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This study investigates the cardiovascular impact of cognitive load on Unmanned Aerial Vehicle (UAV) operators
through a comparative analysis of baseline and recovery Electrocardiogram (ECG) data. Twenty-four participants
from diverse aviation backgrounds underwent simulated UAV missions with varying Human-Machine Interface
(HMI) configurations, including voice command and multi-operator settings. ECG data was collected pre- and post-
simulation to assess physiological responses. Statistical analysis, including Z-transform normalization and Student’s
t-test, was employed to examine heart rate variability (HRV) differences. The results reveal significant changes in
HRV previously and after the simulations, highlighting the substantial impact of cognitive load on cardiovascular
function. These findings underscore the importance of monitoring physiological responses to optimize human-
machine interface design and mitigate operator workload in demanding UAV operations.
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1. Introduction

Occupational health and human factors research
increasingly rely on physiological measures to
quantify mental workload Abdul Rahman et al.
(2018); Mansikka et al. (2019); Charles and Nixon
(2019); Sriranga et al. (2023); Luzzani et al.
(2024). Among these measures, the Electrocardio-
gram (ECG) stands out for its ability to illuminate
the intricate relationship between cognitive de-
mands and cardiovascular responses Ziegler et al.
(2016); Mühlhausen et al. (2019); Wang et al.
(2024). By analyzing ECG baseline and recov-

ery phases, researchers gain insights into how
individuals navigate and recuperate from mental
stressors, offering valuable implications for oc-
cupational health and performance enhancement
Nixon and Charles (2017); Radüntz et al. (2020);
Wang et al. (2024).

Early investigations into the application of ECG
in assessing cognitive tasks laid the foundation
for understanding its utility in capturing physio-
logical changes pre- and post-exposure to cogni-
tive stimuli Willemain (1978). While not initially
focused on mental workload, pioneering studies
like those by Willemain (1978) paved the way for
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subsequent research exploring the dynamic inter-
play between cognitive stressors and cardiovascu-
lar responses Willemain (1978). This led to the
integration of ECG monitoring in contemporary
studies on mental workload assessment, spanning
diverse contexts from aviation to healthcare Nixon
and Charles (2017); Abdul Rahman et al. (2018);
Sarmento et al. (2023); Wang et al. (2024).

Comparing baseline and recovery phases of
ECG signals offers valuable insights into the
cardiovascular system’s adaptability to cogni-
tive demands Ziegler et al. (2016); Mansikka
et al. (2019); Wang et al. (2024). Variations in
heart rate (HR), heart rate variability (HRV),
and other ECG-derived parameters during these
phases serve as key indicators of the impact of
mental workload Abdul Rahman et al. (2018);
Radüntz et al. (2020); Wang et al. (2024). Such
research not only enhances our understanding of
the physiological underpinnings of stress and cog-
nitive performance but also holds implications
for designing interventions to mitigate the ad-
verse effects of mental workload across various
professional domains Nixon and Charles (2017);
Radüntz et al. (2020).

This study builds upon ongoing experimental
efforts previously outlined in related works, aim-
ing to evaluate cognitive load in the context of
enhancing the human-machine interface (HMI)
for Unmanned Aerial Vehicles (UAVs) Silva et al.
(2022); Sarmento et al. (2023); Rehder et al.
(2023a,b). Within the experimental framework, a
diverse set of data points was collected, including
electrocardiogram (ECG) readings. Expanding on
findings from a prior study involving 24 partici-
pants Sarmento et al. (2023), this paper centers
on the comparative analysis of ECG data during
the baseline and recovery phases to identify which
phase more accurately represents the normal re-
laxed ECG pattern.

2. Experiment Procedure

The experimental process, conducted in a fully
simulated environment, was divided into subsets
of scenario design, experiment execution, and pro-
cessing of collected data.

2.1. Scenario Design

As part of this research, the work Silva et al.
(2022) describes a critical operational scenario
for UAV missions, emphasizing the need for ef-
fective human-machine interaction during high-
stress combat situations. It defines the context of
the mission as seen in Sarmento et al. (2023),
involving the UAV being deployed in a simu-
lated enemy combat scenario. This configuration
is designed to evaluate pilot situational awareness,
decision-making, and overall system performance
under pressure, highlighting the importance of a
well-designed HMI to increase operational effec-
tiveness and safety in such demanding environ-
ments. The UAV ground station simulator can be
shown in Fig. 1, and a complete description of the
controls and functions used in this experiment is
presented in Sarmento et al. (2023).

