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The current world has experienced a profound shift from risk analysis to resilience analysis, a transition underscored
by the recognition that resilience encompasses more than just a system’s response to threats. It also provides
critical insights into preparedness for future events and the recovery processes that follow. The recent COVID-19
pandemic has profoundly impacted global societies, illustrating the vulnerabilities within our systems and the need
for enhanced resilience. For over three years, communities worldwide faced unprecedented challenges, highlighting
the necessity to evaluate the socio-technical resilience of our societies. Understanding how resilient we are against
such threats is essential, and ensuring a swift recovery post-event is equally critical.
In this paper, we demonstrate the applicability of Bayesian networks in modeling resilience and its various phases
with respect to the pandemic. Unlike deep learning methods, which often rely solely on large datasets, Bayesian
networks offer the unique advantage of incorporating expert knowledge alongside empirical data. This dual approach
allows for a more nuanced understanding of resilience dynamics. We present a data-driven multilevel hierarchical
Bayesian network that not only estimates and compares the different phases of resilience but also identifies and
analyzes the underlying factors that influence each phase. To assess socio-technical resilience effectively, we utilized
a German dataset (INKAR), which contains vital socio-economic indicators, including population, employment,
education, and gender, at a community-level geographical resolution. This research aims to contribute to the growing
body of knowledge on resilience, providing valuable insights that can inform policy and practice. The results quantify
the resilience of single counties and show the coping capacity concerning the pandemic over the past years.
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1. Introduction

The recent COVID-19 pandemic posed one of the
greatest threats to our world. Immense efforts are
ongoing in socio-technical research to understand
its impact on our social dynamics and how we
can make our communities more resilient towards

such dangers. Our local communities are highly
interconnected socio-technical systems. It is cru-
cial to understand how societies can withstand
and respond to various threats, particularly in the
context of global crises such as the COVID-19
pandemic, and recover efficiently to their full per-
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formance as quickly as possible. The pandemic
has underscored the importance of resilience, as it
has exposed vulnerabilities within health systems
and social structures. For instance, a comparison
of COVID-19 death rates in Fig. 1 reveals stark
contrasts between countries with good healthcare
systems like Switzerland and Germany ranked
10 and 13 respectively on the Legatum Prosper-
ity Index (Legatum (2023)), and countries with
relatively weaker healthcare systems like Croatia
ranked 53 on the same index. Switzerland and
Germany, although have a higher first peak of
daily absolute deaths per million people around
May 2020, given their strong health care systems,
managed a lower human loss during 2nd and 3rd
wave and lower cumulative deaths in total as com-
pared to Croatia. This disparity emphasizes the
need for improved preparedness, response, and
recovery strategies (indicated by a stronger health-
care system) to enhance resilience against future
pandemics.

Fig. 1.: Daily absolute and Cumulative COVID-19
related deaths per million people in Switzerland,
Germany, and Croatia Mathieu et al. (2020).

Resilience refers to the ability of a system to
absorb disturbances, adapt to changing conditions,
and recover from adversity (Häring et al. (2016);
Stolz et al. (2024)). It is characterized by re-
silience pillars namely, prepare, prevent, protect,
respond and recover Thoma et al. (2016). In this
research, we focus on modeling resilience within
the social domain, utilizing socio-economic data
to analyze resilience pillars across various com-
munities in Germany. The data source, INKAR

(2024) (Indicators and maps for spatial and urban
development) provides essential indicators such
as population, employment, education, and gen-
der, per district in Germany, enabling us to eval-
uate socio-technical resilience comprehensively.
We employ a multilevel hierarchical Bayesian net-
work approach, integrating both expert knowl-
edge and empirical data to better understand the
resilience dynamics. Our findings reveal signifi-
cant variations in resilience levels among differ-
ent communities, highlighting the best and worst
performers in terms of resilience pillars. We also
examine communities with notable differences in
pillar values and conduct local and global sensitiv-
ity studies to assess the robustness of our results.
This research aims to enhance our understanding
of resilience and inform policy decisions to bolster
community preparedness and recovery processes
in future crises.

