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Planning the distribution system of humanitarian relief efforts following a disaster is a crucial aspect. An optimal
distribution system can only function properly in the presence of robust infrastructure networks, such as trans-
portation networks. However, disasters, whether natural or man-made, often cause severe damages or destructions
to such infrastructure networks. In this work, we examine the planning of the distribution system, which involves
transporting relief materials from storage facilities to distribution centers using trucks, then delivering them to the
victims’ demand nodes using unmanned aerial vehicles. Accordingly, we develop an optimization model using
mathematical programming with the objective of enhancing the resilience of the system. Furthermore, the model
takes into account the capacity of the roads within a transportation network that are utilized by trucks, considering
their level of damage following the disaster and the time to restore them. We solve the developed optimization
model for a transportation network with various scenarios considering different levels of road damages and different
restoration durations for such damaged roads. The results show that based on the performance in various restoration
time scenarios, planning for the delivery of relief goods does not always have to be done right after a disaster occurs
due to the dynamic nature of the disruptions in transit. In addition, based on the travel time of the system, decision
makers can decide to implement the most ideal scenario for disaster response in terms of the restoration time for the
damaged infrastructure.
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1. Introduction

After natural disasters, humanitarian relief is of
utmost importance in attending to the suffering of
the affected areas. In contrast, damage to infras-
tructure makes it increasingly difficult to deliver
relief to the victims in an effective manner. One of
the most pressing challenges in post-disaster relief

operations is making certain that aid reaches the
afflicted regions; assistance is particularly needed
when essential infrastructure, especially roads, is
heavily damaged. The capability to redesign in-
frastructure to cope with these changes is one of
the most important aspects of any relief operation.
This research discusses the incorporation of opti-
mization models to formulate plans for the relief
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distribution that is resilient and emphasizes the
restoration of transportation networks as a primary
element of post-disaster logistics. This research
looks deeply into the issue of a limited capacity
while trying to find a solution to the shortest path
problem. Specifically, this study will focus on the
efficient restoration of damaged roads. Restoring
the roads is essential to guaranteeing the pos-
sibility of using the transportation routes at the
proper cost, optimal timing, and most efficient
provisioning system. For adequate allocation of
resources, there is a need for models that consider
both damaged and restored road segments.

The distribution of relief becomes increasingly
difficult in a post-disaster setting where road net-
works are disrupted. The restoration effort has an
effect on the state of the road networks and the
transportation routes as well. There is a need for
models that are able to operate under these re-
strictions, which include the optimum movement
of goods Gupta and Arora (2013). In addition,
the location routing problem is also important in
disaster response as it deals with the design and
the operational planning of the multi-tiered trans-
portation system that integrates ground vehicles
with Unmanned Aerial Vehicles (UAVs). The im-
provement of roads opens the way to new routing
options for manned ground vehicles, while UAVs
can also provide delivery services to regions that
are still inaccessible by road Faiz et al. (2024).
There is a definite correlation between the routing
and the operating combination of varying types of
transportation modes to the road improvements.

The study aims to optimize relief distribution
planning in damaged infrastructure by integrat-
ing shortest path models with dynamic capacity
restrictions and transportation-UAV routing prob-
lems. We develop a mathematical model to en-
hance resilience in humanitarian relief, especially
in distribution planning, by accounting for infras-
tructure restoration. This model minimizes travel
times while ensuring the system remains adap-
tive, allowing rapid recovery of damaged infras-
tructure. The study enhances resilience planning
by providing scenarios for better relief operations
planning, coordination, and execution, ensuring
resources are delivered efficiently, at the right

place and time, while considering the dynamic
nature of infrastructure restoration.