Fig. 1. Ground station simulator

2.2. Experiment Execution

The procedure for collecting the first (before
the simulation) and second (after the simulation)
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baseline signals during the experiment was care-
fully structured to ensure accurate measurement
of the operator’s mental workload. After the initial
training and once the operator felt prepared for
the experiment, informed consent was obtained.
Following this, electrocardiogram (ECG) sensors
were attached to the operator to monitor physi-
ological responses. A baseline signal, capturing
5 minutes of data, was collected to establish the
operator’s resting state before the commencement
of the simulated flights Sarmento et al. (2023).

The experiment entailed two simulated flights,
each under different operational settings—either
with a single operator, two operators, or a single
operator utilizing voice commands Sarmento et al.
(2023). These flights were divided into several
segments, including navigating between villages
and identifying targets, with specific tasks as-
signed to each segment Sarmento et al. (2023).

After completing the second flight, a second
baseline or recovery signal was collected to gauge
the post-experiment mental workload, again cap-
turing 5 minutes of data Sarmento et al. (2023).
This approach allowed for a comparison between
the operator’s physiological state before and after
the experiment, providing insights into the men-
tal workload imposed by the UAV operation un-
der different HMI configurations Sarmento et al.
(2023). The experiment involved 24 volunteers,
both men and women, from various backgrounds,
including pilots and students from the Brazilian
Air Force, as well as individuals with experience
in piloting or aeronautical engineering, to ensure
a diverse set of data for analysis Sarmento et al.
(2023).

2.3. Data Processing

During the data processing and classification pro-
cess, related work resulted in the assessment of
mental demand during the experiment, which is
extremely important to verify how the volunteer
reacts between baseline and recovery during the
experiment.

Rehder et al. (2023a) investigates the influ-
ence of the human-machine interface (HMI) on
decision-making and command and control in
unmanned aerial systems (UAS), using an HMI

prototype in combat scenarios together with per-
formance data, subjective mental workload data
(NASA-TLX and ISA), and physiological mea-
surements (Eye Tracker, GSR, and ECG).

In another study, Rehder et al. (2023b), eval-
uated the usability of an interactive system for
UAS using the Systems Usability Scale (SUS). An
average SUS score of 67.4 was found, indicating
a reasonably positive perception of usability. The
study emphasizes the importance of considering
users’ history when controlling the UAS for us-
ability improvements.

Data processing from the experiment described
in Sarmento et al. (2023) involved assessing the
operator’s mental workload through the use of
electrocardiogram (ECG) and instantaneous self-
assessment (ISA) sensors as sources of physiolog-
ical and subjective data, respectively. A scientific
software was then used to analyze the ECG sig-
nal, focusing on RR intervals (space between two
consecutive R waves = one heartbeat) for pilot
data standardization and ECG feature collection.
The variance in both data sets was analyzed using
Analysis of Variance (ANOVA), which considered
factors such as flight number, flight configuration,
and mission segment.

3. Z-Transform

The Z-transformation, commonly known as Z-
score standardization, is a statistical technique
used to standardize the values of a dataset. It trans-
forms the data so that the resulting distribution has
a mean of zero and a standard deviation of one.
This process makes different datasets comparable
and is widely used in various fields, including
psychology, education, and other social sciences,
as well as in machine learning data preprocessing
Snedecor and Cochran (1989).

The origin of Z-score standardization can be
traced back to the work of Karl Pearson, a pio-
neering figure in the early development of statis-
tics, around the late 19th and early 20th cen-
turies. While the specific term ”Z-score” might
not have been used by Pearson himself, the con-
cept of standardizing variables to compare them
on a common scale is deeply rooted in his and
his contemporaries’ work on standard deviation
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and normalization of distributions Snedecor and
Cochran (1989).

A specialized form of Z-transformation for
standardizing physiological data is shown in
Nählinder (2002). This approach adjusts individ-
ual participant data to match the group’s aver-
age values and standard deviation, facilitating ho-
mogeneous analysis across participants. Unlike a
normal Z-transformation, which standardizes data
to a mean of zero and a standard deviation of
one for all participants, this method ensures each
participant’s data aligns with the group’s overall
mean and variance, thereby maintaining individ-
ual variation while enabling direct interpretability
of the standardized values Nählinder (2002).