2. Related Work

Resilience analysis is widely utilized to under-
stand vulnerabilities within the socio-economic
domain. Kammouh et al. (2019) developed an
indicator-based hierarchical framework known
as PEOPLES (Population, Environmental and
Ecosystem, Organized Governmental Services,
Physical Infrastructures, Lifestyle, Economic De-
velopment, and Social Capital) to analyze the
resilience of communities against both human-
made and natural disasters. Mottahedi et al. (2021)
introduced a practical framework that combines
expert judgment and fuzzy logic to quantify the
resilience of critical infrastructure. This approach
addresses the challenge of sparse data, as much
of the information collected in the domain of
critical infrastructure does not directly pertain to
resilience.

Sen et al. (2022) quantified the resilience of
housing infrastructure against flood hazards us-
ing a dynamic Bayesian network, applying it to
assess vulnerabilities in Barak Valley, located in
Northeastern India. Hossain et al. (2019) Franco-
Gaviria et al. (2022) and Tang et al. (2020)
employed Bayesian modeling approaches to as-
sess the resilience of port infrastructure, socio-
ecological systems in the high Andes of Colom-
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bia, and urban transport infrastructure across four
cities in China, respectively. Kammouh et al.
(2020) presented a framework to model both static
and dynamic socio-economic resilience, which
was used to analyze the resilience of Brazil.

In contrast to existing studies, the current work
primarily focuses on the quantification of re-
silience phases, extending the Bayesian frame-
work provided by Tang et al. (2020) and Kam-
mouh et al. (2020).

3. Methodology

3.1. Data Processing

This section outlines the data processing steps
undertaken to prepare the INKAR dataset for in-
put into the Bayesian model. The INKAR dataset
comprises community-level socio-economic indi-
cators for Germany. As illustrated in Fig. 2, the

INKAR data Categorization Decorrelation

Dimensionality
reductionNormalizationProcessed

data

Fig. 2.: Data processing steps.

first step involves categorizing the data, where
each feature is assigned to one of twelve socio-
economic categories (refer to Tab. 1 for the com-
plete list of categories).

Following categorization, we perform decorre-
lation on each category, eliminating features ex-
hibiting more than 90% correlation to reduce re-
dundancy. Subsequently, we apply Principal Com-
ponent Analysis (PCA) to diminish data dimen-
sionality while retaining a maximum variance of
80% (see Fig. 3). The normalized data is then
scaled to a range between 0 and 1 to ensure unifor-
mity across features. Tab. 1 details the number of
features in each category at various stages of the
data processing pipeline. Additionally, to estimate
the resilience phases, we employ the Baseline
Resilience Indicators for Communities (BRIC)
framework (Xu (2024); Cutter et al. (2010)). This
systematic approach enhances our capacity to an-
alyze the socio-economic resilience of communi-

ties effectively and in a data-driven way.

Table 1.: Number of dimensions in original and
reduced data per category. column A: Number
of dimensions in unprocessed dataset; column B:
Number of dimensions after de-correlation; col-
umn C: Number of dimensions after dimensional-
ity reduction.

Category A B C

Land use 19 16 5
Unemployment 17 15 4
Economy 21 18 8
Building and housing 21 15 4
Employment 43 35 6
Population 45 33 7
Education 14 13 6
Personal income 13 12 4
Medical and social care 22 18 7
Public finances 16 11 4
Social benefits 23 16 4
Transport and accessibility 38 32 10
Total 292 234 69

Fig. 3.: Data dimensionality vs. variance plot. The
elbow at 80% variance leads to 69 dimensions that
total across all the categories.

3.2. Bayesian Network

Bayesian networks are directed acyclic graphs
(DAGs) that effectively model the interdependen-
cies among system variables. As illustrated in Fig.
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4, a Bayesian network consists of nodes represent-
ing random variables, with directed edges indicat-
ing the conditional dependencies between them.
In this figure, the arrows signify how each child
node’s probability is conditionally dependent on
its parent nodes. The joint probability distribution

D
C

BA

Fig. 4.: A simple Bayesian network with 4 nodes.

of the system, taking into account the local depen-
dencies is,

P (A,B,C,D) = P (D | BC)× P (B | A)
×P (A)× P (C)

(1)

In this equation, P (A,B,C,D) denotes the joint
probability distribution of the Bayesian network.
The term P (D | B,C) represents the condi-
tional probability of node D given its parent nodes
B and C, while P (A) and P (C) indicate the
prior probabilities of nodes A and C, respec-
tively—nodes that do not have any parents. This
framework enables a comprehensive understand-
ing of the probabilistic relationships within the
system, facilitating nuanced analyses of resilience
dynamics.