2. Related Works

The shortest path problem variants are crucial
for optimizing relief goods distribution in post-
disaster environments, where damaged infrastruc-
ture poses significant challenges. (Himmich et al.
(2020) focused on finding the least-cost path be-
tween two nodes while adhering to resource limi-
tations, which is essential in scenarios with infras-
tructure damage, road closures, and capacity lim-
its. Wang et al. (2017) considered expanding edge
costs and capacity limits, which are particularly
relevant in resource-limited post-disaster recov-
ery. Baouche et al. (2014) used the electric vehicle
shortest path problem, incorporating battery ca-
pacity and charging stations, which is also appli-
cable for energy-efficient routing in disaster relief.
Dondo (2012); Li and Zhu (2013) discussed the
models with capacity and time constraints further,
ensuring compliance with these limits during rout-
ing. The approach for managing the uncertainty
and complexity of post-disaster, where exceeding
capacity and time-sensitive delivery are critical
factors, is discussed by Motameni and Ebrahim-
nejad (2018).

The transportation problem is crucial in disaster
relief operations. Based on Khurana (2015), trans-
shipment problem variants handle multi-tiered
transportation systems typical in disaster sce-
narios. The fractional capacitated transportation
problem introduces flow restrictions on certain
routes, useful when transport networks are im-
paired (Gupta and Arora (2013)). Kaur et al.
(2017) proposed time minimization problems with
restricted flow to optimize resource movement
while minimizing delays, essential for timely aid
delivery. These studies help develop transporta-
tion plans that consider damaged infrastructure
and the need for efficient aid delivery. As relief
operations often involve multiple conflicting ob-
jectives—such as balancing shipping costs and
completion dates—goal programming approaches
have been used to address such trade-offs Singh
and Saxena (1998). These models, which explic-
itly consider environmental constraints, organiza-
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tional goals, and decision-making structures, are
valuable in humanitarian relief logistics, where di-
verse objectives need to be balanced. Furthermore,
transportation problems with conflicting node cat-
egorization and restrictions in specific delivery
environments, such as shipyards, have been ex-
plored Ficker et al. (2021), further underscoring
the complexity of planning relief distribution in
challenging, post-disaster conditions.

The UAV routing problem in disaster response
coordinates the delivery of emergency aid through
two levels of vehicles: first-stage vehicles (trucks)
and second-stage vehicles (UAVs). The problem
addresses challenges like uncertain demand and
infrastructure failures by employing a robust op-
timization model, which is crucial in areas with
severely damaged infrastructure, as seen in Hur-
ricane Maria Faiz et al. (2024). This problem can
also be applied in scenarios where ground vehi-
cles are used to transport UAVs to satellite loca-
tions, enabling efficient aid delivery to affected
populations despite infrastructure disruptions Faiz
et al. (2024). This is particularly relevant when
considering areas that may have roads blocked or
damaged.

Models for optimizing the two-echelon loca-
tion routing problem combine ground vehicles
and UAVs to enhance response efficiency and
minimize total response time Perwira Redi et al.
(2023) and optimize waste clean-up efforts after a
disaster, further contributing to effective disaster
management Cheng et al. (2022). Multi-objective
models also play a role in balancing cost, time,
and risk, as seen in the bi-level model for op-
timizing the chain Khanchehzarrin et al. (2022).
By incorporating advanced technologies such as
UAVs and employing scenario-based approaches
to account for uncertainty, these models ensure
that disaster response systems remain resilient and
adaptive to the dynamic challenges posed by dam-
aged infrastructure Chang et al. (2017); Raziei
et al. (2018).

3. Proposed Model

In this paper, we propose a two-stage model where
the solution of the second stage depends on the
solution of the first stage. The objective of this

model is to plan distribution strategies to enhance
post-disaster resilience.

3.1. System description

The system discussed in this paper adapts the
shortest path, transportation, and location routing
problem as shown in Fig. 1. The system consists
of Warehouse Facilities (WFs) that supply relief
goods to each Distribution Centers (DCs) using
trucks and then deliver the goods to the victim
community (VCs) via UAVs afterwards.