As described in Nählinder (2002) and shown in
Eq. (1), The original value, xi is replaced with
xj . The equation terms are: x is the individual
average, s is the individuals’ standard deviation,
μ is the entire group average, and σ is the group
standard deviation.

xj =
xi − x

s
σ + μ (1)

4. STUDENT’S T-TEST

The Student’s t-test is a statistical method used to
determine if the difference in outcomes between
two groups is significant. This test is characterized
by its reliance on the Student’s t-distribution for
the test statistic under the assumption of the null
hypothesis. Typically applied when a test statistic
would adhere to a normal distribution if a certain
scale factor was known (which often isn’t, making
it a nuisance parameter), the t-test adjusts for this
by estimating the scale factor from the data Kalpić
et al. (2011). Under specific conditions, this re-
sults in the test statistic following a Student’s t-
distribution. Its primary use is in comparing the
means of two populations to see if they differ
significantly Kalpić et al. (2011). This test has
been used in some recent works to analyze elec-
trocardiogram (ECG) data:

• In Lahmiri (2023), this analysis is used
for distinguishing congestive heart fail-
ure (CHF), arrhythmia (ARR), and nor-
mal sinus rhythm (NSR). Specifically ex-

amined whether short or long-term fluc-
tuations in ECG records could statisti-
cally differentiate these heart conditions;

• In Falsaperla et al. (2018) the cardiac ef-
fects of spinal muscular atrophy (SMA),
comparing electrocardiogram (ECG) pa-
rameters between SMA patients and con-
trols. Utilizing the Student t-test for sta-
tistical analysis, significant differences
were found in PR intervals, P-wave and
QRS amplitudes, and heart rates, indicat-
ing altered cardiac conduction and func-
tion in SMA patients;

• And in Kopeć et al. (2015) assessed
ECG interpretation skills among Polish
medical students, revealing that com-
petency in ECG interpretation signifi-
cantly correlates with self-directed learn-
ing rather than attendance at regular
classes. Through the application of the
Student t-test and other statistical anal-
yses, it was found that students in their
clinical years showed better competency
in interpreting primary ECG parameters
compared to their junior counterparts.

5. ECG Baseline and Recovery

5.1. Data Record

Each baseline and recovery lasted 5 minutes, and
each volunteer performed the two measurements
in the order shown in Fig. (2). The ECG data
in the experiment were collected using the TEA
CAPTIV T-SENS ECG wireless sensor with an
acquisition frequency of 256 Hz (Fig. 3).

5.2. Separation of Data Groups

The HR data is processed through a sliding win-
dow of 30 seconds width, applied at 5-second
intervals. This approach effectively filters out the
HR fluctuations, prioritizing the observation of
slower, significant variations over rapid, short-
term changes. For the purposes of this study,
fluctuations within a brief span are deemed less
relevant, with a focus instead on identifying trends
that unfold over a longer duration, specifically
between 10 to 30 seconds, Nählinder (2002).
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Fig. 2. Order of data collection in the experiment

Fig. 3. TEA CAPTIV T-SENS ECG available in Team
(2024)

After observing the quality of data from each
operator and evaluating the results of the time
measurements between RR peaks, the presence
of disturbances in the measurements was noted.
These disturbances in the RR averages were
caused by noise during collection and/or problems
in signal transmission to the recording equipment.
Due to these significant discontinuities in the sig-
nals, samples from 3 volunteer operators were
excluded from the analysis of this work, resulting
in the analysis of 21 volunteers. After validating
volunteers’ signals, 260 seconds of valid signals
were established for each baseline and recovery.

To use the Z-transformation, the data were
organized into groups, as shown in Fig. 4. All
valid data collected are considered to calculate
the group average and standard deviation. On the
other hand, each pilot’s Baseline and Recovery
data are considered to calculate individual aver-
ages and standard deviations.

After separating the data into groups and calcu-
lating the group and individual average and stan-

dard deviations, the Z-transform was applied to
each baseline and recovery data sequence, result-
ing in a pair of normalized signals for each pilot.
Thus, all data considered for analysis in this work
are normalized by the group and can, therefore, be
compared with each other.

Fig. 4. Total data group

A student’s t-test was performed comparing the
resulting baseline and recovery values for each
pilot to check whether the differences found were
consistent to enable the sequence of analyses be-
tween these two measurement moments for each
pilot in the experiment concerning the general
group.

6. Results

To obtain the results of this study, we analyzed
heart rate data from 24 volunteers to examine vari-
ations between the initial and recovery phases, and
as previously explained, only 21 pilots had enough
rich data to continue the analysis. After applying
the Z-transform, the remaining data was verified
through statistical comparison of baseline and re-
covery data for each pilot, employing T-Tests.
These tests revealed no significant difference in
the data for Pilot 17, leading to its exclusion. The
complete results of the T-Test analysis are detailed
in Table 1.