Fig. 5 illustrates the Bayesian network devel-
oped and employed for this study. The network
is structured into three distinct layers: the Macro-
layer, Meso-layer, and Micro-layer. The Micro-
layer comprises data points extracted from the
INKAR dataset, with the figure depicting the cat-
egories to which these data indicators belong. The
Meso-layer encompasses functions that translate
the data indicators into resilience functions, and
its ontology is primarily informed by the work of
Tang et al. (2020). Finally, the Macro-layer con-
sists of resilience functions (or resilience phases)
that directly link the system’s performance to its
resilience. The ontology for this layer is devel-
oped by synthesizing definitions from both Tang
et al. (2020) and Kammouh et al. (2020). This
layered approach enables a comprehensive anal-

ysis of resilience dynamics, facilitating a clearer
understanding of the relationships among various
factors.

3.3. Model Initialization and Phase
Estimation

The initial step following the definition of the
Bayesian network structure involves quantifying
the conditional probability distributions (CPDs)
for each node in the Macro and Meso layers,
as well as establishing the prior distributions for
all indicators in the Micro layer. In the proposed
model, each node is represented by one of three
discrete states: low (L), medium (M), and high
(H), which are encoded as 0, 1, and 2, respectively.

All nodes within the Macro and Meso layers are
directly correlated with resilience; specifically, a
high state of a node corresponds to high resilience.
To accurately map the discrete states of the Micro-
level indicators, we utilize a correlation factor
with resilience. If the correlation factor of an in-
dicator is zero or positive, a high state of the node
inherently implies high resilience. Conversely, for
indicators with a negative correlation, a high state
of the node results in low resilience. This approach
ensures a nuanced understanding of how various
indicators influence resilience within the system.

3.3.1. Micro-level Indicators

The data for the micro-level indicators is derived
from the INKAR dataset, as detailed in Subsec.
3.1. The correlation factor for each indicator is
calculated using the resilience values (BRIC). To
determine the prior distribution among the three
states—Low, Medium, and High—a binomial dis-
tribution is employed (Kammouh et al. (2020)).
For illustration, consider an indicator with a value
x; the corresponding distribution for a positively
correlated indicator is x2, 2x(1−x), and (1−x)2

for the high, medium, and low states, respectively.

3.3.2. Macro and Meso levels

The CPTs for all nodes in the Macro and Meso
levels are determined as described by Kammouh
et al. (2020). To illustrate this, consider the node
Adaptability (adap) in Fig. 5, which has two par-
ent nodes: Learning Ability (lear) and Anticipa-
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Fig. 5.: Bayes net for socio-resilience quantification using INKAR data.

tion (anti). To calculate the CPT for adap, we first
calculate a global relative value for the node,

xadap =
ylear + yanti

maxlear +maxanti
, (2)

where xadap is the relative global value of the
node Adaptability, and ylear and yanti are the
values of the two parent nodes. Additionally,
maxlear and maxanti represent the maximum
values of the two parent nodes, which are two
for the described model. Consequently, the dis-
tribution across the three levels (High, Medium,
and Low) is calculated using the binomial distri-
bution, as outlined for the micro indicators. Tab. 2
presents the CPT for the node Adaptability. Fur-
thermore, to estimate the CPT for the resilience
node, first, the resilience is calculated using the
BRIC methodology and then binomial distribu-
tion, similar to micro-level indicators is calcu-
lated.

Given the Bayesian network and the CPTs
of all nodes, the joint distribution is calculated
using Eq. 1. Consequently, the probabilities of
the three resilience phases—Reduced Vulnerabil-

ity (redvul), Improved Robustness (improbu), and
Improved Recoverability (impreco)—are quanti-
fied using the marginalization of the joint proba-
bility distribution. Subsequently, inverse binomial
sampling is applied to numerically estimate the
phases.

