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This paper describes a condition monitoring approach for pumps regulating groundwater level under a port
infrastructure. We focus on the Bremerhaven container terminal located in northwest Germany at the mouth of
the river Weser. Our aim was to construct a strategy to detect potential pump failure indications that could inform
conditional maintenance actions. Two signals were available for us: the groundwater level, measured with a radar,
and the binary pump on/off operation signal. For this purpose, we tested four unsupervised machine learning-
based anomaly detection algorithms, in combination with multiple post-processing methods for anomaly scoring
and thresholding. Additionally, we developed a model to simulate the groundwater level signal, enabling the test
of failure modes that were not present in measured data. We found that the appropriate selection of model and
post-processing method was critical for obtaining satisfactory results in both measured and simulated signals.
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1. Introduction The challenge is to detect critical degradation
of the system before a failure. A typical approach
involves a degradation model that would inform
the maintenance actions. Building such a model
requires an understanding of the degradation pro-
cesses and having measurements for estimating
that degradation. Without these measurements,
this approach is impossible. Therefore, we inves-
tigate an alternative strategy that uses time-series
unsupervised anomaly detection models to inform
condition based maintenance actions.

We present a case study scenario for pumps
regulating groundwater level (GWL) under a port
infrastructure. The focus is on the Bremerhaven
container terminal which is located in northwest
Germany at the mouth of the Weser River. This
location creates a complication as the water level
in the Weser River is affected by the North Sea
through tides and wind stress. The GWL must be
kept in a certain range in accordance to the river

Reliability Centered Maintenance (RCM) revolu-
tionized maintenance in terms of increasing ex-
pectations on equipment reliability and availabil-
ity, Moubray (1997). These advances were mainly
a result of condition monitoring, which allowed
maintainers to carry out maintenance actions be-
fore a failure would occur. Thus, the full con-
sequences of a failure, costs or hazards, could
be mitigated with advance maintenance. The ap-
proach has been standardized and implemented
by many organizations. For example, NASA has
a guide on how to apply RCM to facilities and
collateral equipment, NASA (2008). The invest-
ment in maintenance has resulted in significant
savings. The guide also introduces an intuitive ap-
proach, which identifies and implements obvious,
condition-based tasks with minimal analysis. Our
work can be seen to follow this principle.
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water level. In this port, the GWL is regulated by
two pairs of drainage pumps, where the paired
pumps are operated asynchronously. This setup
allows comparing the pumps against each other,
which improves the detectability of degradation.
A degrading pump performance can be caused by
clogging of pipes with ground sediment, or by
mechanical wear of the pump. However, without
direct measurements of the drainage pipes condi-
tion and the pump electrical current, the detection
of those degrading states is difficult.

The drainage system performance is monitored
through two signals: the GWL, measured with
a radar, and the binary pump on/off operation
signal. Both signals are sampled at regular one
minute intervals. From the pump operation, we
derive the pumping time duration, and from the
GWL measurement, we can estimate the pumping
rate. GWL measurements along the berth can fur-
ther be used for detecting the location of clogging.
A physics-based model could be constructed for
these purposes, but setting the boundary condi-
tions and model parameters would be challenging
and time consuming. In this project, we opted
for a machine learning (ML) based approach. We
had access to real data to train predictive models.
We further supplemented the dataset with sim-
ulated GWL signals that resembled degradation
scenarios that were not present in the real data.
In that way, we can further test the capabilities of
our models without being limited to the measured
data.

2. Background

2.1. Groundwater management and
drainage pump reliability

Groundwater management has several important
applications. In coastal areas, fresh groundwater
can be used as drinking water or for irrigation,
which can lead to seawater intrusion and may
cause land subsidence Hussain et al. (2019). The
presence of groundwater affects slope stability
for example excessive rainfall can trigger land-
slides Sapari et al. (2008). Reducing the amount
of groundwater is also required for mine dewa-
tering, Emal Qazizada and Pivar¢iova (2018). In
the port of Bremerhaven, the GWL must kept in a

certain range in accordance to the river water level
through pumps.