This study focuses on the roads used by trucks,
which sustain damage post-disaster in stage I,
leading to restricted accessibility. Due to these
limitations, the location routing model cannot be
applied as is since the cost from WF to DC,
typically represented by distance or travel time,
is always given and known. However, roads are
highly susceptible to damage, especially in the
event of a disaster. Therefore, this paper addresses
the issue by considering road damage, marked
by road capacity limitations and restoration time,
making the capacity dynamic over time. More-
over, in stage II, the delivery of relief goods is
carried out by UAVs due to the difficulty of truck
access on damaged roads post-disaster. Each UAV
has a durability constraint, indicated by a limited
travel time. The objective is to minimize the travel
time of all UAVs assigned to deliver relief goods
to each VC.

Fig. 1. Schematic description of the system.
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3.2. Mathematical Model

There are sets of VCs i ∈ V that require relief
goods. These goods are sent from several WFs
i ∈ F using trucks k ∈ T through DCs j ∈ D

traversing roads (i, j) ∈ A that are damaged
or under restoration at time τ ∈ T . Assuming
trucks cannot deliver relief goods to i ∈ V due
to unfavorable road conditions, the relief goods
are delivered via DCs using UAVs k ∈ K which
have a maximum flight duration Tmax. We use the
notations as shown in Table 1 to define the sets,
parameters, and variables in the model.

Model I: Shortest path model considering dy-
namic capacity

This is the submodel to find the optimal path
from WFs to DCs and optimal execution planning
time.

Min
∑

a∈A

∑

h∈H

∑

τ∈T
ta · s(τ)ah +

∑

τ∈T
p · τ · z(τ) (1)

∑

τ∈T
z(τ) = 1 (2)

s
(τ)
ah ≤ z(τ), ∀a ∈ A, h ∈ H, τ ∈ T (3)

∑

j∈C
s
(τ)
ijh = z(τ), ∀i ∈ F , h ∈ H, τ ∈ T (4)

∑

i∈C
s
(τ)
ijh = z(τ), ∀j ∈ D, h ∈ H, τ ∈ T (5)

∑

h∈H
s
(τ)
ah ≤ maτ , ∀a ∈ A, τ ∈ T (6)

∑

i∈F∪C
s
(τ)
ijh =

∑

i∈C∪D
s
(τ)
jih,

∀j ∈ C, h ∈ H, τ ∈ T
(7)

s
(τ)
ah ∈ {0, 1}, ∀a ∈ A, h ∈ H, τ ∈ T (8)

z(τ) ∈ {0, 1}, ∀τ ∈ T (9)

Table 1. Notations of sets, parameters, and variables in
the formulation.

Notation Description

F Set of warehouse facility
C Set of connection point/ intermediary
D Set of distribution center
V Set of victim point
H Set of arc (i, j), ∀i ∈ F, j ∈ D
A Set of road (i, j) ⊂ (f, c) ∪ (m,n),

∀f ∈ F, c ∈ C,m ∈ C, n ∈ D
A Set of arc (i, j), ∀i, j ∈ D + V, i �= j
T Set of restoration period (0, 1, 2, ..., τ )
K Set of truck
K Set of UAV
A Set of all arcs

ta Time to travel for arc a ∈ A
p Consequence of additional time for

each restoration period τ ∈ T
maτ Maximum capacity of road a ∈ A for

each restoration period τ ∈ T
ca Time to travel for arc a ∈ A
s∗h Optimal cost for arc h ∈ H
di Demand for each i ∈ V
r Maximum capacity for i ∈ F
q Maximum capacity for k ∈ K
q Maximum capacity fot UAV i ∈ K
Tmax Maximum duration for UAV i ∈ K

s
(τ)
ah Binary decision variable indicating

whether the path a ∈ A for h ∈ H
in period τ ∈ T is used.

z(τ) Binary decision variable indicating
whether a condition is met during time
period τ .

xak Binary decision variable indicating
wether arc a ∈ A+A is used for
k ∈ K +K.

yij Binary decision variable indicating
wether i ∈ V is served by j ∈ D.

lak Continues variable indicating the
amount of material sent on arc
a ∈ A by truck k ∈ K.

uik Continues variable indicating the
cumulative amount of material delivered
by UAV k ∈ K to i ∈ V .

Model II: Transportation-UAV routing problem
This model is to find the optimal routes of UAVs
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from DCs to VCs.