Figures 5 and 6 depict both the individual and
average heart rates during the baseline and recov-
ery phases, respectively. In these figures, individ-
ual pilot data are shown in lighter shades, whereas
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Table 1. Baseline x Recovery T-Test Results for
each pilot and for the average.

Column T-Statistic P-Value Sig. Diff.

Pilot 2 -26.59581 <1e-5 Yes
Pilot 4 -2.58815 0.01106 Yes
Pilot 5 24.02538 <1e-5 Yes
Pilot 6 -5.22428 <1e-5 Yes
Pilot 7 4.44674 0.00002 Yes
Pilot 8 3.77078 0.00027 Yes
Pilot 9 17.12348 <1e-5 Yes
Pilot 11 -12.20834 <1e-5 Yes
Pilot 12 -3.50029 0.00069 Yes
Pilot 13 3.72457 0.00032 Yes
Pilot 14 -4.24375 0.00005 Yes
Pilot 15 13.35279 <1e-5 Yes
Pilot 16 5.69791 <1e-5 Yes
Pilot 17 0.90796 0.36604 No
Pilot 18 3.47718 0.00075 Yes
Pilot 19 -16.48392 <1e-5 Yes
Pilot 20 -44.22309 <1e-5 Yes
Pilot 21 13.16447 <1e-5 Yes
Pilot 22 6.49732 <1e-5 Yes
Pilot 23 20.53134 <1e-5 Yes
Pilot 24 -5.48600 <1e-5 Yes

Average 2.85011 0.00529 Yes

Fig. 5. Average baseline heart rate and individual pilot
heart rate plot

average data are in red. A comparative analysis
of these figures indicates a broader distribution of
heart rates during the baseline phase compared to
the recovery phase.

Figure 7 is a box-plot comparison of baseline
and recovery heart rate data segmented into 30-
second intervals. This visualization highlights the
relative stability of recovery data in contrast to

Fig. 6. Average recovery heart rate and individual
pilots heart rate plot

Fig. 7. Boxplot of the baseline and recovery heart rate
grouped in time intervals of 30s

baseline data. Additionally, Fig. 8 focuses exclu-
sively on the distribution of average heart rates
between the baseline and recovery phases, reveal-
ing a lower and more precise distribution during
recovery.

Based on the analysis of the results, the primary
contribution of this study is the identification of
recovery phase data as the most appropriate nomi-
nal reference for volunteers. Employing this nom-
inal reference facilitates a more accurate assess-
ment of heart rate variability (HRV) and mental
workload fluctuations throughout the entirety of
the experimental data.
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Fig. 8. Boxplot of average the baseline and recovery
heart rate

7. Conclusion

This study demonstrates the utility of recovery
phase ECG data as a more reliable nominal refer-
ence for assessing HRV and mental workload vari-
ations in UAV operators. By applying rigorous sta-
tistical analyses, including Z-transformation and
Student’s t-tests, we established that recovery data
provide a more stable and precise representation
of cardiovascular responses compared to baseline
measurements. These findings underscore the im-
portance of focusing on recovery phase data when
designing and evaluating HMI systems for UAV
operations.

The observed differences in heart rate variabil-
ity between the baseline and recovery phases may
be due to the pilots’ emotional responses to the
experimental conditions. Factors such as famil-
iarity with experimental procedures, the feeling
of participating in a study, or the excitement as-
sociated with the experimental equipment could
influence heart rate variability, potentially elevat-
ing both the frequency and variance of heart rate
measurements.

Building on these findings, future research
will incorporate electrodermal activity (EDA) re-
sponses and eye-tracking data to provide a more
comprehensive analysis of physiological and cog-

nitive reactions during flight simulations. Addi-
tionally, the study will reassess the initial exper-
iment’s results by comparing recovery measure-
ments against baseline data. A new approach in
this research will involve dividing the data be-
tween men and women, considering potential dif-
ferences in their natural physiological character-
istics. Furthermore, training artificial intelligence
models to interpret these multifaceted conditions
may offer deeper insights into performance vari-
ability under different cognitive loads. This mul-
tidisciplinary approach seeks to advance our un-
derstanding of human physiological responses in
diverse scenarios while leveraging AI to analyze
complex data sets with greater precision.
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