The OREDA handbook detailing reliability data
from the offshore oil and gas industries con-
tains information on pumps, SINTEF and NTNU
(2015). The handbook describes that the critical
faults of a pump include abnormal instrument
readings, pump breakdown, failure to start, ab-
normal output, leakage, noise, overheating, and
choking. Several works have addressed condition
monitoring for pumps. Ahonen et al. (2012) moni-
tored pump power consumption to estimate motor
shaft power and the pump flow rate through linear
interpolation and third-order polynomial function
approximations. Turkeri and Kiselychnyk (2024)
derived pressure and flow rate estimations with
artificial neural networks using stator current, es-
timated input active power, and reference stator
voltage frequency as inputs. While Bohn et al.
(2019) proposed a “practical approach” based on
monitoring thermodynamic efficiency, vibrations,
and dynamic fluid pressure. The lack of these
monitoring data lead us to consider ML-based
approaches.

2.2. Anomaly Detection Overview

The problem of anomaly detection (AD) has been
investigated across a wide range of domains, with
relevant applications in cybersecurity, finances,
telecommunications, computer vision, medicine,
astronomy, and others, Ruff et al. (2021). AD is
well suited for early fault and damage detection
of engineering equipment and structures, Xu and
Saleh (2021). It is intrinsically related to sensor
data. For industrial applications, these data typ-
ically come in a streaming fashion. While AD
exists in supervised and semi-supervised mode,
it is widely used in the unsupervised mode. The
reason is that unlabeled data are often broadly
available and labeled data are expensive to obtain
and rare. In reliability and safety applications,
data are usually available for (labeled) nominal
operational conditions only.

The basic idea is to detect the data points,
or sequences of points, that deviate considerably
from an expected normality. The general strategy
follows these steps:
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(i) training a model that learns the distribution
of the normal scenario;
(ii) make predictions with that model and com-
pare them with the new data;
(iii) if there is a significant deviation between
predicted and observed values, those values
are flagged as anomalous.

In some cases, that difference is used to derive
an anomaly score that represents the degree to
which a point, or sequence of points, is anoma-
lous. Various methods exist for computing that
score, and that choice can significantly impact the
detection performance. The simplest method is
the computation of the point-wise absolute error
difference between the observed and predicted
signal. A smoothing algorithm, such as an ex-
ponentially weighted moving average (EWMA),
might be employed next to mitigate false alarms
caused by noisy signals. Another option, valid for
time-series data and used for speech recognition
tasks, is dynamic time warping (DTW), Berndt
and Clifford (1994). It computes the similarity
between two time signals that can vary in speed
or be out-of-phase. Next, a method to find suitable
threshold values for the anomaly score is used
to determine the boundary between normal and
anomalous data. Non-parametric dynamic thresh-
old (NDT), Hundman et al. (2018), and peak over
threshold (POT), Siffer et al. (2017), are relevant
strategies for that task. In this work, we compare
the results of each tested model using these differ-
ent post-processing strategies.

3. Methodology
3.1. Problem Formulation

An optimal condition monitoring approach de-
pends on the level of knowledge on the applica-
tion, Baur et al. (2020). If the application is well
known, a rules-based approach or physics model
can be implemented. When this is not the case,
a data-driven is better. Our challenge was the lim-
ited operational information available for monitor-
ing the pump performance. There are two pump-
ing stations which both have a pair of of pumps. In
this work, we focus on the signals of one of those
stations. The pump activation times from each
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pump are stored as well as GWL measurements
from both stations. This setup allows monitoring
pumps individually and pairwise comparison of
pumps located in a station. The problem is that
these measurements relate to the performance of
the pumping system, including the drainage pipes,
but not directly to a pump.