Min
∑

h∈H

∑

k∈K
s∗h · xhk +

∑

a∈A

∑

k∈K

ca · xak (10)

∑

i∈F

∑

k∈K
lijk =

∑

i∈V

di · yij , ∀j ∈ D (11)

∑

j∈D

∑

k∈K
lijk ≤ r, ∀i ∈ F (12)

∑

a∈H
xak ≤ 1 ∀k ∈ K (13)

q · xak ≥ lak ∀a ∈ H, k ∈ K (14)

∑

j∈D+V, j �=i

∑

k∈K

xjik = 1 ∀i ∈ V (15)

∑

j∈D+V

∑

i∈V, j �=i

di · xjik ≤ q, ∀k ∈ K (16)

∑

j∈D+V, j �=i

xijk =
∑

j∈D+V, j �=i

xjik,

∀k ∈ K, i ∈ D + V
(17)

∑

j∈D

∑

i∈V
xjik ≤ 1 ∀k ∈ K (18)

uik + dv ≤ uvk +M · (1− xivk),

∀i, v ∈ V, i �= v, k ∈ K
(19)

∑

v∈V
xjvk +

∑

v∈D+V
xvik ≤ 1 + xij ,

∀i ∈ V, v �= i, j ∈ D, k ∈ K

(20)

∑

j∈D

xij = 1, ∀i ∈ V (21)

∑

a∈A

ca · xak ≤ Tmax, ∀k ∈ K (22)

lak ≥ 0, ∀a ∈ A, k ∈ K (23)

yij ∈ {0, 1}, ∀i ∈ V, j ∈ D (24)

xijk ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K (25)

uik ≥ 0, ∀i ∈ V, k ∈ K (26)

The objective function of stage I, represented
by Eq. (1) is to minimize the total travel time
from each i ∈ F to each, j ∈ D and the
consequence of additional time p depends on the
chosen restoration period τ . Eq. (2) ensures only a
single restoration period τ ∈ T is chosen. Eq. (3)
ensures the activation of arc s

(τ)
ah . The path should

start from i ∈ F and end to j ∈ D represented
by Eqs. (4) and (5) where Eq. (6) ensures the flow
of arcs s(τ)ah does not violate the limitations of the
roads. Eq. (7) is flow conservation at i ∈ C. Eqs.
(8) and (9) are the binary decision variables. The
objective function at stage II is Eq. (10) which
minimizes the total travel time from both stages.
Eq. (11) shows the balance of supply and demand.
Eq. (12) ensures the total supply of i ∈ F is not
exceed it’s capacity. Eq. (13) ensures each truck
k ∈ K can use at most one, where Eq. (14) avoids
exceeding the capacity of the truck. All i ∈ V are
served exactly once by UAV, k ∈ K guaranteed
by Eq. (15) where Eq. (16) ensures the capacity
of UAV is not exceeded. Flow conservation in
stage II is shown in Eq. (17) and Eq. (18) shows
that UAVs are used only in one route. Eq. (19)
prevents the subtour. Eqs. (20) and (21) ensure the
compatibility of UAV k ∈ K, i ∈ V and j ∈ D.
Eq. (22) ensures the durability of UAVs, and Eqs.
(23) – (26) are binary and continuous decision
variables.

4. Illustrative Example and Discussion

We generated an example to represent the problem
under discussion. In this example, as shown in Fig.
2, there are six h ∈ F , five i ∈ C, two d ∈ D,
and eight j ∈ V . For arcs (i, j), ∀i ∈ F , ∀j ∈ C
and (i, j), ∀i ∈ C, ∀j ∈ D one-way arcs, ap-
ply, whereas for arcs (i, j), ∀i ∈ D + V, ∀j ∈
D + V, i �= j two-way arcs are applied. To reduce
the number of possible arcs, we use Algorithm
1, ensuring that the resulting arcs are consistent
with the data. For instance, if there is no path
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Fig. 2. Example of the problem in a graph form for
the first case.