Table 2.: CPT for the node Adaptibility.

ylear yanti xadap x2 2x(1− x) (1− x)2

(H) (M) (L)

2 2 1 1 0 0
2 1 0.75 0.5625 0.375 0.0625
2 0 0.5 0.25 0.5 0.25
1 2 0.75 0.5625 0.375 0.0625
1 1 0.5 0.25 0.5 0.25
1 0 0.25 0.0625 0.375 0.5625
0 2 0.5 0.25 0.5 0.25
0 1 0.25 0.0625 0.375 0.5625
0 0 0 0 0 1
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4. Results and Discussions

In this section, we show different case analyses
and comparisons of quantified resilience phases
and factors that affect resilience the most.

4.1. Resilience and Resilience Phases

Fig. 6 compares the resilience phases of two Ger-
man communities, Passau and Kusel. Passau ranks
highest on the BRIC indicator with a value of
0.786544, while Kusel, with a value of 0.24626,
ranks the lowest. The plot indicates that Kusel is
weak in all phases of resilience, although some
factors contribute more significantly than others.
Fig. 7 displays the comparison of all resilience

Fig. 6.: Resilience phases distribution of two Ger-
man communities.

factors for the two communities alongside the
overall distribution of these factors among all
German communities. As can be deduced, Pas-
sau is overall a better-performing community in
contrast to Kusel; however, there are some factors
for Kusel, such as Rapidity (rapi), that are above
average when compared to the mean value.

Fig. 8 shows the distribution of the BRIC in-
dicator (static resilience) throughout Germany.
Additionally, Fig. 9 illustrates how different re-
silience phases are distributed across the country.

Fig. 7.: Bayes node value distribution of Kusel and
Passau in comparison to the overall distribution of
all communities of Germany .

Fig. 8.: Resilience distribution over Germany
quantified using the BRIC indicators.

4.2. Sensitivity Analysis

To identify the factors that can contribute the most
to improving resilience, the study concludes with
a sensitivity analysis. Fig. 10 presents the local
sensitivity analysis for the community of Kusel,
illustrating how resilience changes with respect to
individual data categories.

As observed, certain categories significantly af-
fect resilience. For instance, medi-social, educa-
tion, and economy are the top three categories that
have the greatest impact on resilience.
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(a)

(b)

(c)

Fig. 9.: Distribution of a. Improved robustness; b.
Improved recoverability; c. Reduced vulnerability,
across all communities in Germany.

Fig. 11 presents the second-order sensitivity
analysis (Sobol (2001)) of the Bayesian model.
The heat map displays pairs of collaborating cate-
gories that have the most impact on resilience.

Fig. 10.: Local sensitivity analysis for the commu-
nity of Kusel.

Fig. 11.: Second-order Sobol sensitivity indices,
showing the impact of pair-wise collaborating cat-
egories on the overall resilience of Kusel.

5. Conclusion and Outlook

The study demonstrates a data-driven method-
ology to quantify the static resilience phases.
Additionally, it highlights the applicability of a
community-driven Bayesian approach to enhance
regional resilience. To illustrate this applicability,
a comparative analysis of two German commu-
nities, Passau, which is the most resilient, and
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Kusel, the least resilient, is provided. It is con-
cluded that Passau’s overall performance during
the COVID-19 pandemic, was notably effective,
resulting in lower human losses. Additionally, the
study summarizes the overall distribution of re-
silience phases across all German communities.

The article also presents the methodology for
quantifying the impact of indicator categories on
overall resilience. The applicability is demon-
strated for the community of Kusel, identify-
ing the factors that most significantly impact re-
silience. The results indicate that regional indica-
tors related to medical-social support, education,
and the economy have the greatest impact on
community resilience when acting independently.
Factors within the categories of medical-social
support and personal income exert the highest im-
pact on resilience when considered collaboratively
in the context of threats similar to a pandemic.

Looking ahead, this framework can be extended
to evaluate temporal performance during pan-
demic scenarios and can also be applied to other
cases, such as extreme weather events.
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