5Esxs ∀s ∈ S (29)

Es,minxs ≤ es,t ≤ Esxs ∀s ∈ S, ∀t ∈ T (30)

0 ≤ p+s,t ≤ P+
s xs ∀s ∈ S, ∀t ∈ T (31)

0 ≤ p−s,t ≤ P−s xs ∀s ∈ S, ∀t ∈ T (32)

ps,t := p−s,t − p+s,t ∀s ∈ S, ∀t ∈ T (33)

qs,t := ps,t tan(φs) ∀s ∈ S, ∀t ∈ T (34)

2.7. Power Injections

The power injections terms p̃u,t (Eq. (35)), q̃u,t
(Eq. (36)) are given by all input-output power
flows at node u and time step t, including the
observations from supply-demand variables ξ.

p̃u,t :=
∑
s∈S

xs,u(p
−
s,t − p+s,t) +

∑
g∈G

xg,upg,t

+
∑

g∈GN
xNg,up

N
g,t +

∑
g∈G†

x†g,up
†
g,t (35)

− dPu,t + 1{∅}(u)p∅,t ∀u ∈ N , ∀t ∈ T

q̃u,t :=
∑
s∈S

xs,uqs,t +
∑
g∈G

xg,uqg,t

+
∑

g∈GN
xNg,uq

N
g,t +

∑
g∈G†

x†g,uq
†
g,t (36)

− dQu,t + 1{∅}(u)q∅,t ∀u ∈ N , ∀t ∈ T

3. DRO Models

Let Ξ is the support of ξ, defined by

Ξ =

{
ξ ∈ RX :

p†g,t ∈ [0, 1], ∀g ∈ G†, ∀t ∈ T
dPu,t ∈ [0, 1], ∀u ∈ N , ∀t ∈ T

}
.

(47)
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υ(x) = min
x,λ,ν,λψ

l ,sli,γlij

D(x) + ν + λκ+
L∑

l=1

p̂lul (37)

s.t.ul ≥ −λ ∀l ≤ L (38)

ul ≥ wl ∀l ≤ L (39)

wl ≤ λ ∀l ≤ L (40)

bj(zl) + aTj (zl)(̂ξ)i + γT
lij(d− Cξ̂i) ≤ sli ∀l ≤ L, ∀i ≤ I, ∀j ≤ J(l) (41)∥∥CT γlij − aj(zl)

∥∥
∗ ≤ λψ

l ∀l ≤ L, ∀i ≤ I, ∀j ≤ J(l) (42)

λ ≥ 0 (43)

ν free (44)

γlij ≥ 0 ∀l ≤ L, ∀i ≤ I, ∀j ≤ J(l) (45)

wl := λψ
l ε+

1

I

I∑
i=1

sli − ν (46)

Pξ(ε) is a Wasserstein-1 ball of radius ε

(Eq. (48)), where P̂I is the uniform distribution
on observations ξ̂i.

Pξ(ε) =
{
P ∈ P(Ξ) : Δ(P, P̂I) ≤ ε

}
(48)

We assume failed power lines are not repaired,
and accept scenarios up to N − k failures. The
support Z of Z is given by Eq. (49). We artificially
generate a reduced scenario set ZL.

Z =

⎧⎪⎪⎨
⎪⎪⎩

z ∈ {0, 1}N+×T :∑
u∈N+ zu,T ≥ N+ − k

zu,t ≥ zu,t+1

∀u ∈ N+, t ∈ T \ {T}

⎫⎪⎪⎬
⎪⎪⎭ . (49)

Let κ be an arbitrary conservativeness parame-
ter. Let us asumme the contingency analysis gives
us probability estimates p̂ for each scenario zl ∈
ZL. Iφ(P,Q) is a phi-divergence. Then, the em-
pirical distribution P̂Z is defined as

P̂Z :=

{
P ∈ P(ZL) :

P[Z = zl] = p̂, ∀zl ∈ ZL

}
(50)

and the ambiguity set of the contingency random
variables PZ(κ) (Eq. (51)) is with φ-divergence
Iφ.

PZ(κ) =
{
P ∈ P(ZL) : Iφ(P, P̂) ≤ κ

}
(51)

3.1. Reformulations

Our solution methodology relies on the combina-
tion of the dual problems of ψ(x, z) (Eq. (4)) and
υ(x) (Eq. (3)) and the linearization of quadratic
terms. Specifically, we dualize Eq. (3) with φ-
divergence Iφv

(P,Q) =
∑

|p−q|, where φv(t) =

|t − 1| is the variation distance. Similarly, we
define a well-known Wasserstein-1 ball Pξ(ε) and
dualize ψ(x, z) following (Mohajerin Esfahani
and Kuhn, 2018, Theorem 4.2., p. 129 and Corol-
lary 5.4 (ii), p. 144). That is, we reformulate the
operations stage Eq. (1) as a maximum of linear
functions by solving the optimal vertex enumer-
ation problem, i.e., enumerating the vertices of a
hyperplane arrangement, then reformulate dualize
ψ(x, z). Finally, υ(x) reduces to a linear program,
to which we prefix the decision stage, yielding the
full formulation (Eqs. (37) to (46)).

Proposition 3.1. The problem Eq. (3) admits the
linear reformulation Eqs. (37) to (46) where I is
the number of data points, J(l) is the number of
vertices in the hyperplane arrangement V(zl), L
is the number of scenarios in the contingency set
ZL, C and d are matrices used in the half-space
representation of support Ξ.
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4. Conclusion and discussion

In this paper, we have presented a comprehen-
sive model for the resilience enhancement of
microgrids through the optimal sizing and loca-
tion of distributed energy resources (DERs) under
supply-demand uncertainty and random contin-
gencies. Our approach leverages distributionally
robust optimization (DRO) to account for both
continuous and discrete uncertainties, providing a
robust framework for investment and operational
decisions.

We focus this contribution on the mathemati-
cal description of the model. We formulated the
problem as a two-stage stochastic programming
model, where the first stage involves investment
decisions and the second stage involves oper-
ational decisions under uncertainty. The DRO
framework allows us to model the ambiguity in
probability distributions of uncertainties, ensuring
that the solutions are robust against worst-case
scenarios.

Future work will include a case study to demon-
strate the model’s performance against other ap-
proaches on several benchmark distribution net-
works, e.g., Baran and Wu (1989a)’s 33-bus net-
work, Khodr et al. (2008)’s 141-bus network,
etc. Historical data for supply-demand is obtained
from national and European open data platforms,
e.g., ODRÉ, ENTSO-E, GovData.de, etc. This
will help validate the effectiveness of our ap-
proach in improving the resilience of power sys-
tems against extreme events and uncertainties.
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