The pumping efficiency can be indirectly as-
sessed from the GWL signal in combination with
the computed on cycle duration (the timestamp
interval that a pump operated continuously). Since
the pumps are programmed to start and stop when
specific water levels are reached, the duration of
a pumping cycle should be proportional to the
pumping rate. Fig. 1 depicts the relationship be-
tween the pump cycles and the GWL signal. His-
torical data for the pumps on cycle duration show
that there is a normality range for those times, but
on some rare occasions, anomalous values exist.
Fig. 2 shows a boxplot on the variation of the on
cycle duration during several months of the year
2020. Unexpectedly long cycle durations occur in
May.

Pump 2
ONGycle Pump 2 OFF Cycle

Groundwater Level

Pump1  ——~ Simul ignal
il Simulated Signa

1
Pump 1
ON Cycle

Pump 1 OFF Cycle

Time

Fig. 1. Influence of pump operations on the GWL
measurements. Comparison of a measured signal with
a simulated one.

These long cycles can occur due to: a communi-
cation failure in the pump activation signal; heavy
rainfall; degradation of the pump; or a clogging
of the drainage pipes. Using only the monitored
signals, it is difficult to identify the cause of such
anomalous events. Yet, the automatic detection of
these anomalies can initiate failure diagnosis lead-
ing to other maintenance actions. In this work, we
investigate the feasibility of using unsupervised
AD models to initiate this type of maintenance
actions, using the GWL signal.
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Fig. 2. Boxplot with the monthly aggregation of the
observed pump on cycle duration. Values have been
obscured due to data privacy reasons.

3.2. Selected Anomaly Detection
Algorithms

There are many AD models with reported good
performance in benchmark datasets. We selected
four of these models based on popular neural
network architectures that had open source code
available. The selection contains a mix of predic-
tion and reconstruction based algorithms. A brief
overview of these models is provided next.

Auto-Encoder with Regressor (AER) is based
on an encoder-decoder architecture implemented
by biLSTM layers, Wong et al. (2022). It com-
bines reconstruction and prediction based errors
in its loss function to leverage the advantages of
both strategies. Wong et al. (2022) propose a bi-
directional anomaly score to overcome the lim-
itation of prediction methods at the start of the
timestamp sequences, with a combination of the
forward and reverse direction predictions.

LSTM-NDT was proposed by Hundman et al.
(2018). It consists of a Long-Short-Term-Memory
with non-parametric dynamic thresholding. The
recurrent neural network (RNN) architecture has
memory-like capabilities enabling the model
to learn long-term dependencies in the time-
series. Hundman et al. (2018) propose an unsu-
pervised dynamic thresholding method to find the
anomalous sequences in the residuals (error) from
the model predictions.

TadGAN proposed by Geiger et al. (2020) uses
generative adversarial networks (GANs) based
model implemented with LSTM layers for the

generator and critics module. It introduces a cycle-
consistent GAN architecture to enable time-series
mapping. Various methods to compute the re-
construction error in combination with the critics
output are proposed along with a benchmarking
system for AD evaluation.

TranAD is a transformer based AD model ca-
pable of handling multivariate time-series inputs,
Tuli et al. (2022). It uses focus score based self-
conditioning to enable robust multi-modal feature
extraction and adversarial training to gain stabil-

ity.

3.3. Groundwater Level Signal
Simulation

Due to the lack of representative examples of
anomalies in the real data on a slow deterioration
of the drainage system, we will simulate added
signals to mimic that behavior. Accordingly, we
can test the selected AD models on different types
and intensities of disturbed signals. Thus, evalu-
ating their effectiveness and sensitivity to specific
conditions.