Fig. 3. Example of the problem in a graph form for
the second case.

connecting F1 to D2 in Figure 2, the index of this
pair will not be included in the model. This is very
useful for reducing the solver’s computation time.

We used Gurobi Optimizer version 11.0.3, run-
ning on an Intel® Core™ i5 CPU @ 1.80GHz,
with Python as the programming language. The
data is represented in two different cases. In the
first case, as seen in Fig. 2, and the other in Fig.
3. The purpose of these two cases is to observe
the behavior of the model. The intended behavior
is that the model does not generate solutions with
non-existent paths.

The solutions for both cases are shown in Figs.
4 and 5. Based on the objective function, the first
case outperforms the second due to the presence

Algorithm 1 Feasible path generation
1: Extract all F and D pairs.
2: procedure FINDPATHS(data, origin, destina-

tion, path)
3: Initialize path to empty if not provided.
4: if origin == destination then
5: return [path+ [origin]]

6: end if
7: if origin is not in data then
8: return empty list.
9: end if

10: for all neighbor in data[origin] do
11: if neighbor /∈ path then
12: Recursively call FINDPATHS and

collect new paths.
13: end if
14: end for
15: end procedure
16: Output: Set of paths

Fig. 4. Solution of the first case.

of two DCs serving all VCs. However, the effec-
tiveness of the restoration in stage I significantly
influences the performance of the system under
study, i.e., the transportation problem and the lo-
cation routing problem.

We also conducted an analysis of the perfor-
mance changes with respect to the increase in
restoration time in a single period. We carried
out this analysis to streamline decision-making
regarding the timing of planning, taking into ac-
count the restoration time for each period. This
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performance indicates the resilience level of the
system under study against changes in restoration
time for each period. In this example, given the
z(τ) ∈ Z where τ ∈ T and j ∈ {15, 30, 45}
as scenarios of restoration time. The objective
function at each scenario is maximizing the per-
formance (R) defined in Eq. 27.

The results can be seen in Fig. 6 and Fig. 7.
Fig. 6 shows the resilience level against changes
in restoration time (each tick of the axis represents
22.5 mins). Each period indicates improvements
on the damaged road sections. The faster the
restoration, the better, but it will require sufficient
resources, such as a larger number of crews for
faster restoration. This resilience level allows for
accurate decision-making based on the available
resources. In addition, we can see Fig. 7 to eval-
uate the results. Both figures point to τ = 6 for
being the best period to distribute the relief goods.
However, the decision-maker should consider the
effect of the period chosen based on these two
indicators.

R =
Max(Z)− z(τ)

Max(Z)− Min(Z)
(27)

5. Conclusion and Future Works

This study examines a combination of shortest
path, transportation, and UAV routing problems.
Typically, the delivery costs from warehouses to

Fig. 5. Solution of the second case.

Fig. 6. Performance curve towards restoration time in
period τ .

Fig. 7. Travel time changed based on the chosen
restoration time in period τ .

distribution centers are predetermined. This pa-
per, however, considers the impact of infrastruc-
ture damage, specifically the condition of roads
used by trucks traveling from warehouses to dis-
tribution centers. Due to the impracticality of
ground routes for land fleets, delivery to affected
communities is conducted using multiple UAVs.
The condition of infrastructure necessitates poli-
cies that limit road capacity during specific pe-
riods. Throughout the restoration phase, the re-
stricted capacity will incrementally increase until
the restoration process is complete and the perfor-
mance of the system reaches 100%.

Future work presents an intriguing area of ex-
ploration. In this model, we decompose the prob-
lem into two sub-models. However, calculating
the optimal s∗h first can potentially result in an
overall near-optimal solution to the larger scale
problem. Hence, the challenge lies in integrating
these sub-models into a single model. This in-
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tegration also enhances the flexibility for incor-
porating additional parameters, such as the use
of vehicles in finding the shortest path, avoiding
the damaged road while delivering relief goods,
and simultaneous problem solving with stage II.
Additionally, this problem is NP-hard, particularly
in stage II, necessitating the development of al-
gorithms capable of solving the problem within a
reasonable computation time.
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