The GWL was modeled as a quasi-triangular
periodic signal with alternating curves for the up
and downward slopes. As depicted in Fig. 1, the
GWL rise time is given by the pump off cycle
duration, and the down slope is affected by the
pump on cycle duration. Since the pumps in a sta-
tion always operate in alternation, the consecutive
off or on related slopes can differ. Although the
two pumps at each station are from the same man-
ufacturer and model, in the collected measure-
ments spanning eight years, the pumping times
are always different. The historical data was used
to model the normality behavior for each pump
considering that difference. The parameters for the
simulation model were:

e The on and off pumping cycle duration for
each pump (¢ p1,,, tP1yr> EP2,s EP2,);

o the upper and lower GWL limits, modeled
as Gaussian with small variance (Lpigh ~
N (ptnigh, 02)s Liow ~ N (ttiow, 02));

o the shape of the downward and upward
slopes, given by a scale parameter in the
related exponential curve (S and Sop).
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In this way, the GWL was simulated as a time-
series signal according to the following equations:

Liow + Rwi fore(t), off cycle
GWL(t) —
Lhigh — Rwrfon(t), oncycle
where,
Rwr = Luigh — Liow, (1)
_—Soff ¢

forr(t) =1 — S(e'Pior ), 2)
fon(t) =1— S(eﬁ ), 3)

and S() is a min-max scaler to ensure that the
exponential term is within the O to 1 range.

The data analysis indicates that the pump 2 op-
eration time has significantly higher discrepancies
than the pump 1. There are multiple instances
of step-like increases on the pump 2 on cycle
duration, with hardly any change in the pump 1.
In some cases, the cycle time for both pumps
increases, but the increase is disproportionately
higher in the pump 2. There are also instances
in which the increased on or off cycle duration
results in lower and higher limits for the water
level. That might be due to a fault communication
in the control signal for activating or deactivating
the pumps. This type of event will be simulated as
well.

The historical data were used as a reference for
setting the simulation parameters for the normal-
ity case. For the anomalous samples, the extreme
values of the pump operation times were used as
references to determine the ranges for low, moder-
ate, and severe anomalies. For each intensity, two
types of disturbances were simulated: step-like,
with sudden change to the operation time parame-
ters; and ramp-like, with a progressive change. In
all cases, the signal returns to normality a certain
time after the peak anomalous values are reached.
Additionally, samples with and without changes
in the GWL high and low limits were created.
Four samples with slightly different values were
generated for each configuration, totaling 96 test
samples. Fig. 3 shows two examples of these con-
figurations.
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4. Results

We selected a 50k points sample of the measured
GWL signal for training the AD models. The sam-
ple is representative of normal operation, without
any anomalies. Pre-processing steps such as nor-
malization and conversion to time-series windows
of fixed size (100 points) were conducted to condi-
tion the data according to the input specification of
the models. The window size was chosen as a rea-
sonable time interval that could provide enough
context for the detection of anomalies. For refer-
ence, the GWL signal in Fig. 1 has 120 points.
Most of the other hyperparameters were kept as
their model-specific default values, or with the
values reported in their respective papers. The
exception was the number of epochs, which was
set as ten for all models, with an early stop in
case of validation loss increase. No grid-search
or hyperparameter optimization was done, as we
were interested in evaluating the ease of imple-
mentation of this data-driven approach.

The trained models were first tested in the
nominal case (anomaly free data), checking if the
predicted (or reconstructed) signal could match
the original measurements. As presented in Fig. 4,
all four models were able to reproduce the GWL
signal under the normality setting. In some cases,
the predicted signal would get out-of-phase with
the original, resulting in spikes in the point-wise
absolute difference between them. Those could
be falsely flagged as anomalous sequences. This
issue stressed the importance of the appropriate
selection and fine-tuning of the post-processing
steps. We observed that an additional smoothing
step in the error computation greatly reduced the
amount of these false positives.

The models were then tested with 14 selected
anomalous samples from the real measurements,
and 96 simulated samples. Various metrics exist
for evaluating an AD model performance®, and
the results can be highly dependent on that met-
ric choice. Our objective is the identification of
anomalous measurements to inform maintenance
actions. If the predicted anomalous sequence has

#We recommend the survey Correia et al. (2024).
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Fig.4. Sample of reconstructed GWL signals, in com-
parison with the original measurements.

any overlap with the known ground truth anoma-
lous sequence, it is computed as a true positive. If
the prediction does not overlap the ground truth
at any point, it is counted as a false positive.
Finally, if it fails to detect any part of the real
anomalous sequence, a false negative is computed.
In this way, the unweighted contextual F1 score
(Wong et al. (2022), Hundman et al. (2018)) was
computed for each model, in each configuration
and for each test sample. The overall results are
summarized in Table 1.

For our dataset, the LSTM had the best overall
performance. Surprisingly, the non-parametric dy-
namic threshold method, the recommended post-
processing step in that model paper, was outper-
formed by the peak over threshold. POT yielded
better results for all tested models and configura-
tions. The only exception was in the results for

Examples of simulated test samples with different anomaly configurations.

Table 1.
different models and configurations in test samples.

Summary of the overall performance of the

Model ~ Anomaly  Threshold — Ave.
Score Method F1 Score
Method
NDT 0.54
AER Abs. error POT 0.69
DTW NDT 0.65
POT 0.98
NDT 0.60
Abs. error POT 0.99
LSTM
DTW NDT 0.64
POT 0.98
NDT 0.51
Abs. error POT 0.66
TranAD
DTW NDT 0.61
POT 0.72
NDT 0.52
Abs. error POT 031
TadGAN
DTW NDT 0.57
POT 0.67

the 14 real data test samples, for which the NDT
method for the TadGAN model performed better
than POT (with a score of 0.93 against 0.86). The
overall performance with the real data was slightly
worse than with the simulated samples. However,
the combination of LSTM with a smoothed abso-
lute error based anomaly score and POT defined
threshold, also achieved the best F1 score (of 0.95,
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On the top, simulated moderate step anomaly, and on the bottom, simulated moderate ramp anomaly. Both,

signals have been reconstructed with an AER model. The difference between original and reconstructed signals

causes these incidents to be flagged as anomalies.

against 0.93, 0.92 and 0.73 for TadGAN, AER-
DTW-POT and TranAD-DTW-POT respectively).

With the selection of the best post-processing
steps for each model, the contextual FI score
for the simulated samples was practically perfect.
Both AER and LSTM models were able to detect
all step and ramp type anomalies. Therefore, there
was no observable difference in the detectability
of these two types of anomalies across the three
severity categories. The plots in Fig. 5 show suc-
cessful results of the AER model in simulated
samples.

5. Discussion and Conclusions

We have shown that with the appropriate data con-
ditioning, selection of models and post-processing
steps, an unsupervised ML-based AD strategy can
yield good results. However, it is important to
recognize the limitations of such a strategy. Mul-
tiple combinations of models and post-processing
methods were tested before reaching a satisfac-
tory result for our dataset. That process can be
time consuming and computationally expensive.

Even after fine-tuning a viable model and pipeline,
it might not be robust enough to withstand the
changing conditions in a dynamic environment.
Further tests are required to make that assessment.
Another important consideration is the choice
of the evaluation metric for AD results. Using an
unweighted contextual F1 score can give overly
optimistic results. If the application requires ac-
curate temporal identification of the anomalous
sequence range, that metric is not valid. As shown
in Fig. 5, the predicted anomaly range overlaps
with the ground truth label, resulting, for that
particular sample, in a perfect contextual F1 score
of 1. However, when considering a metric that
penalizes the difference between predicted and
ground truth ranges, the results are much worst®.
For our purposes, the AD results provide a first
step towards an informed condition based main-
tenance plan for the pumps and drainage pipes.
This plan depends on the timely identification of

bThe FI score accounting for that difference, for the best
performing model configuration, drops from 0.99 to 0.81.
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system degradation. The obtained results show its
feasibility. This approach can be further supported
by a physics, or knowledge-based rules informed
models; or by a supervised ML approach, in which
the simulated GWL signal can be used for train-
ing. We will conduct these investigations in future
works.
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